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Multiple response optimization (MRO) problems are usually solved in three phases that include experiment design, modeling,
and optimization. Committee machine (CM) as a set of some experts such as some artificial neural networks (ANNS) is used for
modeling phase. Also, the optimization phase is done with different optimization techniques such as genetic algorithm (GA). The
current paper is a development of recent authors” work on application of CM in MRO problem solving. In the modeling phase,
the CM weights are determined with GA in which its fitness function is minimizing the RMSE. Then, in the optimization phase,
the GA specifies the final response with the object to maximize the global desirability. Due to the fact that GA has a stochastic
nature, it usually finds the response points near to optimum. Therefore, the performance the algorithm for several times will yield
different responses with different GD values. This study includes a committee machine with four different ANNs. The algorithm
was implemented on five case studies and the results represent for selected cases, when number of performances is equal to five,
increasing in maximum GD with respect to average value of GD will be eleven percent. Increasing repeat number from five to
forty-five will raise the maximum GD by only about three percent more. Consequently, the economic run number of the algorithm

is five.

1. Introduction

Multiple response optimization (MRO) problems need to
find a set of input variable values (x’s) which get a desired
set of outputs (y’s). The current study develops a proposed
algorithm in recent authors’ work to solve MRO problems [1].
MRO solution methodologies usually include three phases:
experiments design, modeling, and optimization.

There are some techniques for experiments design. Some
methodologies in this phase are as follows: design of experi-
ments (DOEs) knowledge such as factorial design and frac-
tion factorial design, response surface methodology (RSM)
such as central composite design (CCD), and Box Behnken
[2, 3]. Furthermore, Taguchi orthogonal arrays [4-7] are
derived from the Taguchi method.

Modeling as the second phase is done using different
mathematical or statistical models such as multiple linear and

nonlinear regressions in the form of polynomials [2, 8, 9]
and artificial neural networks (ANNs). Due to the existence
of complicated relationship between inputs and outputs,
usually ANNs are mostly used for modeling rather than for
polynomials. One famous artificial neural network (ANN)
is back propagation neural network (BPNN) that is used in
many engineering problems [10, 11]. Cheng et al. [12] utilized
MANFIS (multiadaptive neuro fuzzy inference system) for
modeling and showed that the results are superior to RSM
polynomial models.

The last phase is optimization, which is usually done on
a performance metric such as global desirability function. In
this process, each predicted response is converted to a value
between 0 and 1. Finally, a composite function is defined
which converts all desirability functions to a unique number
by global desirability function (GDF). Also, Chatsirirungru-
ang and Miyakawa [13] proposed a combination of Taguchi
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and GA to get more accurate responses by using the benefits
of both techniques together.

2. Neural Networks and Committee Machine

Different kinds of neural networks are used to model in com-
plicated prediction problems. Four neural networks are used
in this study that include feed forward neural networks (FF)
[14], radial basis function networks (RBFNs) [15], generalized
regression neural network (GRNN) [16], and adaptive neural
fuzzy inference system (ANFIS) [17, 18].

A committee machine (CM) is a collection of some
intelligent systems named experts and a combiner which
combines the outputs of each expert (Figure 1). The advantage
of CM is that it reaps the benefits of all work with only little
additional computation. Independent variables are entered
for experts, and all experts’ outputs are transferred to a
combiner to get the final response.

One of the most popular methods to combine the experts’
outputs is the simple ensemble averaging method according
to (1) [19]. Furthermore, a combiner could be an intelligent
system such as a neural network. Consider

N
)’=zwz“)’i
i=1

where w; is the weight coeflicient of ith expert, y; is the
estimated response from ith expert, and N is the total number
of the experts [20].

@

Genetic algorithm could be used to yield the experts’
contribution (weights) in a committee machine. Equation (2)
represents that the committee machine gives smaller errors
than the average of all the experts [20, 21]:

1 1,1
Errorgy =& [N;ei ] < N;E [ei] = Error,,., (2)

where €; = ¥; ANN_ Vi real 18 the error of predicted and real
response of each expert and e, is the squared error for the
ith expert. Error,,. is the average error for all experts and
Errorg,y, is the error of CM.

3. Global Desirability and Genetic Algorithm

Overall, desirability or global desirability function is used
to transmit multiple responses to a single response case.
Desirability function converts each estimated response into a
dimensionless desirability value d;. It gets d; values according
to the kind of objects in the problem. These conditions are
shown in (3), (4), and (5) [31, 32].

3.1 Desirability Functions Formula with Different Objects.
The desirability for goal of “Target:”

0 yi<L;
(;/j_lj:l) Li<y <T;
di(y)=q9"" Ui , )
Yi— Ui
- T, <y, <U;
(Tl _ Ul ) 1 yl 1
|0 y; =2 U,
The desirability for goal of “Maximum:”
0 i <L
yi—Li
d; (i) = <Ui _Li> Li<y <U; (4)
1 y; 2 U,
The desirability for goal of “Minimum:”
1 yi <L
U -y \°
d; (y:) = ( : y’) L <y <U; (5)
U -L,
0 yi z U
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TaBLE 1: Classification of some works in MRO subject in the literature.
Author [reference no.] Year Design of experiments Modeling Optimization
Benyounis et al. [22] 2008 RSM RSM Graphical
Chang [5] 2008 Taguchi ANN SA
Chatsirirungruang and Miyakawa [13] 2009 Taguchi Taguchi GA
Cheng et al. [12] 2002 RSM ANN GA
Cojocaru et al. [23] 2009 Full factorial MLR Graphically
Martinez Delfa et al. [24] 2009 RSM RSM, ANN Mathematically
Mukherjee and Ray [10] 2008 N/A ANN Modified TS
Nagesh and Datta [25] 2010 Fractional factorial design MLR, ANN GA
Noorossana et al. [11] 2008 RSM ANN, ES GA
Pasandideh and Niaki [9] 2006 RSM RSM GA
Patnaik and Biswas [26] 2007 Taguchi Taguchi (S/N) Weighting
Pizarro et al. [27] 2006 Taguchi RSM Graphically




4
160 Global desirability ratio increasing
’ 15, 14.8%
45,15.1%
140 8,13.3% 6
20, 13.9%
10, 12.8%
12.0
5,11.7%
1001
S
B
g 804 ¢378%
S
6.0
4.0 4
5,1.1%
204 3,1.1%
0.0 - T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50
Run number
—— CM
—— ANNs
FIGURE 5: GD ratio increasing with respect to number of runs.
TABLE 2: GA specification.
Variable Magnitude/kind
Parent population 20
Selection function Stochastic Uniform
Number of elites 2
Crossover fraction 0.8
Crossover function Scattered
Mutation type Uniform
Number of variables 5
Number of responses 1
Migration direction “forward”
Migration fraction 0.2
TaBLE 3: Cases properties.
Case No; of No.) of Nq. of Reference  Objects
no. x’s y’s experiments
1 3 6 15 my TTTTTT
2 4 2 18 [28] nX
3 3 3 30 [24] TTT
4 2 2 13 [29] Xn
5 4 4 30 [30] nXnn
T: Target; X: Max; n: Min.

where the parameters s and ¢ in the formulas are convexity
coefficients and specify how strictly the target value will be
desired. In the current study, s and ¢ are equal to one. Global
desirability (GD) function is according to (6):

N
GD = {|[ ]4;. (6)
j=1
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Equations from (3) to (5), yield the single desirabilities for
different objects and (6) calculates the global desirability
(GD). Both d;’s and GD values range vary from zero to one. In
the MRO problems, it is important that all responses optimize
simultaneously, and GD is a suitable performance metric to
achieve this target.

Genetic algorithm (GA) is a population-based search
technique, which can quickly and reliably solve problems that
are difficult to tackle by traditional methods. One advantage
of GA is that it is extensible and can interface with existing
models and hybridize with them and optimizes the fitness
function [33, 34].

Also Brie and Morignot [35] state that genetic algorithm
has stochastic nature, and consequently, the results may
highly vary from test to test, even for the same problem and
parameter set.

Different methods have been proposed in the literature
for the optimization of multiple response problems. Table 1
shows corresponding techniques. In this table, some include
only investigation for analysis and comparison not optimiza-
tion.

As a consequence, by reviewing the above works and
other works in the literature, since the genetic algorithm has
been widely implemented by the researchers for optimization
phase of MRO problems with respect to other techniques,
this metaheuristic algorithm was selected as the optimization
technique.

4. Methodology

First of all, an important matter is the selection of data
for training and testing of model. Dixit and Chandra [36]
have suggested a selection method for ANNs. According
to their suggestions, for n inputs, the minimum number
of training set should be such that it includes the corners
of n-dimensional space with respect to more contribution
to input variables with more influence on output. In the
current investigation, this suggestion was applied for corners
of lower and upper limits for all independent variables. Also,
training and testing dataset numbers were 80 and 20 percent,
respectively.

Different criteria are used to assess forecasting models
performance. Two criteria were selected in the current work,
which compare models’ results with the observed or real data.
They are root mean square error (RMSE) [37] and correlation
coeflicient (R) [38]. Consider

13 ~\2
RMSE = (NZ(”_”) )

i=1

Zil ()’i - 71’) ) ()71—)_71)
\/(Zzl\:rl (i - 71‘)2 ) (JA’i—J_A’i)Z)

where ; is ith predicted value or model output, y; is the ith
actual value, and # is the number of data used for prediction.
Furthermore, y and ¥ are the means of actual and predicted
values [39]. The current work includes two conditions to

R= -1 <R<+],
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get Data //include X, Y matrixes
setRMSE _network =1

set min_RMSE = 0.4

for all kind of neural networks

// beginning of modeling phase

set Xand Y
if min_RMSE > RMSE _network
set min_RMSE = RMSE _network
end if
add one to iterations
end // end of while
end for
iteration = 1;
while (iteration < 5)
calculate CM weights using GA randomly
train network
calculate RMSE _network and coefficient of correlation
if RMSE_network < min_RMSE for goal of minimizing in overall RMSE
calculate X", y* and GD(X") using GA for goal of maximizing in Global desirability
end
//end

while (RMSE _network > min_RMSE or coeflicient of correlation < 0) and iterations < 5

// end of modeling phase

/1

ALGORITHM 1

TABLE 4: Input and response variables and optimization criteria for every response (output) in Case 1.

Input (independent) variables Output (dependent) variables

Opt. criteria

x,: flow rate (SCEM) y,: maximum temperature at position A (°C)
x,: flow temp (°C) y,: beginning bond temperature at position A (°C)
x5: block temp (°C) y5: finish bond temperature at position A ("C)

y,: maximum temperature at position B (°C)
¥5: beginning bond temperature at position B ("C)
¥e: finish bond temperature at position B ("C)

Target
Target
Target
Target
Target
Target

TABLE 5: ANNS specifications for Case 1.

No. of neurons in hidden and

Response output layers of feed forward RBF spread coef. GRNN spread coef. ANFIS membership function
b1 3-6-1 0.75 0.55 dsigmf

A 3.6-1 0.75 0.67 trimf

V3 3-4-1 0.9 0.67 trimf

Va 3-3-1 0.45 0.6 trimf

Vs 3-6-1 0.9 0.65 gbellmf

Vs 3-3-1 0.66 0.65 gbellmf

TABLE 6: ANNS specifications for Cases 2-5 for all y’s.
Case no. No. of neurons in hidden and RBF spread coef. GRNN spread coef. ANFIS membership function
output layers of feed forward
2,4,5,6 3-1 0.85 0.5 gbellmf
3 3-5-1 0.85 0.45 gbellmf

TaBLE 7: Input and response variables and optimization criteria for every response (output) (Case 2).

Input (independent) variables Output (dependent) variables

Opt. criteria

x,: tryptone (gL™") ,: biomass (gL™")
x,: yeast extract (g L")
x,: sodium chloride (gL™")

x,: byproduct glycerol (gL™")

¥,: Oryza sativa nonsymbiotic hemoglobinl_OsHbl (g L")

Minimize

Maximize




TABLE 8: Input and response variables and optimization criteria for
every response (output) (Case 3).

Inp}lt (independent) Output (qependent) Opt. criteria
variables variables

Initiator (mL) Solid content of latex (wt%)  Target
Activator (mL) Mooney viscosity Target
Chain transfer Polydispersity Target

agent_CTA (mL)

TABLE 9: Input and response variables and optimization criteria for
every response (output) (Case 4).

Input (independent)  Output (dependent) Opt.
variables variables criteria
x,: voltage (V) y,: reduction efficiency (%)  Maximize
x,: time (min) J,: energy consumption Minimize

(Wh)

TaBLE 10: Input and response variables and optimization criteria for
every response (output) (Case 5).

Input (independent)
variables

Output (dependent) Opt.
variables criteria

Surface roughness

Cutting speed (m/min) (micron) Minimize
Feed (mm/rev) Tool life (min) Maximize
Depth of cut (mm) Cutting force (N) Minimize
Nose radius (mm) Power consumption (W)  Minimize

build ANNs model: first is that RMSE for all data is the
minimum and the second condition is that the correlation
coeflicient of testing data is positive.

Usually, MRO solution includes three phases. Phase one is
experiments design, in which in the current work, all data are
selected from the literatures. The second phase is modeling
which is done by building four different neural networks
and a committee machine. ANNs include feed forward, RBE,
GRNN, and ANFIS models. All neural networks have the
same inputs and one output, and so the number of ANNs in
each model is equal to the number of responses (Figure 2) [1].

A committee machine (CM) was made by a combination
of all four ANN models (Figure 3). M inputs are entered
for each expert of CM simultaneously, and N responses are
multiplied to their weights and then are added together to
get the final response. Committee machine combiner is an
ensemble averaging. Genetic algorithm (GA) computes CM
weights with the object to minimize RMSE of CM response.
So the weight matrix is an M * N matrix.

The object of the current study is to find the economic
performance number of the committee machine and genetic
algorithm to get the best responses in MRO problems solving.
Therefore, firstly, four ANNs and one committee machine
were created separately. Committee machine weights were
calculated by means of GA with the object of minimizing
overall RMSE. Then in the optimization phase, GA yields
the best responses with the object of maximizing global
desirability. The result is x™ and y* with the highest possible
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TaBLE 11: GD values according to run number of CM.

Run no. Case 1 Case 2 Case 3 Case 4 Case 5
1 0.4737 0.6619 0.4474 0.8175 0.8001
2 0.4348 0.7274 0.9634 0.8913 0.7945
3 0 0.6979 0.9774 0.8844 0.7834
4 0 0.7103 0.4424 0.857 0.9037
5 0.3418 0.6989 0.9846 0.8914 0.783
6 0 0.7206 0.9528 0.8654 0.7915
7 0.2878 0.675 0.7032 0.8858 0.7718
8 0 0.669 0.3745 0.8642 0.8616
9 0 0.7059 0.9597 0.8761 0.8889
10 0 0.639 0.6037 0.8881 0.7706
17 0.2626 0.6285 0.2454 0.8613 0.8807
18 0 0.6443 0.8235 0.8831 0.7933
19 0.356 0.7071 0.9061 0.8842 0.8433
20 0 0.6741 0.9785 0.8636 0.7462
21 0 0.6738 0.9898 0.8761 0.8585
22 0 0.6686 0.3429 0.8626 0.8034
23 0.0434 0.6999 0.9581 0.8917 0.8702
24 0 0.668 0.9749 0.7734 0.8602
25 0 0.6886 0.1967 0.8642 0.7689
26 0 0.6264 0.71 0.8867 0.7448
27 0 0.6649 0.485 0.8567 0.8541
36 0.2697 0.6131 0.1343 0.8576 0.8624
37 0.3469 0.7165 0.6614 0.8638 0.8108
38 0.4646 0.6855 0.9875 0.875 0.7786
39 0.2152 0.6309 0.9718 0.8587 0.7826
40 0 0.7036 0.7656 0.8831 0.7613
41 0 0.7213 0.9776 0.8658 0.849
42 0.472 0.6814 0.9585 0.8942 0.8489
43 0.3608 0.6875 0.9943 0.8833 0.8278
44 0 0.6724 0.9429 0.8654 0.8772
45 0.1692 0.6841 0.4276 0.8629 0.8778

GD. These calculations of finding CM weights and x* were
repeated 45 times.

The schematic of the methodology is shown in Figure 4
and corresponding algorithm (Algorithm 1).

5. Results and Discussion

Genetic algorithm is applied in two steps. The first step is to
find CM weights with the object of minimizing the overall
RMSE of CM, and the second step is to find the x’s by GA
and ANNs with the object of maximizing global desirability.
In both steps, GA specifications are listed in Table 2.

The current algorithm is implemented on five MRO prob-
lems. These problems include different numbers of inputs
and outputs and different numbers of experiments. Table 3
represents their properties.

Case 1. The first problem is based on the wire-bonding
process in the semiconductor industry. Table 4 represents
the process inputs and outputs. Different neural networks
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TABLE 12: Statistical results of GD values according to run number of CM (Cases 2-5).
Total run no. Case 1 Case 2 Case 3 Case 4 Case 5 Mean of GD ratio
3 Avg. GD 0.303 0.696 0.796 0.864 0.793 8%
.070
Max GD 0.474 0.727 0.977 0.891 0.800
5 Avg. GD 0.250 0.699 0.763 0.868 0.813 1.7%
Max GD 0.474 0.727 0.985 0.891 0.904
3 Avg. GD 0.192 0.695 0.731 0.870 0.811 13.3%
Max GD 0.474 0.727 0.985 0.891 0.904
10 Avg. GD 0.154 0.691 0.741 0.872 0.815 12.8%
Max GD 0.474 0.727 0.985 0.891 0.904
15 Avg. GD 0.163 0.687 0.711 0.859 0.815 14.8%
Max GD 0.474 0.727 0.985 0.891 0.904
20 Avg. GD 0.153 0.681 0.729 0.863 0.818 13.9%
Max GD 0.474 0.727 0.985 0.891 0.904
45 Avg. GD 0.137 0.670 0.719 0.865 0.819 15.1%
Max GD 0.474 0.727 0.994 0.894 0.904
TaBLE 13: Results of five runs for Case 2. according to Table 6. Case 3 has deferent specifications to
t acceptable results. Four neural networks that include
ANN Run no. GD RMSE 8¢ P
n ! 5779 feedforward (FF), radial base function (RBF), GRNN, and
) ANFIS were consisted in each response for each problem
2 ! 2.779 data. So every problem finds (4" no. of responses) models. A
FE 3 1 2779 committee machine was set with the object to minimize the
4 1.000 2.779 overall RMSE.
5 1.000 2.779
1 0.987 1.200 Case 2. The problem is to optimize the yield of recombinant
5 0.992 1.200 Oryza sativa nonsymbiotic hemoglobin 1 in a medium con-
RBF 3 1,000 1200 taining byproduct glycerol. Table 7 represents the input and
A 0' 985 1200 output variables of this case.
3 0.992 1.200 Case 3. The problem is multiple response optimization of
1 0.899 8.552 styrene-butadiene rubber (SBR) emulsion batch polymeriza-
2 0.899 8.552 tion. Table 8 lists the input and output variables.
GRNN 3 0.899 8.552
4 0.899 8.552 Case 4. The object of this case is to optimize process variables,
5 0.899 8.552 electrolysis voltage, and treatment time for the electrocoag-
) 0,989 2006 ulation removal of hexavalent chromium (Cr(VI)). Table 9
5 0'990 7.006 represents the input and output variables.
ANFIS 3 0.992 7.006 Case 5. The problem is to optimize multiple characteristics in
4 0.990 7.006 CNC turning of AISI P-20 tool steel using liquid nitrogen as
5 0.990 7.006 a coolant. Table 10 lists the input and output variables.
- 14: GD ratio for Case 2 In all five cases, the CM responses that include GD and
ABLE 14 GD ratio for Case 2. RMSE were calculated 45 times. The results of GD are listed
ANN 3 run no. 5 run no. in Tables 11 and 12, representing the statistical results. Case 1
FE 1 1.00 was eliminated in the calculations and the reason is due to the
RBF 101 101 existence of zero values in GD; the increasing of maximum
GRNN 100 1.00 GD to average GD is very high and this can mislead us to
ANFIS 100 100 unmoral results. So only cases from two to five are considered

were established to model data of experiments. Table 5 lists
the ANNs specifications for Case 1. For other cases, to have
superior comparison between committee machine and other
neural networks, the same specifications were considered

and this will yield smaller increase, but more reliable.
The GD ratio is defined in formula (8) and represents ratio
of increasing maximum GD to average GD:

Max GD — Ave. GD
Ave. GD

GD ratio (for X runs) = x 100. (8)



Also, to investigate for ANNs behavior, the results of five runs
are listed in Table 13. For abstract only Case 2 is listed. Table 14
represents statistical results of this case.

It is obvious that in both CM and ANNs, RMSE is
constant for all run numbers. Table 13 shows this reality
for Case 2 with ANNs models. Table 13 shows there is no
significant difference between GD values with respect to run
numbers for different ANNs runs. Table 13 represents, for all
case, that there is an increase in the mean of GD ratio (or
mean of increasing the maximum GD to average GD) with
respect to increasing the run number.

Figure 5 shows the corresponding results graphically and
it illustrates that for committee machine, if the program
performs, for example, 3 times, the maximum to average will
increase to 7.8%. In addition, it shows that if the program
runs 5 times, the maximum value of GD can increase to
11.7% with respect to average. From run numbers 5 to 8,
there is a slight rise about 1.6%. From run numbers 8 to
10, there is a relatively fall in GD ratio. Then from run
numbers ten to forty-five, there is no significant rise in
GD ration and it is only 2.3 percent (from 12.8% to 15,1%).
Consequently, the economical run number for the algorithm
is five times. Because by consuming time from 5 to 45 times
will increase GD ratio about 3.2% (15.1%-11.7%) whereas
run number equal five times has 11.7% and more than 3
times.

Table 13 shows for different ANNs run numbers, there is
only about 1% increasing in GD ratio for run numbers more
than one and this rise is not noticeable, because increasing
1% is due to nature of GA. So to run more than 3 times for
neural networks models has no noticeable effect to increase
GD ratio.

6. Conclusion

Multiple response optimization (MRO) problem solving is
usually done in three phases that include experiments design,
modeling, and optimization. Committee machine (CM) as
a collection of some experts such as some artificial neural
networks (ANNs) can be used in the modeling phase of
MRO. Genetic algorithm is used to find CM weights in the
modeling phase and also as main optimization techniques in
the optimization phase.

The current study modifies a proposed algorithm from
recent works of authors that had used CM and GA to solve
MRO problems. Due to stochastic nature of GA, the final
solutions vary together and different performances will yield
different responses with related global desirability (GD). So
since object of MRO is to find responses with highest GD,
to know economic run number will be useful to obtain
best responses in minimum possible time. According to this
investigation and for the selected MRO problems, the results
represent that the economic run number of the algorithm is
five. With five run numbers, maximum global desirability of
final solution can increase about 11 percent in concern with
average of GD. Whereas, to run the algorithm from five to
forty-five numbers, the maximum of global desirability can
increase only about 3 percent more.
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