Hindawi Publishing Corporation
International Journal of Biomedical Imaging
Volume 2015, Article ID 687819, 6 pages
http://dx.doi.org/10.1155/2015/687819

Research Article

Hindawi

Edge Detection in Digital Images Using Dispersive

Phase Stretch Transform

Mohammad H. Asghari' and Bahram Jalali"**

'Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
’Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA

Correspondence should be addressed to Mohammad H. Asghari; asghari@ucla.edu

Received 25 December 2014; Revised 20 February 2015; Accepted 6 March 2015

Academic Editor: Tiange Zhuang

Copyright © 2015 M. H. Asghari and B. Jalali. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We describe a new computational approach to edge detection and its application to biomedical images. Our digital algorithm
transforms the image by emulating the propagation of light through a physical medium with specific warped diffractive property.
We show that the output phase of the transform reveals transitions in image intensity and can be used for edge detection.

1. Introduction

Edge detection is the name for a set of mathematical methods
for identifying patterns in digital images where brightness
or color changes abruptly [1-3]. Applying an edge detection
algorithm to an image can be used for object detection
and classification. It also reduces the digital file size while
preserving important information, albeit data compression is
not the main objective in edge detection.

Many methods for edge detection have been proposed,
but most of them can be grouped into two main categories:
zero-crossing based and search-based. The zero-crossing
based methods search for zero crossings in a Laplacian or
second-order derivative computed from the image [1]. The
search-based methods compute the edge strength, usually
with a first-order derivative, and then search for local direc-
tional maxima of the gradient amplitude [2]. Detailed survey
of available techniques for edge detection can be found in [3].

We employ a physics-inspired digital image transfor-
mation that emulates propagation of electromagnetic waves
through a diffractive medium with a dielectric function that
has warped dispersive (frequency dependent) property. We
show that the phase of the transform has properties conducive
for detection of edges and sharp transitions in the image.
Our method emulates diffraction using an all-pass phase

filter with specific frequency dispersion dependencies. The
output phase profile in spatial domain reveals variations
in image intensity and when followed by thresholding and
morphological postprocessing provides edge detection. We
show how filters with linear and nonlinear phase derivatives
can be used for edge detection and how the shape and
magnitude of the phase function influence the edge image.

Earlier it was shown that the magnitude of the complex
amplitude for a similarly transformed image exhibits reduc-
tion in space-bandwidth product and may be useful for data
compression [4]. The present paper employs the phase of the
transform for application to edge detection. Also, the details
of the filter kernel are different in the two cases. Going further
back, the concept of diftfraction based image processing has
its roots in the Photonic Time Stretch, a temporal signal
processing technique that employs temporal dispersion to
slow down, capture, and digitally process fast waveforms in
real time [5]. Known as the time-stretch dispersive Fourier
transform, this technique has led to the discovery of optical
rogue waves and detection of cancer cells in blood with
record sensitivity [6], as well as highest performance analog-
to-digital conversion [7]. In this paper, we also demonstrate
application of the proposed edge detection algorithm to some
biomedical images.
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FIGURE 1: In the proposed method for edge detection, after the application of localization filter, a warped Phase Stretch Transform is performed
on the image and the phase of the output image is thresholded and postprocessed by morphological operations to generate the image edges.

2. Technical Description

Different steps of the proposed method for edge detection
are shown in Figure 1. In this method, the original image
is first smoothed using a localization kernel and then is
passed through a nonlinear frequency dependent (dispersive)
phase operation, called Phase Stretch Transform (PST). PST
applies a 2D phase function to the image in the frequency
domain. The amount of phase applied to the image is
frequency dependent; that is, a higher amount of phase is
applied to higher frequency features of the image. Since image
edges contain higher frequency features, PST emphasizes the
edge information in the image by applying more phase to
higher frequency features. Image edges can be extracted by
thresholding the PST output phase image. After thresholding,
the binary image is further processed by morphological
operations to find the image edges.

In the remainder of this paper, we refer to this technique
as the Phase Stretch Transform (PST). The image under
analysis is represented by B[n,m] where n and m are two-
dimensional spatial variables. The PST in frequency domain
can be described as follows:

A [n,m]

_ _ O
= £ (IFFT2{K [p.q] - L[p.q] - FFT2{B[n,m]}} ),

where A[n,m] is the output phase image, £(:) is the angle
operator, FFT2 is the two-dimensional Fast Fourier Trans-
form, IFFT2 is the two-dimensional Inverse Fast Fourier
Transform, and p and g are two-dimensional frequency
variables. The function L[p, q] is the frequency response of
the localization kernel and the warped phase kernel K|[p, q]
is described by a nonlinear frequency dependent phase:

E [P’ q] — ej"l’[P)q]_ (2)

While arbitrary phase kernels can be considered for PST
operation, here we study the phase kernels for which the ker-
nel phase derivative PD| p, q] is a linear or sublinear function
with respect to frequency variables. A simple example of such
phase derivative profiles (e.g., represented by least number of
parameters) is the inverse tangent function which leads to the
following PST kernel phase:

¢ [pal
= (Ppolar [1’, 0] = gppolar [T]

Wer-tan™ (W-r) - (1/2)-In(1+ (W - r)?)

' W T - tan t (Wer ) = (1/2) - ln(l +(W- rmax)z))
(3)

where 7 = [p* + g% 0 = tan"'(g/p), tan"'(-) is the inverse

tangent function, In(:) is the natural logarithm, and r,,, is
the maximum frequency r. S and W are real-valued numbers
related to the strength (S) and warp (W) of the phase profile
applied to the image. For simplicity, we have assumed that
the PST kernel phase profile has circular symmetry with
respect to frequency variables. For small warping factors
W « 1, the phase profile ¢[p, q] becomes a quadratic phase
and represents the case with linear phase derivative. The two
parameters S and W along with the width of the localization
kernel and the thresholding values are used to extract the edge
information.

Application of PST to the image creates the phase image
Aln, m] which is further postprocessed. For edge detection,
postprocessing includes cutting the negative phase values,
thresholding, and morphological operations. Here we use
one-level thresholding. Dependent on the application, the
threshold can be set to allow more or less edges to be shown
in the binary edge image. Morphological operations can be
used to thin the edges, clean the phase image by removing
the isolated pixels, or find prime lines representing edges.
Frequency bandwidth (full width at half maximum) of the
localization kernel is designed to reduce the noise in the
proposed edge detection algorithm while preserving the vital
edge information. In this paper we have used a Gaussian
localization filter.

The parameters that are required to be designed for the
proposed edge detection methods are

(1) S and W: Strength (S) and Warp (W)

of the applied phase kernel

(4)
(2) Af: Bandwidth of the localization kernel

(3) Thresh: Threshold value.

Figures 2(a) to 2(c) show typical phase derivative profiles
that result in edge detection. The kernel applies a phase that
increases with spatial frequency. Since edges contain higher
frequencies, they are assigned a larger phase and therefore are
spatially highlighted in the phase of the transformed image.
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FIGURE 2: Effect of warp (W) and the strength (S) of phase applied to a sample image (shown in (i)) on the edge detection performance in
the proposed method. (a) to (f) Comparison of edge detection results with three different amounts of W in the phase applied to the image.
Phase derivative profiles are shown in (a) to (c) and the corresponding edge detection results are shown in (d) to (f). As seen, edge detection
with medium warp has better noise performance than the case with very large warp or the case with linear phase derivative; compare regions
indicated with white triangular, circle, and rectangular markers. (e), (g), and (h) Comparison of edge detection performance for the case of
W = 14 with three different amounts of S applied to the image. As seen, larger phase results in less edge noises but also less resolution to detect
the edges. Thus, there is an optimum value for S and W parameters to reduce the edge noises while preserving the vital edge information.

Parameters of the kernel (S and W) control the edge
detection process. In the proposed method, there is a trade-
off between spatial resolution and noises of edge detection. A
larger phase (larger S) results in better noise performance in
edge detection but at the expense of lower spatial resolution.
Also a larger warp (larger W) in the phase derivative results
in a sharper edge but it also increases the edge noise.
These parameters can be adjusted manually or optimized
by iterative algorithms. They can be either globally fixed or
locally optimized.

Figure 2 illustrates the effect of warp and the strength of
applied phase on the edge detection performance. The test
image used here is the “Barbara” image shown in Figure 2(i).
Figures 2(d) to 2(f) compare the edge detection results with
different amounts of warp (W) in the applied phase. Figures
2(a) to 2(c) show the phase derivative (group delay) profiles
and Figures 2(d) to 2(f) show the corresponding edge images.
In all cases, identical localization kernel bandwidth (Af = 2),
thresholding (Thresh = 0.047), and morphological operations
are used. Three different amounts of warp are considered:
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(a) Proposed method, phase strength (S) = (b) Sobel: Thresh = 7.9 (c) Canny: sigma = 1.28; Thresh (min, max)
0.48, and warp (W) = 12.14 =1[0.024,0.117]

FIGURE 3: Qualitative comparison of the performance of the proposed method for edge detection (a) to the Sobel (b) and Canny (c) methods.
Image under analysis is the “Lena” image with 512 x 512 pixels. For the proposed method, designed parameters are phase strength S = 0.48,
phase warp W = 12.14, localization kernel bandwidth Af = 0.21, and binary threshold = 0.028. Designed threshold value for Sobel method
is 79 and designed parameters for Canny method are sigma = 1.28, low threshold = 0.024, and high threshold = 0.117.
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FIGURE 4: Edge detection of biomedical images based on Phase Stretch Transform (PST). In this example, image under analysis is histologic
specimen of a tissue stained with hematoxylin and eosin. (a) Original image. (b) Detected edges using the proposed method. (c) and (d)
Detected edges overlaid with the original image for the two boxes shown in (a). For the proposed method, designed parameters are phase
strength S = 0.5, phase warp W = 12, localization kernel bandwidth Af = 0.21, and binary threshold = 0.0019. Figure 4 shows accurate edge
detection using the proposed method. We also note that the weak edges shown in (d) with black square are not extracted properly. This can
be improved by using better thresholding and localization methods.

very small warp (W = 0.001) corresponding to linear phase =~ —0.5 to 0.5 in each of the two dimensions. Compared regions
derivative (Figures 2(a) and 2(d)), medium warp (W = 14) are indicated with white triangular, circle, and rectangular
(Figures 2(b) and 2(e)), and large warp (W = 80) (Figures markers. As seen, edge detection with medium warp has
2(c) and 2(f)). In this paper, all the S and W parameters better noise performance than the case with very large
are calculated assuming the spatial span of image is from  warp or the case with linear phase derivative. Figures 2(e),
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(a) Original image of brain MRI: top view
0.0019

(d) Original image of brain MRI: side view

(b) Detected edges S = 0.3, W =10, T =

(e) Detected edges S = 0.5, W =12, T =
0.003

(c) Overlay
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FIGURE 5: Edge detection of biomedical images based on Phase Stretch Transform (PST). In the two examples presented here, images under
analysis are top and side view brain MRI images. (a) and (d) Original images. (b) and (e) Detected edges using the proposed method. (c) and
(f) Detected edges overlaid with the original image. As evident in the figure, in both examples, the image edges are accurately extracted using

the proposed method.

2(g), and 2(h) compare the performance of edge detection
for three different amounts of phase strength (S). In all
cases, identical warp value of W = 14, localization kernel
bandwidth (Af = 2), thresholding (Thresh = 0.047), and
morphological operations are used. As seen, larger phase
strength results in less noise but also less resolution for edge
detection. To summarize, Figure 2 indicates that value for S
and W parameters can be used to tune and optimize the edge
detection performance.

Here we show qualitative comparison of edge detection
using the proposed method with the powerful and popular
Canny and Sobel methods. We emphasize that these com-
parisons are not intended as quantitative benchmarks but
rather as a qualitative validation of the functionality of the
new method proposed here.

The image under analysis is a gray-scale Lena image with
512 x 512 pixels. Results of edge detection using the three
methods are shown in Figure 3. Edge detection using the
proposed method is shown in Figure 3(a). For the proposed
method, designed parameters are phase strength S = 0.48,
phase warp W = 12.14, localization kernel bandwidth
Af = 0.21, and binary threshold = 0.028. Morphological
operations used for the result shown in Figure 3(a) include

edge thinning and isolated pixel removing. Edge detection
using Sobel method with threshold value of 7.9 is shown
in Figure 3(b). Edge detection using Canny method with
sigma value of 128, low threshold values of 0.024, and
high threshold value of 0.117 is shown in Figure 3(c). Sobel
and Canny methods were implemented using the embedded
functions in MATLAB software. All the three methods use
postmorphological operations such as edge thinning and
cleaning the isolated edge pixels. As evident in Figure 3,
edges are accurately extracted with all three techniques. We
note that, in a few regions (e.g., nose), Sobel and Canny
provide more complete edge profile and have less edge noises.
For the present technique, these issues can be improved
by optimization of the PST kernel, localization kernel, and
threshold settings.

3. Experimental Results

Here we show some examples of the proposed edge detection
algorithm on biomedical images. In particular, we consider
edge detection of histology and brain MRI images.

In the first example, the image under analysis is a
histologic specimen of a tissue stained with hematoxylin and



eosin with 800 x 600 pixels; see Figure 4(a). Edge detection
using the proposed method is shown in Figure 4(b). For the
proposed method, designed parameters are phase strength
S = 0.5, phase warp W = 12, localization kernel bandwidth
Af = 0.21, and binary threshold = 0.0019. Morphological
operations used for the result shown in Figure 4(b) include
edge thinning and isolated pixel removing. We have also
shown the detected edges overlaid with the gray-scale version
of the original image in Figures 4(c) and 4(d). As evident in
Figure 4, edges are accurately extracted using the proposed
technique. We note that in a few regions with weaker edges
(see Figure 4(d), the region around the black square) the
edges are not extracted. For the present technique, these
issues can be improved by optimization of the PST kernel,
localization kernel, and threshold settings.

In the second example, the images under analysis are
two gray-scale brain MRI images: (i) view from the top
and (ii) view from the side. The top view brain MRI image
has 500 x 500 pixels and is shown in Figure 5(a). The side
view brain MRI image has 652 x 600 pixels and is shown
in Figure 5(d). Edge detection using the proposed method
for the two sample images is shown in Figures 5(b) and
5(e). We have also shown the detected edges overlaid with
the gray-scale version of the original image in Figures 5(c)
and 5(f). Designed edge detection parameters for the top
view brain MRI image are phase strength S = 0.3, phase
warp W = 10, localization kernel bandwidth Af = 0.21,
and binary threshold = 0.0019. For the side view brain MRI
image case, the designed edge detection parameters are phase
strength § = 0.5, phase warp W = 12, localization kernel
bandwidth Af = 0.21, and binary threshold = 0.003. In both
cases, edge thinning and isolated pixel removing were used
for morphological operations. Figure 5 proves that edges are
accurately extracted using the proposed technique for the two
examples of brain MRI images as well.

4. Conclusions

A new approach to edge detection in images has been intro-
duced. It is based on a nonlinear dispersive phase operation
applied to the image. The output phase of the transform
reveals transitions in image intensity and can be used for
edge detection and feature extraction. Examples of edge
detection on biomedical images presented here show that the
proposed edge detection algorithm has promising application
in segmentation and analysis of biomedical images.
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