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In the geophysical context, there are awide variety ofmechanismswhichmay lead to the formation of unstable density stratification,
leading in turn to the development of the Rayleigh-Taylor instability and, more generally, interfacial gravity-driven instabilities,
which involves moving boundaries and interfaces. The purpose of this work is to study the level set method and to apply the
process to study the Rayleigh-Taylor instability experimentally and numerically.With the help of a simple, inexpensive experimental
arrangement, the R-T instability has been visualized with moderate accuracy for real fluids. The same physical phenomenon has
been investigated numerically to track the interface of two fluids of different densities to observe the gravitational instability with
the application of level set method coupled with volume of fraction replacing the Heaviside function. Good agreement between
theory and experimental results was found and growth of instability for both of the methods has been plotted.

1. Introduction

The Rayleigh-Taylor instability is instability of an interface
of two fluids of different densities which occurs when the
interface between the two fluids is subjected to a normal
pressure gradient with direction such that the pressure is
higher in the light fluid than in the dense fluid. This is the
case with an interstellar cloud and shock system. A similar
situation occurs when gravity is acting on two fluids of
different density—with the denser fluid above a fluid of lesser
density—such as water balancing on light oil. Considering
two completely plane-parallel layers of immiscible fluid, the
heavier on top of the light one and both subject to the
Earth’s gravity, the equilibrium here is unstable to certain
perturbations or disturbances. An unstable disturbance will
grow and direct to a release of potential energy, as the
heavier material moves down under the gravitational field
and the lighter material is displaced upwards. Such instability
can be observed in many situations including technological
applications as laser implosion of deuterium-tritium fusion
targets, electromagnetic implosion of a metal liner and
natural phenomena as overturn of the outer portion of

the collapsed core of a massive star, and the formation of
high luminosity twin-exhaust jets in rotating gas clouds in an
external gravitational potential.

Various numerical and experimental works have been
done by many researchers concentrating on the growth
of single wavelength perturbations as well as considering
different wavelength modes. Sharp [1] presented some of
the critical issues concerning Rayleigh-Taylor instability. The
importance to carry out the three-dimensional study of Tay-
lor instability and the role of statistically distributed hetero-
geneities on the growth of instability have been analyzed in
his work. Read [2] experimentally investigated the turbulent
mixing by Rayleigh-Taylor instability and the results showed
that if the instability arises from small random perturbations,
the width of the mixed region grows in proportion to 𝑡

2.
The same investigation has been done numerically by Youngs
[3] to simulate the growth of perturbations at an interface
between two fluids of different density. If the mixing process
evolves from small perturbations then the growth of instabil-
ity is controlled by the non-linear interaction between bub-
bles of different sizes. Dalziel [4] investigated the Rayleigh-
Taylor instability experimentally using a simple apparatus
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of novel design where the initial nonlinear perturbations to
the flow have been introduced by the removal of the barrier
separating the two fluid layers and a good agreement between
the results of this work and a previous one has been achieved.
Velocity measurements have been done by particle tracking
using the method of particle image velocimetry. Voropayev
et al. [5] experimentally analyzed the evolution of gravita-
tional instability of an overturned, initially stable stratified
fluid. In the present analysis, the instability is initiated by
overturning the experimental setup such that the heavy
fluid lies over the lighter one. The present study is mainly
concerned about the propagating interface between the two
fluids and its formation and growth rate. A propagating
interface is a closed surface in some space that is moving
under a function of local, global, and independent prop-
erties. A variety of numerical algorithms are available to
track propagating interfaces, and in the present numerical
simulation level set method coupled with volume of fraction
has been used. Level set method is a computational technique
for tracking moving interfaces which rely on an implicit
representation of the interface whose equation of motion is
numerically approximated using schemes built from those for
hyperbolic-conservation laws. The consequential techniques
are able to handle problems inwhich the speed of the evolving
interface may sensitively depend on local properties such as
curvature and normal direction, as well as complex physics
of the front and internal jump and boundary conditions
determined by the interface location.

The volume of fluid (VOF) technique has been presented
by Hirt and Nichols [6] as a simple and efficient means for
numerically handling free boundaries in a calculation mesh
of Eulerian or arbitrary Lagrangian-Eulerian cells. It works
extremely well for a wide range of complicated problems and
this process is very much conservative in nature, but the
appropriate tracking of the interface is not possible by this
method.

Sethian [7] presented a case of the evolution of a front
propagating along its normal vector field with curvature-
dependent speed. Numerical methods based on finite dif-
ference schemes for marker particles along the front are
shown to be unstable in regions where the curvature builds
rapidly. And then the front tracking based on volume of
fluid techniques has been used together with the entropy
condition.

Various numerical methods were developed to study
the propagating interfaces. Osher and Sethian [8] devised
new numerical algorithms, called PSC algorithms, for fronts
propagating with curvature-dependent speed. Merriman
et al. [9] extended the Hamilton Jacobi formulation of Osher
and Sethian and proposed a level set method for the motion
ofmultiple junctionswhere the diffusion equationwas shown
to generate curvature-dependent motion. Zhu and Sethian
[10] considered hydrodynamic problems with cold flame
propagation by merging a second-order projection method
for viscous Navier stokes equations with modern techniques
for computing the motion of interfaces propagating with
curvature-dependent speed. A newmethod was presented by
Unverdi and Tryggvasan [11] to simulate unsteady multifluid

flows in which a sharp interface or a front separates incom-
pressible fluids of different density and viscosity. Chopp and
Sethian [12] studied hyper surfaces moving under flow that
depends on the mean curvature. The approach was based on
a numerical technique that embeds the evolving hypersurface
as the zero Level Set of a family of evolving surfaces. Sussman
et al. [13] combined a level set method with a variable density
projection method for capturing the interface between two
fluids to allow for computation of two-phase flow where the
interface can merge or break considering a high Reynolds
number. Chang et al. [14] presented a level set formulation
for incompressible, immiscible multi fluid flow separated by
a free surface and the interface was identified as the zero Level
Set of a smooth function.

Theory and algorithms of level set method were reviewed
by Sethian [15] for the evaluation of the complex inter-
faces. Topological changes, corner and cusp development,
and accurate determination of geometric properties such as
curvature andnormal directionwere obtained by themethod.
Few years later, Sethian [16] summarized the development
and interconnection between narrow band level set method
and fast marching method, which provides efficient tech-
niques for tracking moving fronts. At another paper, Sethian
[17] reviewed past works on fast marching method and level
setmethod for tracking propagating interfaces in two or three
space dimensions.

Kaliakatos and Tsangaris [18] studied the motion of
deformable drops in pipes and channels using a level set
approach in order to capture the interface of two fluids.
The shape of the drop, the velocity field, and the additional
pressure loss due to the presence of the drop, the relative
size of the drop to the size of the pipe or channel cross-
section, the ratio of the drop viscosity to the viscosity of
the suspending fluid, and the relative magnitude of viscous
forces to the surface tension forces were computed. Son and
Hur [19] combined a level set method with the volume of
fluid method to calculate an interfacial curvature accurately
as well as to achieve mass conservation. They developed
a complete and efficient interface reconstruction algorithm
which was based on the explicit relationship between the
interface configuration and the fluid volume function.

Sethian and Smereka [20] provided an overview of
level set methods, introduced by Osher and Sethian [8],
for computing the solution to fluid-interface problems.
They discussed the essential ideas behind the computa-
tional techniques that rely on an implicit formulation of
the interface and the coupling of these techniques to finite-
differencemethods for incompressible and compressible flow.
Majumder andChakraborty [21] developed a novel physically
based mass conservation model in the skeleton of a level
set method, as a substitute to the Heaviside function based
formulation. The transient evolution of a rounded bubble in
a developing shear flow and rising bubbles in a static fluid, the
Cox angle, and the deformation parameter characterizing the
bubble evolution were critically examined. Carlès et al. [22]
used a magnetic field gradient to draw down a low density
paramagnetic fluid below a more dense fluid in a Hele-Shaw
cell. An extended level set method for classical shape and
topology optimization was proposed based on the popular
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radial basis functions byWang et al. [23].The implicit level set
function was approximated by using the RBF implicit mod-
eling with multiquadric splines. Sun and Tao [24] presented
a coupled volume of fluid and level set (VOSET) method
for computing incompressible two-phase flows. VOFmethod
was used to conserve the mass and level set method was
used to get the accuracy of curvature and smoothness of
discontinuous physical quantities near interfaces. Sussman
and Puckett [25] presented a coupled level set/volume-of-
fluid (CLSVOF)method for computing 3D and axisymmetric
incompressible two-phase flows and Sussman [26] presented
a coupled level set and volume of fluidmethod for computing
growth and collapse of vapor bubbles. A level set method
was combined with the volume of fluid method by Son
[27] for computing incompressible two-phase flows in three
dimensions where the interface configurations were much
more diverse and complicated. A passive scalar transport
model has been studied by Wang et al. [28] to study the 3D
Rayleigh-Taylor instability. The characteristic behavior and
the principle of the interfacial motion from both sinusoidal
and random perturbations have been achieved. Youngs [29]
numerically simulated three-dimensional turbulent mixing
of miscible fluids of RT instability which concluded that
significant dissipation of turbulent fluctuations and kinetic
energy occurs via the cascade to high wave numbers. The
chaotic stage of Rayleigh-Taylor instability is characterized by
the evolution of bubbles of the light fluid and spikes of the
heavy fluid. Gardner et al. [30] proposed a statistical model
to analyze the growth of bubbles in aRayleigh-Taylor unstable
interface. The model using numerical solutions based on the
front tracking method has been compared to the solutions
of the full Euler equations for compressible two-phase flow.
Later, Glimm et al. [31] numerically studied the dynamics
of the bubbles in chaotic environment and their interactions
with each other as well as the acceleration of the bubble
envelope.

The Rayleigh-Taylor instability is a gravity driven insta-
bility of a contact surface and this growth of this instability
is sensitive to numerical or physical mass diffusion. Li et al.
[32] addressed this problem using a second-order TVD finite
difference scheme with artificial compression. They numeri-
cally simulated the 3D Rayleigh-Taylor instability using this
scheme. A new model was proposed by Chen et al. [33, 34]
for the momentum coupling between the two phases. The
Rayleigh-Taylor instability of an interface separating fluids of
distinct density is driven by acceleration across the interface.
Two-phase turbulent mixing data were analyzed, which have
been obtained from direct numerical simulation of the two-
fluid Euler equations by the front tracking method. Direct
numerical simulation of three-dimensional Rayleigh-Taylor
instability (RTI) between two incompressible, miscible fluids
has been presented by Cook and Dimotakis [35]. Mixing
was found to be even more sensitive to initial conditions
than growth rates. The flow structure and energy budget
for Rayleigh-Taylor instability using the results of a high
resolution direct numerical simulation have been examined
by Cook and Zhou [36]. Later Cook et al. [37] described large
eddy simulation for computing RT instability. A relation has
been obtained between the rate of growth of the mixing layer
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Figure 1: Geometrical presentation of analysis of Rayleigh-Taylor
instability of a dense fluid overlying a lighter fluid.

and the net mass flux through the plane associated with the
initial location of the interface.

In this present work, the level set methodology has been
applied to visualize theoretically the RT instability using a
triangular distribution of initial disturbance. The fraction of
volume in the interface control volumes has been successfully
incorporated for identifying the interface very accurately.The
topological changes with time have been captured accurately
and this has been matched effectively with the experimental
results. The instability growth rate which is predicted by
the theory is confirmed by the experimentation with the
initial incipience of linear distribution of disturbances as
already stated. This is a positive contribution along with the
theoretical topological visualization of the RT effects.

On the other hand, themerging and consequent breaking
up of the interfaces has been captured while the RT instability
growth takes place. These results are important as they
provides the probable trapping, merging, and consequent
breaking of the oil and natural gas pools trapped between
the formation of salt domes and overlying sedimentary
rocks. These effects of the geothermal RT instabilities and
deformation of the rocks above the salt domes are important
as they provide the possibility of exploration of oil and gas
pools, thus coagulated and subsequent fragmented in huge
mass under the earth for million of years. These results are
encouraging and can bridge our knowledge of RT to apply to
the oil and gas industry.

2. Geometrical Description

The geometry of the problem is shown in Figure 1. A fluid
layer with a thickness 𝑏 and density 𝜌

1
overlies a second layer

of thickness 𝑏 and density 𝜌
2
. The upper boundary and lower

boundary are assumed to be rigid surfaces. Here, 𝜌
1
is greater

than 𝜌
2
. The undisturbed interface between fluid layers is

taken to be at 𝑦 = 0. Due to gravitational instability, the
interface between the fluids distorts and motions occurs in
the fluid layers.The displacement of the disturbed fluid layers
is denoted by 𝑤. When the heavy fluid lies above the light
fluid, the configuration becomes unstable. The time to grow
the instability depends on the viscosity of the fluid and the
density difference of the fluids.When the viscosity of the fluid
is high and the density difference is smaller, the instability
takes longer to grow.
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Figure 2: Diagram of the experimental setup.

3. Experimental Setup

The experimental setup consists of a closed rectangular box
made of Perspex of 20.4 cm × 10.2 cm × 15 cm dimension.
There are two openings at the top surface with valve arrange-
ment for the purpose of filling the box with the required
liquids. The two side handles are provided for convenience
turning of the setup to upside down or vice versa in quick
time. The setup is placed on a preleveled surface and lower
half of the box is filled with glucose solution and upper half
is filled with colored refined soya bean oil, with the help of
funnels. The viscosities of both the liquids were measured
in the laboratory at room temperature by “Falling Sphere
method” and density of the fluids was measured by simply
measuring their mass and volume (see Figure 2).

The viscosity and specific gravity of the liquids have been
measured as follows:

Viscosity of glucose syrup = 350 Pa-S,
Viscosity of oil = 0.0791 Pa-S,
Specific Gravity of Glucose syrup = 1.4,
Specific Gravity of oil = 0.92.

4. Experimental Technique

In the experiment, first the setup rests at position 3 where
the light fluid lies over the heavy one. In this position, it is
totally balanced and stable. Then the setup is turned upside
down quickly so that heavy liquid lies in the upper half and
thus instability is initiated.The instability can also be initiated
by keeping the setup at position 2 where the heavy and light
liquids stand vertically side by side in an unbalanced and
unstable condition. Naturally all these configurations want
to return to position 3 to minimize the potential energy and
to gain a stable and balanced position. The whole process
is captured to track the moving interface and to study the
growth rate of the instability with time (see Figure 3).

5. Formulation of Two-Phase Flow with
Surface Tension

The term two-phase flow refers to the motion of two different
interacting fluids or with fluids that are in different phases.
In the present analysis, only two immiscible incompressible
fluids have been considered and a low enough Reynolds

number is assumed so that the flow can be considered as
laminar flow. Level set method may be applied to track the
interface efficiently in case of incompressible, immiscible
fluids in which steep gradient in viscosity and density existed
across the interface. In these problems, the role of surface
tension is crucial and formed an important part of the
algorithm.

6. Numerical Modeling

For mathematical analysis, we assume a system of two-
fluid phases constituting a two-dimensional domain. The
individual fluid phases are assumed to be incompressible but
deformable in shape on account of shear stresses prevailing
between various fluid layers as well as fluid-solid interfaces.
We assume the flow field to be two dimensional and laminar.

Navier-Stokes equation is given as

𝑢
𝑡
+ (𝑢 ⋅ ∇) 𝑢 = 𝐹 +

1

𝜌
(−∇𝑃 + 𝜇∇

2
𝑢 + ST) . (1)

Assume a sharp fluid interface between two fluids with
different densities, and also the flow is incompressible, and
thus

∇ ⋅ 𝑢 = 0. (2)

The surface tension term acts normal to the fluid interface
and is proportional to the curvature, due to balance of force
argument between the pressure on each side of the interface.
This leads to the relation,

ST = 𝜎𝜅𝛿 (𝑑) 𝑛. (3)

Thus, surface tension acts as an additionally forcing term in
the direction normal to the fluid interface.

Now replacing normal 𝑛 by ∇𝜙/|∇𝜙| and when distance 𝑑
is approximated by ∇𝜙/|∇𝜙|, we have

𝜎𝜅𝛿 (𝑑) 𝑛 = 𝜎𝜅 (𝜙) 𝛿 (𝜙) ∇𝜙. (4)

The curvature 𝑘(𝜙) can be expressed by 𝜙 and its derivatives
as follows,

𝑘 (𝜙) = −

𝜙
2

𝑦
𝜙
𝑥𝑥

− 2𝜙
𝑥
𝜙
𝑦
𝜙
𝑥𝑦

+ 𝜙
2

𝑥
𝜙
𝑦𝑦

(𝜙
2

𝑥
+ 𝜙
2

𝑦
)
3/2

. (5)

As in [14], regularized delta function 𝛿(𝜙) can be defined as

𝛿 (𝜙) ≡

{

{

{

1/2 (1 + cos (𝜋𝑥/𝜀))
𝜀

if |𝑥| < 𝜀,

0 Otherwise.
(6)

This recasts the surface tension in the level set framework. If 𝜙
is always reinitialized to the distance function, the Dirac delta
function itself can be smoothed.

Thus the equation of motion become

𝑢
𝑡
+ (𝑢 ⋅ ∇) 𝑢 = 𝐹 +

1

𝜌
(−∇𝑃 + 𝜇∇

2
𝑢 + 𝜎𝜅 (𝜙) 𝛿 (𝜙) ∇𝜙) ,

∇ ⋅ 𝑢 = 0.

(7)

The governing equations can be written as follows.
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Figure 3: Illustration of different types of stability and experimental procedure.

6.1. Continuity. Consider

𝜕𝜌

𝜕𝑡
+

𝜕 (𝜌𝑢
𝑗
)

𝜕𝑥
𝑗

= 0. (8)

6.2. Momentum. Consider

𝜌
𝜕𝑢
𝑖

𝜕𝑡
+ 𝜌𝑢
𝑗

𝜌𝑢
𝑖

𝜕𝑥
𝑗

=
𝜕

𝜕𝑥
𝑗

(𝜇
𝜕𝑢
𝑖

𝜕𝑥
𝑗

) −
𝜕𝑝

𝜕𝑥
𝑖

+ 𝜌𝑔
𝑖

+ 𝜎𝜅 (𝜙) ∇𝜙𝛿 (𝜙)

(𝑖, 𝑗 = 1, 2) .

(9)

A scalar variable, level set function is used to identify
the interface between two fluids and also acts as a distance
function. The equation transporting the interface can be
written as

𝜕𝜙

𝜕𝑡
+ 𝑢
𝑗

𝜕𝜙

𝜕𝑥
𝑗

= 0, (10)

where 𝜙(𝑥
𝑗,𝑡
) is the level set function prescribing position of

the interface at any specified time instant. If the value of the
𝜙 at the interface is taken as zero, it effectively becomes a
distance function satisfying

󵄨󵄨󵄨󵄨
∇𝜙

󵄨󵄨󵄨󵄨
= 1. (11)

But at all instant of times 𝜙 must remain a distance
function, to ensure that another scalar variable needs to be
introduced and solved.This variable (𝜓)must be constrained
to constitute a distance function having the same interface
value as 𝜙. This can be achieved by obtaining a pseudo-
steady-state solution for the following transient transport
equation of 𝜓:

𝜕𝜓

𝜕𝑡

= sign (𝜓) (1 − 󵄨󵄨󵄨󵄨
∇𝜓

󵄨󵄨󵄨󵄨
) , (12)

where
󵄨󵄨󵄨󵄨
∇𝜓

󵄨󵄨󵄨󵄨
= √(𝜓

2

𝑥
+ 𝜓
2

𝑦
) (13)

with 𝑡 being a pseudo-time step.
Equation (12) is subjected to the following initial

condition
𝜓 (𝑋, 0) = 𝜙 (𝑋, 𝑡 + Δ𝑡) . (14)

The reinitialization process is iteration of (12) with a
pseudo-time step, and within a few iterations it comes to a
steady state solution.Then the reinitialization procedure ends
leading to reassignment of the level set value.

It is evident that pseudo-steady-state value of 𝜓 is the
value of 𝜙 at the time instant (𝑡 + Δ𝑡). Success of the mass
correction is affected by (12) which depends on the accuracy
of the interpolation of physical properties such as density,
and viscosity across the interface. This can be achieved by
calculating a property 𝜉 within a control volume as

𝜉 = [1 − 𝐻 (𝜙)] 𝜉
1
+ 𝐻 (𝜙) 𝜉

2
, (15)

where𝐻(𝜙) is called Heaviside function.
The equation for the one-dimensional volume fraction is

given by

𝐻 = 0.5 + (
𝜙

Δ𝑋
) , (16)

and for two-dimensional volume fraction the concept has
been taken from [21].

At the solid boundary, the Neumann boundary condition
for the level set function has been utilized.

7. Solution Procedure

The governing differential equations, coupled with appropri-
ate boundary conditions, are solved using a pressure based
finite volume method, as per the SIMPLER algorithm [38].
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Convection-diffusion terms in the conservation equations are
discretized using the power law scheme [38].

The location of the interface at time 𝑡 = 0 has been
specified and then the normal distance for all nodes from
the interface is calculated. The properties at all nodes have
been specified using (15). The continuity and momentum
conservation equations at time instant (𝑡 + Δ𝑡) are solved.
Then using the velocities obtained in a previous step, using
(10), 𝜙 has been solved. Next, using the values of 𝜙 from
preceding step as initial values, the pseudo-steady-state 𝜙 (12)
has been solved. Setting 𝜙(𝑥, 𝑡 + Δ𝑡) = 𝜓(𝑥), the procedure is
going on until the desired convergence is achieved.

The temporal term of the momentum equation has been
discretized as follows. Equation (9) in two-dimensional form
is discretized to get algebraic linear simultaneous equations
as follows:

𝜕

𝜕𝑡
(𝜌𝜙) +

𝜕𝐽
𝑥

𝜕𝑥
+

𝜕𝐽
𝑦

𝜕𝑦
= 𝑆, (17)

where 𝜙 represents general variables and 𝐽
𝑥
and 𝐽
𝑦
are the

total (convection plus diffusion) fluxes defined by

𝐽
𝑥
= 𝜌𝑢𝜙 − Γ

𝜕𝜙

𝜕𝑥
, 𝐽

𝑦
= 𝜌V𝜙 − Γ

𝜕𝜙

𝜕𝑦
, (18)

where 𝑢 and V denote the velocity components in the 𝑥 and 𝑦
directions, 𝑆 is the source term, and Γ represents the diffusion
coefficient. The integration of (17) over the control volume
(Figure 4(a)) gives

(𝜌
𝑃
𝜙
𝑃
− 𝜌
0

𝑃
𝜙
0

𝑃
) Δ𝑥Δ𝑦

Δ𝑡
+ 𝐽
𝑒
− 𝐽
𝑤
+ 𝐽
𝑛
− 𝐽
𝑠

= (𝑆
𝐶
+ 𝑆
𝑃
𝜙
𝑃
) Δ𝑥Δ𝑦.

(19)
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The source term is linearized in the usual manner antici-
pating negative slope while the unsteady terms 𝜌

𝑃
and 𝜙

𝑃
are

assumed to prevail over thewhole control volume. In a similar
fashion, the continuity equation is also linearized.

Similarly the pressure gradient term is discretized consid-
ering the staggered control volume as:

𝑢
𝑒
=
∑𝑎
𝑛𝑏
𝑢
𝑛𝑏
+ 𝑏

𝑎
𝑒

+ (𝑃
𝑃
− 𝑃
𝐸
) 𝑑
𝑒
, (20)

where 𝑑
𝑒
= 𝐴
𝑒
/𝑎
𝑒
.

This is for the 𝑢 equation as shown in Figure 4(b). The
corresponding other equations are discretized in a similar
fashion. Finally, guessing the velocity field, the pressure equa-
tion is solved, and consequently by correcting the velocity
field the variables are solved. This method has an essence
physically possible solution by removing unrealistic checker
board results.

8. Results and Discussions

8.1. Gravitational Instability due to Density Difference with
Initially Horizontal Layers of Fluids. If the box is rotated
in the YZ plane quickly so that the heavy liquid occupies
the upper portion, then instability will initiate at once in
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Figure 8: Comparison of the development of the growth of
instability.

the presence of sufficient unavoidable perturbations and the
interface starts moving.The position of the interface at differ-
ent times, especially in the initial stage of growing instability,
has been analyzed in the present investigation (see Figure 5).

8.2.Theoretical Growth of Instability. From theoretical analy-
sis of the problem, the growth rate is given by

𝜕𝑤

𝜕𝑡
=

(𝜌
1
− 𝜌
2
) 𝑔𝑏

4𝜇

× (((
𝜆

2𝜋𝑏
)

2

tanh 2𝜋𝑏

𝜆

−
1

sinh (2𝜋𝑏/𝜆) cosh (2𝜋𝑏/𝜆)
)

×(
𝜆

2𝜋𝑏
+

1

sinh (2𝜋𝑏/𝜆) cosh (2𝜋𝑏/𝜆)
)

−1

) × 𝑤.

(21)
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Figure 9: Comparison of the growth Rate of the instability.

Figure 10: Distribution of initial instability triggered for the numer-
ical analysis.

Here it has been assumed that the flow is laminar owing
to the fact that the viscosities are of very high order in a two-
dimensional, incompressible flow.

The solution of this equation is

𝑤 = 𝑤
0
𝑒
𝑡/𝜏
𝑎

, (22)

where𝑤
0
is the initial (𝑡 = 0) displacement of that point of the

interface from the undisturbed interface and 𝜏
𝑎
is the growth

time.
Now, it can be seen from the growth equation that growth

rate varies linearly with displacement of that point at a
particular time.

Now, for comparison purpose, a point at a distance of
6.1 cm, that is, approximately 𝜆/4 distance from the left
vertical wall, is considered, where 𝜆 is the wavelength of
the applied perturbation sine curve which in our case is the
length of the box = 20.3 cm.

The displacement of the considered point is measured
at different times from the undisturbed interface by proper
measurement in the series of snapshots presented in Figure 11
and the graph between growth rate (𝑤) and time (𝑡) has been
plotted (see Figure 6).

It can be seen that the best fitted curve is unbounded
exponential in nature, which agrees very much with the
theory demanding exponential growth of the instability. The
curve is of the form 𝑤 = 0.468𝑒

0.110𝑡, or we can write 𝑤 =

0.468𝑒
𝑡/9.09 where growth time 𝜏

𝑎
is 9.09 seconds. We also see
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Numerical result Experimental result
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Figure 11: Comparison between experimental and numerical results.
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Figure 12: Comparison of the growth rate of instability (numerical
result versus linear theory).

that the initial (𝑡 = 0) perturbation of the observed point is
0.468 cm.

Theoretically, the value of 𝜏
𝑎
can be calculated as

𝜏
𝑎
=

4𝜇

(𝜌
2
− 𝜌
1
) 𝑔𝑏

× (
𝜆

2𝜋𝑏
+

1

sinh (2𝜋𝑏/𝜆) cosh (2𝜋𝑏/𝜆)
)

× ((
𝜆

2𝜋𝑏
)

2

tanh 2𝜋𝑏

𝜆

−
1

sinh (2𝜋𝑏/𝜆) cosh (2𝜋𝑏/𝜆)
)

−1

,

(23)

where 𝜇 is equivalent coefficient of dynamic viscosity and it
can be expressed as

𝜇 =
(𝜌
1
𝜇
1
+ 𝜌
2
𝜇
2
)

(𝜌
1
+ 𝜌
2
)

, (24)

where 𝜌
1
= density of lighter liquid = 0.92 × 103 kg/m3, 𝜌

2
=

density of heavier liquid = 1.4 × 103 kg/m3, 𝜇
1
= viscosity

of lighter liquid = 0.0791 Pa-s, and 𝜇
2
= viscosity of Heavier

liquid = 350 Pa-s. So 𝜇 becomes 211.23 Pa-s.
Here, 𝑏 = height of the upper or lower rigid boundary

from the undisturbed, liquid interface = 7.5 cm = 0.075m, 𝑔 =
acceleration due to gravity = 9.8m/s2, and 𝜆 = wave length of
the perturbation sine curve = 20.3 cm. So, 𝜏

𝑎
becomes 7.846

seconds.
Now, from the experimental study, the initial (𝑡 = 0)

perturbation of the specified point is 0.468 cm.
So the theoretical growth equation becomes,

𝑤 = 0.468𝑒
𝑡/7.846—theoretical growth equation,

𝑤 = 0.468𝑒
𝑡/9.09—experimental growth equation.

It can be observed from the above two expressions that
the characteristics of the development of growth of instability
are quite similar, with a slight difference in the growth time.
The growth time is slightly higher in case of experimental
observation than the numerical investigation.

Figure 7 shows the growth of instability with time and
Figure 8 shows the comparison between the theoretical and
experimental results. Figure 9 depicts the theoretical and
experimental comparisons of growth rate of instability. From
the figures, it is observed that, at the early stage of growth
of instability, the experimental and theoretical results matche
considerably while the growth rate differs with the increase
in time.This may be due to the fact that theoretically the flow
has been assumed to be two dimensional, but in case of exper-
imentation the three-dimensional characteristics come into
consideration and due to this effect of three dimensionality
the theoretical results differ with the experimental result and
it increases with increase of time.

The same problem is numerically analyzed considering
a rectangular two-dimensional domain. Two arrays of 61 ×

21 and 121 × 41 grid points in axial and radial directions,
respectively, have been used. It has been observed that
the grid independent study has shown 0.001% change and
the results are almost unaffected considering both the grid
meshes. The grid array of 61 × 21 has been used for all
subsequent results reported here with uniform mesh size
and time step DT = 0.01 s. A disturbance of the vertical
component of velocity having triangular distribution has
been introduced as shown in Figure 10.

The variation of the propagating interface with time has
been shown. Both the experimental and numerical results are
presented here (see Figure 11). In the numerical results, red
color represents the lighter fluid and blue color represents
the heavy fluid, whereas in the experimental results white
solution is the heavy fluid and the red colored fluid is the light
fluid.

It can be observed from the above figures that the exper-
imental results are in good agreement with the numerical
results. The interface between the two fluids shows similar
pattern during the study for both experimental andnumerical
analysis. However, three-dimensional features are observed
to affect the results as seen in the experimental study.
Figure 12 shows the comparison of growth rate of instability.
The numerical result matches the linear theory at the initial
period, whereas with the increase of time it varies with the
linear theory.

In Figure 13, two-bubble merging and consequent break-
ing up have been evaluated with time. The matrix is the
heavier fluid.This is the result of numerical experimentation.

9. Conclusions

The nature of the development of instability was experimen-
tally found as a function of sine curve as predicted by the-
oretical model. A numerical methodology was devised and
validated with experimental results so that the methodology
can handle any gravitational interfacial instability. It was
found that, in the early stages of the growth of instability,
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Figure 13: Merging and consequent breaking of two bubbles in a heavier matrix.

the growth rate is proportional to the instantaneous growth
in a particular position, that is, growth rate varies linearly
with growth at that moment at a particular point on the
interface. But, at the later stage of development of instability,
substantial deviation from the linear theory was observed.
The pictorial views of the interface between the two fluids
have been studied both theoretically and experimentally and
they have matched satisfactorily.

Nomenclature

𝐴: Atwood number (−)
𝑏: Height of one fluid layer (cm)
𝐹: Speed function (m/s)
𝑔: Acceleration due to gravity (m/s2)
𝐻: Heaviside function (−)
𝑃: Pressure (N/m2)
𝑡: Time (s)
𝑢
𝑗
: Velocity (m/s)

𝑊: Growth at a particular time (cm)
𝑊
0
: Initial growth (cm)

Δ𝑡: Small time step (s).

Greek Symbols

𝜙: Level set function (m)
𝜓: Dummy variable for level set function (m)
𝛿: Dirac delta function (−)
𝜉: Fluid properties such as density and viscosity

(−)
𝜎: Surface tension coefficient (N/m)

𝜇: Coefficient of viscosity (Pa-s)
𝜅: Curvature (m−1)
𝜌: Density of the liquid (kg/m3)
𝜏
𝑎
: Growth time (s)

𝜆: Wavelength of the perturbation (cm).
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