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Modern high-performance computing systems allow us to explore and implement new technologies and mathematical modeling
algorithms into industrial software systems of engineering analysis. For a long time the finite elementmethod (FEM)was considered
as the basic approach to mathematical simulation of elasticity theory problems; it provided the problems solution within an
engineering error. However, modern high-tech equipment allows us to implement design solutions with a high enough accuracy,
which requires more sophisticated approaches within the mathematical simulation of elasticity problems in industrial packages of
engineering analysis. One of such approaches is the spectral element method (SEM).The implementation of SEM in a CAE system
for the solution of elasticity problems is considered. An important feature of the proposed variant of SEM implementation is a
support of hybrid curvilinear meshes. The main advantages of SEM over the FEM are discussed. The shape functions for different
classes of spectral elements are written. Some results of computations are given for model problems that have analytical solutions.
The results show the better accuracy of SEM in comparison with FEM for the same meshes.

1. Introduction

The finite element method (FEM) [1, 2] was considered as
the main approach for solution of the problems of elasticity
theory taking into account finite deformations. The desire to
find the stress-strain state of structures with high accuracy is
still a hot topic at themoment and it forces us to seek new and
effective methods for solving engineering problems. One of
such approaches is the spectral elementmethod (SEM) [3–5].
The SEM was firstly applied for the modeling of liquid flows
[6]. These problems require a high accuracy and high rate
of computations. Later the SEM was successfully adopted for
seismic problems [3, 7, 8]. A special quadrature formula was
constructed for integration over space. This quadrature for-
mula permits one to develop a fully explicit scheme for the
integration over time, which is an important advantage of the
SEM.

Among the main advantages of the SEM over the FEM
is the high accuracy of approximation of the solution at a
substantially smaller number of mesh elements required.The
error of the numerical solution of SEM decreases exponen-
tially with the order of elements [9]. When working with
a model, the user does not need to rebuild and refine the
mesh to verify the mesh convergence [9] of the obtained
solution, as it has been when using the FEM, since with
the use of the SEM the mesh can remain initial with
only changing the order of elements. The possibility of ef-
fective paralleling of computing systems with shared and
distributed memory using OpenMP and MPI technology
makes SEM attractive for industrial applications in various
software systems [10]. In particular, a spectral element finite
element scheme that efficiently solves elliptic problems on
unstructured hexahedral meshes is developed in [11]. It is
demonstrated that problems with over 50 million degrees of
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freedom can be solved in a few seconds on an off-the-shelf
GPU.

The industrial application of the SEM is hindered by
the problem of mesh generation [12, 13]. Typically, for a
multibody model geometry it is quite difficult to build a
conformal finite element mesh consisting of hexahedral ele-
ments only for which the SEM [3] was initially developed. In
general, the three-dimensional finite element mesh contains
inmost dominantly hexahedral and tetrahedral elements.
The prismatic and pyramidal elements are used in order to
connect triangular and quadrilateral surfaces of elements. A
two-dimensional mesh may contain rectangular and trian-
gular elements. Such finite element meshes are called hybrid
(mixed) meshes [14]; the SEM was adopted for them within
the present work.

This article discusses the variant of implementation of
spectral element method on hybrid curvilinear meshes for
three-dimensional problems of elasticity theory and its indus-
trial application in CAE Fidesys [15]. The shape functions
for different classes of spectral elements are written. Some
results of computations are given for model problems that
have analytical solutions.

2. Materials and Methods

Let the domain Ω ∈ R2(R3) be divided into ne elements Ωe.
The classes of quadrilaterals and triangles serve as elements
for two-dimensional case. The classes of hexahedrons, tetra-
hedrons, pyramids, and prisms serve as elements for three-
dimensional case. Each element Ωe is defined by reference
points. The number of reference points for a particular
element is indicated in its name.

Each reference point is determined by the index a varying
from 1 to d, where d is a number of reference points of the
finite element. A nondegenerate mapping Fe : Λ → Ωe of
the base (reference) elementΛ inΩe is built for each element.
The coordinates of points in the global coordinate system xe =(xe, ye, ze) and in the reference coordinate system 𝜉 = (𝜉, 𝜂, 𝜃)
are related as follows:

xe (𝜉) =Fe (𝜉) = d∑
a=1

Na (𝜉) xea, (1)

where xe = (xe, ye, ze) is the vector of global coordinates, 𝑥𝑒 ∈Ω𝑒, xea the global coordinates of the reference point a of the
elementΩe, 𝜉 = (𝜉, 𝜂, 𝜃) the reference coordinates, andNa(𝜉)
the ath shape function of the finite element, 𝜉 ∈ Λ.

Generally, the Jacobian [16] of the mapping Fe(𝜉) is
required for the calculation of the integral of an arbitrary
function h(x) over the element Ωe through reference coor-
dinates 𝜉:

∫
Ωe

h (x) dx = ∫
Λ
he (x) ⋅ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨dxd𝜉 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 d𝜉= ∫
Λ
he (𝜉)Je (𝜉) d𝜉, (2)

where he(x) = h(x)|Ωe and Je(𝜉) = det Je(𝜉) is the Jacobian
in the reference point 𝜉. The Jacobian matrix Je(𝜉) can be
calculated in a standard way:

Je (𝜉) = dxe (𝜉)
d𝜉
= d∑

a=1

dNd
a (𝜉)
d𝜉

xea. (3)

In the three-dimensional case:

Je (𝜉) = (Jx𝜉 Jx𝜂 Jx𝜃
Jy𝜉 Jy𝜂 Jy𝜃
Jz𝜉 Jz𝜂 Jz𝜃

) =(
(
𝜕x
𝜕𝜉

𝜕x
𝜕𝜂

𝜕x
𝜕𝜃

𝜕y
𝜕𝜉

𝜕y
𝜕𝜂

𝜕y
𝜕𝜃

𝜕z
𝜕𝜉

𝜕z
𝜕𝜂

𝜕z
𝜕𝜃

)
)
,

Je−1 (𝜉) =(
(
𝜕𝜉

𝜕x
𝜕𝜉

𝜕y
𝜕𝜉

𝜕z
𝜕𝜂

𝜕x
𝜕𝜂

𝜕y
𝜕𝜂

𝜕z
𝜕𝜁

𝜕x
𝜕𝜁

𝜕y
𝜕𝜁

𝜕z

)
)
.

(4)

In the two-dimensional case, we assume that the finite
elements lie in a plane (x, y) and reference points lie in a plane(𝜉, 𝜂):

Je (𝜉) = (Jx𝜉 Jx𝜂
Jy𝜉 Jy𝜂

) = (𝜕x𝜕𝜉 𝜕x𝜕𝜂𝜕y
𝜕𝜉

𝜕y
𝜕𝜂

),
Je−1 (𝜉) = (𝜕𝜉𝜕x 𝜕𝜉𝜕y𝜕𝜂

𝜕x
𝜕𝜂

𝜕y

).
(5)

2.1. QUAD: The Class of Quadrilaterals. The class of quadri-
laterals includes the following types of finite elements, named
by number of reference points: four-node, QUAD4 (𝑑 = 4);
eight-node, QUAD8 (𝑑 = 8); nine-node, QUAD9 (𝑑 = 9).
The reference element Λ for the class of quadrilateralsΛ = {𝜉 = (𝜉, 𝜂) : 𝜉, 𝜂 ∈ [−1, 1]} . (6)

The nodes of a quadrilateral spectral element are the Gauss-
Lobatto-Legendre (GLL) nodes. Let 𝑁 be an order of the
spectral element; then the number of nodes in the element𝑁QUAD
𝜑 = (𝑁 + 1)2. In one-dimensional case the GLL-nodes

are calculated as roots 𝜉𝑎 of the derivative of the Legendre
polynomial 𝑃𝑁 of an order 𝑁, which can be defined as𝑃𝑁(𝜉) = (1/2𝑁𝑁!)(𝑑𝑁/𝑑𝜉𝑁)(𝜉2 − 1)𝑁. In two-dimensional
case the coordinates of GLL-nodes are defined as a direct
product of one-dimensional coordinates.

The shape functions for the elementΩ𝑒 are built based on
the direct product of one-dimensional Lagrange polynomials:𝜑QUAD𝑖𝑗,𝑁 (𝜉) = ℓ𝑁𝑖 (𝜉)ℓ𝑁𝑗 (𝜂) is the 𝑖𝑗th shape function of the
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order 𝑁. The one-dimensional Lagrange polynomials ℓ𝑁𝑎 of
the order𝑁 are defined as follows [3]:ℓ𝑁𝑎 (𝜉) = 𝑁∏

𝑏=0
𝑑 ̸=𝑎

𝜉 − 𝜉𝑏𝜉𝑎 − 𝜉𝑏 . (7)

Each polynomial ℓ𝑁𝑎 is equal to 1 at its node 𝑎 and is equal to
0 at the remaining nodes of the element Ω𝑒 : ℓ𝑁𝑎 (𝜉𝑏) = 𝛿𝑎𝑏,
where 𝛿𝑎𝑏 is the Kronecker symbol.

The approximation of solution of the problem ue = u|Ω𝑒
on a quadrilateral spectral elementΩ𝑒 will be as follows (𝑚 =𝑖𝑁 + 𝑗):

ue (𝜉) ≈ 𝑁QUAD
𝜑∑
𝑚=0

𝜑QUAD𝑚 (𝜉) ue (𝜉𝑚)
= 𝑁∑
𝑖,𝑗=0

𝜑QUAD𝑖𝑗,𝑁 (𝜉) ue (𝜉𝑖𝑗) = 𝑁∑
𝑖,𝑗=0

𝜑QUAD𝑖𝑗,𝑁 (𝜉)U𝑒𝑖𝑗. (8)

In order to integrate an arbitrary function ℎ(x) over the
element Ω𝑒, the Gauss-Lobatto-Legendre (GLL) quadrature
formula is used:∫

Ω𝑒
ℎ (x) 𝑑x = ∫

Λ
ℎ𝑒 (𝜉)J𝑒 (𝜉) 𝑑𝜉

= (𝑁+1)2∑
𝑙=1

w𝑙ℎ𝑒 (𝜉l)J𝑒 (𝜉l) , (9)

where w𝑙 are the GLL-weights and 𝜉l are the coordinates of
GLL-nodes.

GLL-weights are calculated as follows:𝑤𝑎 = 2𝑁 (𝑁 + 1) [𝑃𝑁 (𝜉𝑎)]2 , 𝜉𝑎 ̸= ±1,𝑤𝑎 = 2𝑁 (𝑁 + 1) , 𝜉𝑎 = ±1. (10)

The coordinates of GLL-nodes and GLL-weights (indexes 𝑖, 𝑗
vary from 0 to𝑁) can be written as follows:

𝜉𝑙=𝜉𝑖𝑗= (𝜉𝑖, 𝜂𝑗) ,
w𝑙 = w𝑖𝑗 = 𝑤𝑖 ⋅ 𝑤𝑗,𝑙 = 𝑖𝑁 + 𝑗. (11)

One of the most important features of the SEM is that the
computation of the Lagrange polynomials that are used for
the approximation of solution is based on the same GLL-
nodes that are necessary to calculate integrals over the regionΩ𝑒 using the Gauss-Lobatto-Legendre quadrature formula.

2.2. TRI:TheClass of Triangles. Theclass of triangles contains
the following types of finite elements named by the number
of reference points: three-node, TRI3; six-node, TRI6. The
reference element Λ for the class of trianglesΛ = {𝜉 = (𝜉, 𝜂) : 𝜉, 𝜂 ∈ [0, 1] , 𝜉 + 𝜂 ≤ 1} . (12)

The nodes of a triangular spectral element are the points
𝜉j, which are obtained from the solution of the electrostatic
problem described by Hesthaven and Teng [17] and Taylor et
al. [18]. Let 𝑁 be an order of the spectral element; then the
number of nodes in the element𝑁TRI

𝜑 = (𝑁 + 1)(𝑁 + 2)/2.
Shape functions for the element Ω𝑒 are built based on an

orthogonal basis (𝑁 is the order of a spectral element):𝜓TRI𝑎𝑏 = 𝑃0,0𝑎 ( 2𝜉1 − 𝜂 − 1) (1 − 𝜂)𝑎 𝑃2𝑎+1,0𝑏 (2𝜂 − 1) ,0 ≤ 𝑎 + 𝑏 ≤ 𝑁, (13)

where 𝑃𝛼,𝛽𝛾 (𝑥) are the Jacobi polynomials of the order 𝛾 on
the interval [−1, 1], orthogonal with the weight function (1 −𝑥)𝛼(1+𝑥)𝛽.TheVandermondematrix elements are calculated
in the nodes 𝜉j of the element 𝑉TRI𝑚,𝑗 = 𝜓TRI𝑚 (𝜉j),1 ≤ 𝑚, 𝑗 ≤𝑁TRI
𝜑 . Then the shape functions will be as follows:

𝜑TRI𝑚 (𝜉) = 𝑁TRI
𝜑∑
𝑗=1

(𝑉TRI𝑚,𝑗 )−1 𝜓TRI𝑗 (𝜉) . (14)

The approximation of solution of the problem ue = u|Ω𝑒 on a
triangular spectral element Ω𝑒 will be as follows:

ue (𝜉) ≈ 𝑁TRI
𝜑∑
𝑚=0

𝜑TRI𝑚 (𝜉) ue (𝜉𝑚) = 𝑁TRI
𝜑∑
𝑚=0

𝜑TRI𝑚 (𝜉)U𝑒𝑚. (15)

To integrate an arbitrary function ℎ(x) over the element Ω𝑒,
the symmetric quadrature formulas, described by Zhang et al.
[19], are used:∫

Ω𝑒
ℎ (x) 𝑑x = ∫

Λ
ℎ𝑒 (𝜉)J𝑒 (𝜉) 𝑑𝜉

= 𝑁max∑
𝑙=1

w𝑙ℎ𝑒 (𝜉l)J𝑒 (𝜉l) , (16)

wherew𝑙 are positive weights, 𝜉l are the coordinates of points,
and𝑁max is the number of points in the quadrature formula
corresponding to the spectral element of the order𝑁.
2.3.HEX:TheClass ofHexahedrons. Theclass of hexahedrons
contains the following types of finite elements named by the
number of reference points: eight-node, HEX8; twenty-node,
HEX20; twenty-seven-node, HEX27.The reference elementΛ
for the class of hexahedronsΛ = {𝜉 = (𝜉, 𝜂, 𝜃) : 𝜉, 𝜂, 𝜃 ∈ [−1, 1]} . (17)

The nodes of quadrilateral spectral element are the GLL-
nodes. Let 𝑁 be an order of the spectral element; then the
number of nodes in the element𝑁HEX

𝜑 = (𝑁 + 1)3.
The shape functions for the elementΩ𝑒 are built based on

the direct product of one-dimensional Lagrange polynomials:𝜑HEX
𝑖𝑗𝑘,𝑁(𝜉) = ℓ𝑁𝑖 (𝜉)ℓ𝑁𝑗 (𝜂)ℓ𝑁𝑘 (𝜃), 𝑖𝑗𝑘th shape function of the

order𝑁.
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The approximation of solution of the problem ue = u|Ω𝑒
on hexahedral spectral element Ω𝑒 will be as follows (𝑚 =𝑖𝑁2 + 𝑗𝑁 + 𝑘):
ue (𝜉) ≈ 𝑁HEX

𝜑∑
𝑚=0

𝜑HEX
𝑚,𝑁 (𝜉)ue (𝜉𝑚)

= 𝑁∑
𝑖,𝑗,𝑘=0

𝜑HEX
𝑖𝑗𝑘,𝑁 (𝜉) ue (𝜉𝑖𝑗𝑘) = 𝑁∑

𝑖,𝑗,𝑘=0

𝜑HEX
𝑖𝑗𝑘,𝑁 (𝜉)U𝑒𝑖𝑗𝑘. (18)

To integrate an arbitrary function ℎ(x) over the element Ω𝑒,
the Gauss-Lobatto-Legendre (GLL) quadrature formula is
used: ∫

Ω𝑒
ℎ (x) 𝑑x = ∫

Λ
ℎ𝑒 (𝜉)J𝑒 (𝜉) 𝑑𝜉

= (𝑁+1)3∑
𝑙=1

w𝑙ℎ𝑒 (𝜉l)J𝑒 (𝜉l) , (19)

where w𝑙 are the GLL-weights and 𝜉l are the coordinates of
GLL-nodes.

Coordinates of the GLL-nodes andGLL-weights (indexes𝑖, 𝑗, 𝑘 vary from 0 to𝑁)
𝜉𝑙=𝜉𝑖𝑗𝑘= (𝜉𝑖, 𝜂𝑗, 𝜃𝑘) ,
w𝑙 = w𝑖𝑗𝑘 = 𝑤𝑖 ⋅ 𝑤𝑗 ⋅ 𝑤𝑘,𝑙 = 𝑖𝑁2 + 𝑗𝑁 + 𝑘. (20)

2.4. TETRA: The Class of Tetrahedrons. The class of tetrahe-
drons contains the following types of finite elements named
by the number of reference points: four-node, TETRA4; ten-
node, TETRA10. The reference element Λ for the class of
tetrahedronsΛ = {𝜉 = (𝜉, 𝜂, 𝜃) : 𝜉, 𝜂, 𝜃 ∈ [0, 1] , 𝜉 + 𝜂 + 𝜃 ≤ 1} . (21)

The nodes of a tetrahedron spectral element are the points
𝜉j, which are obtained from the solution of the electrostatic
problem described by Hesthaven and Teng [17]. Let 𝑁 be an
order of the spectral element; then the number of nodes in
the element𝑁TET

𝜑 = (𝑁 + 1)(𝑁 + 2)(𝑁 + 3)/6.
The shape functions for the elementΩ𝑒 are built based on

the following orthogonal basis (𝑁 is the order of a spectral
element):𝜓TET𝑎𝑏𝑐 = 𝑃0,0𝑎 ( 2𝜉1 − 𝜂 − 𝜃 − 1) (1 − 𝜂 − 𝜃)𝑎⋅ 𝑃2𝑎+1,0𝑏 ( 2𝜂1 − 𝜃 − 1)⋅ (1 − 𝜃)𝑏 𝑃2𝑎+2𝑏+2,0𝑐 (2𝜃 − 1)0 ≤ 𝑎 + 𝑏 + 𝑐 ≤ 𝑁,

(22)

where 𝑃𝛼,𝛽𝛾 (𝑥) are the Jacobi polynomials of the order 𝛾
on the interval [−1, 1], orthogonal with the weight function

(1 − 𝑥)𝛼(1 + 𝑥)𝛽. The Vandermonde matrix elements are
calculated in the nodes 𝜉j of the element 𝑉TET𝑚,𝑗 = 𝜓TET𝑚 (𝜉j),1 ≤ 𝑚, 𝑗 ≤ 𝑁TET

𝜑 . Then the shape functions will be as follows:

𝜑TET𝑚 (𝜉) = 𝑁TET
𝜑∑
𝑗=1

(𝑉TET𝑚,𝑗 )−1 𝜓TET𝑗 (𝜉) . (23)

The approximation of solution of the problem ue = u|Ω𝑒 on a
tetrahedral spectral elementΩ𝑒 will be as follows:

ue (𝜉) ≈ 𝑁TET
𝜑∑
𝑚=0

𝜑TET𝑚 (𝜉) ue (𝜉𝑚) = 𝑁TET
𝜑∑
𝑚=0

𝜑TET𝑚 (𝜉)U𝑒𝑚, (24)

In order to integrate an arbitrary function ℎ(x) over the
element Ω𝑒, the symmetric quadrature formulas, described
by Zhang et al. [19], are used:∫

Ω𝑒
ℎ (x) 𝑑x = ∫

Λ
ℎ𝑒 (𝜉)J𝑒 (𝜉) 𝑑𝜉

= 𝑁max∑
𝑙=1

w𝑙ℎ𝑒 (𝜉l)J𝑒 (𝜉l) , (25)

where w𝑙 are positive weights, 𝜉l are coordinates of points,
and𝑁max is the number of points in the quadrature formula
corresponding to the spectral element of the order𝑁.
2.5. PYRAMID:The Class of Pyramids. The class of pyramids
contains the following types of finite elements named by the
number of reference points: five-node, PYRAMID5; thirteen-
node, PYRAMID13. The reference element Λ for the class of
pyramidsΛ = {𝜉 = (𝜉, 𝜂, 𝜃) : 𝜉, 𝜂, 𝜃 ∈ [−1, 1] , 󵄨󵄨󵄨󵄨2𝜉 + 𝜃󵄨󵄨󵄨󵄨≤ 1, 󵄨󵄨󵄨󵄨2𝜂 + 𝜃󵄨󵄨󵄨󵄨 ≤ 1} . (26)

The nodes of a pyramidal spectral element are the points 𝜉j,
matching theGLL-nodes on a square pyramid base and nodes
for triangular spectral element on the side surfaces of the
pyramid. Internal points are located in the planes parallel to
the square base of the pyramid in the scaled GLL-nodes. Let𝑁 be an order of the spectral element; then the number of
nodes in the element𝑁PYR

𝜑 = (𝑁 + 1) (𝑁 + 2) (2𝑁 + 3)6 . (27)

The shape functions for the element Ω𝑒 are built based on
the following orthogonal basis (𝑁 is the order of a spectral
element):

𝜓PYR𝑎𝑏𝑐 = 𝑃0,0𝑎 ( 2𝜉1 − 𝜃)𝑃0,0𝑏 ( 2𝜂1 − 𝜃)(1 − 𝜃2 )𝑏⋅ 𝑃2max(𝑎,𝑏)+2,0
𝑐 (𝜃) ,0 ≤ 𝑐 ≤ 𝑁, 0 ≤ 𝑎 + 𝑏 ≤ 𝑁 − 𝑐, (28)
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where 𝑃𝛼,𝛽𝛾 (𝑥) are the Jacobi polynomials of the order 𝛾 on
the interval [−1, 1], orthogonal with the weight function (1 −𝑥)𝛼(1+𝑥)𝛽.TheVandermondematrix elements are calculated
in the nodes 𝜉j of the element 𝑉PYR𝑚,𝑗 = 𝜓PYR𝑚 (𝜉j) 1 ≤ 𝑚, 𝑗 ≤𝑁PYR
𝜑 . Then the shape functions will be as follows:

𝜑PYR𝑚 (𝜉) = 𝑁PYR
𝜑∑
𝑗=1

(𝑉PYR𝑚,𝑗 )−1 𝜓PYR𝑗 (𝜉) . (29)

The approximation of solution of the problem ue = u|Ω𝑒 on
pyramidal spectral elementΩ𝑒 will be as follows:

ue (𝜉) ≈ 𝑁PYR
𝜑∑
𝑚=0

𝜑PYR𝑚 (𝜉) ue (𝜉𝑚) = 𝑁PYR
𝜑∑
𝑚=0

𝜑PYR𝑚 (𝜉)U𝑒𝑚. (30)

To integrate an arbitrary function ℎ(x) over the element Ω𝑒,
the symmetric conical quadrature formulas, described by
Felippa [20], are used:∫

Ω𝑒
ℎ (x) 𝑑x = ∫

Λ
ℎ𝑒 (𝜉)J𝑒 (𝜉) 𝑑𝜉

= 𝑁max∑
𝑙=1

w𝑙ℎ𝑒 (𝜉l)J𝑒 (𝜉l) , (31)

where w𝑙 are positive weights, 𝜉l are coordinates of points,
and𝑁max is the number of points in the quadrature formula
corresponding to the spectral element of the order𝑁.
2.6. WEDGE: The Class of Prisms. The class of prisms con-
tains the following types of finite elements named by the
number of reference points: six-node: WEDGE6; fifteen-
node, WEDGE15. The reference element Λ for the class of
prismsΛ = {𝜉 = (𝜉, 𝜂, 𝜃) : 𝜃 ∈ [−1, 1] , 𝜉, 𝜂 ∈ [0, 1] , 𝜉 + 𝜂 ≤ 1} . (32)

The nodes of a prismatic spectral element are the points 𝜉j
arising from the direct product of the nodes for the triangular
spectral element and one-dimensional GLL-points. Let𝑁 be
an order of the spectral element; then the number of nodes in
the element𝑁WEDGE

𝜑 = 𝑁TRI
𝜑 (𝑁 + 1).

The shape functions for the elementΩ𝑒 are built based on
the product of the shape functions for the triangular spectral
element and the Lagrange polynomials:𝜑WEDGE

𝑖𝑘 (𝜉) = 𝜑TRI𝑖 (𝜉, 𝜂) ℓ𝑁𝑘 (𝜃) . (33)

The approximation of solution of the problem ue = u|Ω𝑒 on a
triangular spectral elementΩ𝑒will be as follows (𝑚 = 𝑘𝑁TRI

𝜑 +𝑖):
ue (𝜉) ≈ 𝑁WEDGE

𝜑∑
𝑚=0

𝜑WEDGE
𝑚 (𝜉)ue (𝜉𝑚)

= 𝑁WEDGE
𝜑∑
𝑚=0

𝜑WEDGE
𝑚 (𝜉)U𝑒𝑚. (34)

To integrate an arbitrary function ℎ(x) over the element Ω𝑒,
the quadrature formulas are used, which are the unions of
quadrature formulas for triangular spectral elements and the
Gauss-Lobatto-Legendre quadrature formula:∫

Ω𝑒
ℎ (x) 𝑑x = ∫

Λ
ℎ𝑒 (𝜉)J𝑒 (𝜉) 𝑑𝜉

= 𝑁max∑
𝑙=1

w𝑙ℎ𝑒 (𝜉l)J𝑒 (𝜉l) , (35)

where w𝑙 are weights, 𝜉l are coordinates of points, and𝑁max is the number of points in the quadrature formula
corresponding to the spectral element of the order𝑁.
2.7. Features of Implementation. Themain steps of application
of the spectral element method to the problems of the theory
of elasticity are similar to the steps of problems solving using
the finite element method, such as discretization of equilib-
rium equations in the integral form; selection of quadrature
for calculation of integrals; building of local matrices of
stiffness, mass, and damping for each element; assembling
global matrices of stiffness, mass, and damping. At present,
most of mesh generators for geometric models build only the
finite element meshes of the first and second order, which
forces us to rebuild the mesh model for calculation using the
spectral element method. The most long-lasting operation at
this step is to construct a graph of mesh connectivity, so one
can use the connectivity graph of the initial finite element
mesh model in order to speed up the algorithm. Increasing
the speed of the algorithm is associated with an increase in
memory consumption. In particular, for high order elements
it is necessary to store the points of integration, quadrature
weights, and computed values of derivatives of functions at
these points. An important feature of the algorithm is the
ability to use the spectral elementmethod on any hybrid finite
element mesh of the first and second order. In fact, uncoated
classes of reference mesh elements currently are beam and
shell elements.

3. Results

This approach to the implementation of spectral element
method on hybrid curvilinear meshes for elasticity problems
was industrially implemented in CAE Fidesys. Let us give the
spectral element solution of the problem of stress analysis
for a structural element and the results of spectral element
analysis of wave propagation [13] in the elastic medium in
comparison with the finite element and analytical solutions.

Numerical experiments clearly demonstrate that the
mesh convergence in themodel is achievedmuch faster when
using the spectral element method as compared with the
finite element method.

3.1. Calculation of Wave Propagation in Unbounded Elastic
Medium under the Action of a Point Source of Disturbances.
The wave propagation in unbounded elastic medium was
analysed using the spectral element method, and the results
were compared with the solution obtained via analytical
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calculation of displacement vector components, depending
on time at fixed points of the body [1]. In Figure 1, one can
see the time dependencies of the displacement vector compo-
nents 𝑈𝑥, 𝑈𝑦 and the relative errors 𝜀SEM𝑥 , 𝜀SEM𝑦 of calculation
results for these components obtained via the SEM against
the analytical solution. The results are given for one of the
receivers within the medium; 𝑡 denotes time, and 𝑁 is the
order of approximating polynomials. As it can be seen in the
graphs, the maximum error of the calculation via SEM on a
mesh of about 10 thousands of elements does not exceed 2.0%
at the 8th order of approximating polynomials and 0.4% at the
10th order of approximating polynomials.

3.2. Analysis of Stress-Strain State of a Bridge Span under the
Action of Pressure on Its Base. The calculation was performed
for the finite elements of the first and second orders, as well
as for the spectral elements of the orders from 1 to 4. An error
of vector norm of maximum displacement of the bridge span
was estimated. As a reference value for the assessment of the
accuracy of the obtained solution, a value corresponding to
the model mesh convergence was taken. Results are provided
for the following cases: case 1, 10 thousand elements (the
character element size is 0.8); case 2, 28 thousand elements
(the character element size is 0.4); case 3, 104 thousand
elements (the character element size is 0.2); case 4, 849

thousand elements (the character element size is 0.1).The case
number is laid off as abscissa.

As it can be seen in Figure 2 on the graphs, the spectral
element method on the coarsest mesh just on the 4th order
demonstrates the accuracy of the order of 1%, whereas the
finite element method on a mesh of 849 thousand elements
still gives an error of more than 10% for the finite elements
of the first order and about 2% for the finite elements of the
second order.

4. Discussion

This article discusses the variant of spectral element method
implementation on the hybrid curvilinear meshes for prob-
lems of elasticity theory and its industrial application in CAE
Fidesys. The comparison with the finite element method was
conducted, which allowed us to draw a conclusion about
the high accuracy of the method and the correctness of
algorithms and the program developed. In the future, it is
planned to expand the implementation of the method for
the cases of shell and beam elements within the static and
dynamic elasticity problems.
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