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We extend for the first time the applicability of the optimal homotopy asymptotic method (OHAM) to find the algorithm of
approximate analytic solution of delay differential equations (DDEs). The analytical solutions for various examples of linear and
nonlinear and system of initial value problems of DDEs are obtained successfully by this method. However, this approach does not
depend on small or large parameters in comparison to other perturbation methods. This method provides us with a convenient way
to control the convergence of approximation series. The results which are obtained revealed that the proposed method is explicit,

effective, and easy to use.

1. Introduction

Delay differential equation (DDE) is a form of differential
equations in which derivative of the unknown function in a
given time f is specified in terms of the values at an earlier
point in time.

DDEs have the general form

u; (x) = f (o0 (), 1 (& ()),

j=12,...,N,

)
i=12,..., M,
where & ]-(x) =ajx+ bj is the delay function.

Many problems of physics, biological models, control
system, and medical and biochemical fields are modelled by
DDEs. Recent studies in such diverse fields have shown that
DDEs play an important role in explaining many different
phenomena. Patel et al. [1] introduced an iterative scheme
for the optimal control systems described by DDEs with a
quadratic cost functional. In physiology, Glass and Mackey
[2] applied time delays to many physiological models. Busen-
berg and Tang [3] created a model for cell cycle by delay
equations. In recent years, DDEs are used to design models
as HIV-1 therapy for fighting a virus with another virus [4].

In the last years, a great deal of attention has been devoted
to study DDEs. Hence, they are solved by numerical method
and approximation approach, such as Adomian decomposi-
tion method [5, 6], homotopy perturbation method (HPM)
[7, 8], multiquadric approximation scheme [9,10], variational
iteration method (VIM) [8, 11, 12], spline methods [13],
homotopy analysis method (HAM) [14], Chebyshev polyno-
mials [15], Galerkin method [16], Legendre wavelet method
[17], differential transform method [18], and Runge-Kutta
method [19]. Recently, a new approach of homotopy which is
called optimal homotopy asymptotic method (OHAM) was
proposed and developed by Marinca et al. [20-24] for the
approximate solution nonlinear problems of thin film flow
of a fourth-grade fluid and for the study of the behavior
of nonlinear mechanical vibration of electrical machines.
In OHAM, the control and adjustment of the convergence
region are provided in a convenient way. Furthermore, the
OHAM has been built in convergence criteria similar to those
of HAM but with greater degree of flexibility. Islam et al. [25]
have applied this method successfully to nonlinear problems
and have also shown its effectiveness and accuracy. Idrees et
al. [26] used OHAM to study the squeezing flow between two
infinite planar plates slowly approaching each other.



The aim of this paper is to apply OHAM to get an
approximate analytic solution of DDEs. The capability of this
approach is tested upon several examples which offer an
approximate solution in a series form that converges to exact
solution in few terms. The rest of this paper is organized as
follows. In Section 2, we describe the basic idea of OHAM.
In Section 3, we provide the convergent theorem for this
type of equations. Section 4 presents several examples to
demonstrate the efficiency of the framework. The conclusion
of this study is presented in Section 5.

2. Description of the Method

In this section, framework of the proposed method is given
and represented in the following differential equation:

L; (u; (%)) + g; (x) + N; (“i (x),u; (Ej (x))) =0,

i=12,...,N,

2)

where L; are the linear operators and N; are the nonlinear
operators contain delay function, #;(x) is an unknown func-
tion, x denotes an independent variable, g;(x) is a known
function, and & j(x) are the delay functions.

According to OHAM, we construct a homotopy
h;(v;(x, p), p) : Rx [0,1] — R which satisfies

(1=p) L; [(v; (3, p) — 1430 (x) ]

= H,(p) [Liv (x.0) + 9,0 @)
+N; (Vi (x.p)>vi (51 (x),p)) ] ’

where x € R, p € [0, 1] is an embedding parameter, H;(p) is
anonzero auxiliary function for p#0, H(0) = 0, and v(x, p)
is an unknown function. Obviously, when p = 0 and p = 1 it
holds that v;(x, 0) = u;,(x) and v;(x, 1) = v;(x), respectively.
Thus, as p varies from 0 to 1, the solution v;(x, p) approach
from u; ; to v;(x), where u; ((x) is the initial guess that satisfies
the linear operator and the initial conditions

L; (u;9 (%)) + g (x) = 0. (4)

Next, we choose the auxiliary function H;(p) in the form
H;(p) = pCi+ PG+ p'Cyt oo 5)

where C,, C,, C;,... are convergence control parameters
which can be determined later. H(p) can be expressed in
another form as reported by Herisanu and Marinca [24].

To get an approximate solution, we expand v;(x, p, C) in
Taylor’s series about p in the following manner:

(o]
v; (%, p, Ci) =ty (x) + Z”i,k (%,C1, Gy, Cy) Pk'
k=1

(6)
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By substituting (6) into (3) and equating the coeflicient of like
powers of p, we obtain the following linear equations. Define
the vectors

G, =1{C,Cy...
;s = {”1‘,0 (), 15, (%,Cy) sty (X’ és)’ui,o (fj (X)),

u
ui,l (E] (X) ’Cl) > "ui,s (E] (X) >és) } 5

)Ci})

7)

where s = 1,2,3,...and j = 1,2,..., M. The zeroth-order
problem is given by (4), and the first- and second-order
problems are given as

L; (u;; (x)) = C, N () + g (%), (8)
L; (”i,z (x)) -L; (%‘,1 (x))

=GN (ai,O) +C, [L; (“m (x)) + Ni, (ﬁi,l)] .

)

The general governing equations for 1, (x) are
L (e () = L (e (%))

= Ck Ny (1 (%)) (10)
k-1

+ z Cm [L (uk—m (x)) + Nk—m (ai,k—l)] >

m=1

where k = 2,3,...and N, (14; o (x), u; , (%), ..., u;,,,(x)) is the
coefficient of p™ in the expansion of N(v(x, p)) about the
embedding parameter p:

N; (v(x, p,C;)) = Ny (1 (x)) + Z Ny, (B,) P70 (1)
m=1

It has been observed that the convergence of the series (6)
depends upon the auxiliary constants C,, C,, Cs,.... If it is
convergent at p = 1, one has

v (56, Cy) = g () + Y uyy (x,C1,Cpr ., C) . (12)
k=1

The result of the mth-order approximation is given as

7, (x,Cp) = ug (x) + Zui)k (x,C.,Cy,...,Ch). (13)
k=1

Substituting (12) into (2) yields the following residual:
R (x,C;,C,,Cs,...,Cy)

=L; (% (x,C;,C,,Cs,...,C,)) + g (x) (14)

,Cp)) -

If R; = 0, then # will be the exact solution. Generally such
a case will not arise for nonlinear problems, but we can
minimize the functional

+ Ni (Vi (x’ Cl’ Cza C3,-..

b
’CWI) = J R,Z (x,Cl,Cz,C3,,_,

a

J;(C,Cy, Css ... ,C,,) dx,

(15)
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where a and b are the endpoints of the given problem.
The unknown convergence control parameters C; (i =

1,2,3,...,m) can be calculated from the system of equations
dJ:
%:0, i=1,2,...,m. (16)

It should be noted that our process included the auxiliary
function H;(p) which provides us an easy way to set and
optimally control the convergent area and the rate of the
solution series.

3. Convergence Theorem

In this section, we introduce the convergence of the solution
for DDEs.

Theorem 1. If the series (12) converges to u(x), where u;(x) €
L(R") is produced by (8) and the k-order deformation (10), then
u(x) is the exact solution of (2).

Proof. Since the series

(o)
Z”i,k (%,C1,Cp..., Cy) (17)
k=1

converges, it can be written as

S; (%) = Y 1 (%,C1,Css..., Cp) s (18)
k=1
and it holds that
klirrgoui,k (x,C.,Cy,...,Cy) = 0. 19)

The left hand-side of (10) satisfies

n n
up (x,C) + Zui,k (x, ék) - Zui,k—l (x, Ck—l)

k=2 k=2

=Up (x, éz) — U (x,Cp)+-+ Uiy (x, Cqn)

(20)
~Uin (x’ én—l)
— iy (5.6,).
According to (18) we have
u, (5.0, + kzuk (0G) - kzuk (5Ce) N

= lim u;, (x, én) =0.

n— 00

3
Using the linear operator L,
L; (u;; (x,Cy)) + ZLi (”i,k (x, ék))
k=2
- ZLi (”i,k—l (x, C_"k—1))
= (22)
= L; (u;, (x,Cy)) + Lizui,k (x, ék)
k=2
- Lizui,k—l (x, ék—l) =0

k-1
which satisfies

(o) [oe)
L; (“i,l (%, Cy)) + Lizui,k (x, ék) - Lizui,k—l (x, ék—l)
k=2 k-1

= z CiNi (3 (%))

k-1
+ 2 Con [Li (#ikom (% Cim)
m=1
+Nij1m (ﬁi,k—l)] +g;(x) = 0.
(23)

Also the right hand side can be written as

0
k=1

k
Cm—k
1

o (24)
(L (s (3G 1)+ Noer )] }
+9; (x) =0.

Now, if the C
leads to

L, (u; (%)) + N; (1 ()1 (§; (%)) + g; (x) =0, (25)

m = 1,2,..., is properly chosen, then (24)

m>

which is the exact solution. O

4. Applications

In this section, we will present a few examples with a known
analytic solution in order to demonstrate the effectiveness
and high precision of this algorithm.

Example 1. Consider the following linear delay differential
equation [5]:

u' (x) = lex/2u<%c> + lu(x),

0<x<1,u(0)=1,
2 2

(26)



with the exact solution
u(x)=e". (27)

Applying the procedure which is described in Section 2, the
linear and nonlinear operators are

_dv (x, p)
Llv(x,p)] = i
N [v(x p)]
(5. >
dv(x, p 1 x 1
S T ax z‘/f(x’P)V(E’P> - Ev(x)P))
v(0,p) =1
where y(x; p) is the expansion Taylor series of e*/? with

respect to p, which can be written as

v (x;p) = Z kl, (x>kpk. (29)

Now, apply (4) to p = 0 to give the zeroth-order problem
as

uy (x) =0, u,(0) = 1. (30)

The solution of the zeroth-order deformation is
Uy (x) = 0. (31)

The first-order deformation which is obtained from (8) is
given as

1
u) (x,C)) =—Z(4+x)C1, uy (0) =0, (32)
and has the solution
1
u; (x,C,) =-Cx - gClxz. (33)

The second-order deformation is given by (9):

1
u; (X,CI,CZ) = u; (x’ Cl) -C, - ZxCZ

with initial condition

u, (0) = 0. (35)
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The solution of (34) is given by
1 1
u, (x,C;,Cy) = - Cyx — §C1x2 ~Clx+ ZC?xZ

13
+ —Cfx3
192

2 4
Cx

+ —Cx°
512 2560 !

1 1
-Cyx — gCsz - 4—8C2x3
(36)
According to (10), the third-order deformation is defined as
Uy (x%,C1,C,, Cs)
=u; (x,C;,C,) = Cs -

1 1 X
‘59%<?Cﬂ‘zcﬂ%<acﬂ

1 X 1

- 1—6szzu1 (E’Q) - %C2x3u1 <2,C1>
1 1 X

- ECZul (x.Cy) Ecluz <E’C1)C2>

1 1
- —C1x3u2 (f,Cl,CZ> - ECIuZ (x.C1,G)

96 2
+Coul (x,Cy) + Cyudl (x,C,, Cy),
(37)
with initial condition
u3(0) =0, (38)

and has the solution

u3 (x,C,, G, Cy)

13
=—c1x——c1x -2CHx+ = 02 2y =Cx

96
5
+ —Clx'+ ——Clx” + ——Cix°
256 3840 18432
11 5 4
—Cx+ Cx +—C1x —Cx
192 4096
199 5 s 377 5
-—C\x - Cix
245760 1474560
109 7
- Cix’ - Cix®
5898240 7864320
1 1
- —Ci’x9 —Cyx — —Cyx* = —Cyx®
70778880 8 48
1 , 11 3
-2C,Cyx + ECICZx + 9—6C1C2x
23
+ ——C,Cyx* - 2 e NoR'S
1024 7680
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FIGURE I: (a) Comparison between the three-term OHAM approximate solution and the exact solution for Example 1 and (b) residual error

R(x) given by (41) using the three-term OHAM approximate solution.

5 ]
+ C,Cux° + C,C,x"
36364 258048
1 2 1 3 1 4
—Cyx— ~Cyx® — —Cyx® — —Cox
3TN T gt Tagy

(39)

By using (31), (33), (36), and (39), the third-order approxi-
mate solution by OHAM for p = 1 is

i (x,C,Cy, C3) = 1y (%) + 1y (%, Cy) + 1, (x,C, Cy) (40)
40
+us (x,Cy,C,,Cy).

By using the proposed method of Section 2 on [0, 1], we use
the residual error:

1
R=7 (x,C,,Cp,Cs) - Se (’Zf,cl,cz,c3)

| (41)
- zﬁ(x C,,C,,Cy).
The Less Square error can be formed as
1
J(CuCnCy) = | R,
0
9] (C1,Cy,C3) 9] (C1,CCs) _ 9T (C1,CpnC5) 0
oC, - oC, - oC, -
(42)
Thus, the following optimal values of C;’s are obtained:
C, = —-1.1862449850, C, =0.0255300261,
(43)

C, = —0.0070171914.

In this case, our approximate solution is

ii(x,Cy, G, Cy)
=1+ 1.00397x + 0.479341x> + 0.194878x°

+0.0349963x* + 0.00455719x° (44)

+0.00050723x° + 0.0000309654x”

+1.4858 x 10°°x® + 2.35841 x 107 %x°.

Equations (44) and (41) are plotted in Figures 1(a) and 1(b),
respectively. Figure 1(a) shows a comparison between the
approximate solution which is obtained by using OHAM and
exact solution (27). The residual error is plotted in Figure 1(b).
We noted that the absolute maximum error for solving this
example via HAM is 0.04 while the absolute maximum error
via OHAM is 0.2 x 10>, which leads to conclude that OHAM
is more accurate than HAM.

Example 2. Consider the linear delay differential equation of
third order [5]

" -x+0.3
>

u (x)=-u(x)-u(x-03)+e 0<x<1,

u' (0) = -1, u"(0)=1, ux)=e™, x<0,
(45)
with exact solution
u(x)=e". (46)



According to the method which was described in the above
section, we start with

Liv(e p)] = T2,

N [v(x, p)] (47)

v (x,
= %317)+v(x,p)+v(x—0.3,p)—e

—-x+0.3

By applying OHAM, we have the following zero-, first-,
second-, and the third-order approximate solutions:

uy(x)=1-x+ O.sz, (48)
u, (x,C;) = 0.174167C, x°
(49)
- 0.0541667C, x* + 0.0166667C, X,
u (x,C1,Cy)
=0.174167C,x° — 0.0541667C, x*

+0.0166667C, x° + 0.173303C}x”

~0.0519354C}x" + 0.0134917C} (50)

+0.00356944C7 x° — 0.000634921C7 x”
+0.0000992063C; x* + 0.166667C,
~0.0416667C,x* + 0.00833333C,x°,
u; (x,C,, G, Cy)
= 0.174167C,x° — 0.0541667C, x*
+0.0166667C, x° + 0.346606C x”
- 0.103871C3x* + 0.0269833C x°
+0.00713889C7 x° — 0.00126984C" x”
+0.000198413C2x" + 0.172448C x°
- 0.0497316C; x" + 0.0103718C; x°
+0.0070607C; x° — 0.00119984C" x”
+0.000156374C x° + 0.000017306C; x

~2.09436 x 10°C}x"°

+2.00417 x 107 Clx"!

+0.166667C,x
~0.0416667C,x" + 0.00833333C,x°
+0.33916C,C,x” - 0.0915255C, C, x*

+0.0189125C, C,x” + 0.00682639C, C, x°
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~0.00109127C,C,x” + 0.00014881C,C,x*
+0.165917C;x° — 0.0397917C, x*

+0.00583333C;x” + 0.00138889C;x°.
(51)

By adding (48)-(50) and (2), we obtain
ﬁ(x, CI’CZ’CS) = Uy (x) + 1y (x’Cl)

+u, (x,C;,C,) +us (x,C,Cy, Cy).
(52)

Following the procedure described in Section 2 regarding the
domain between a = 0 and b = 1, we use the residual

~I

R=u" (x,C},C,,Cy) +1i(x,C},Cy,Cy)
(53)
+1(x-03,C,,Cp, Cy) —e ™07,
The following optimal values of C;’s are obtained:
C, =0.2237074205, C, = —0.5559972626,
(54)

C, = —0.4753337145.
By substituting values in (52), we have
u (x, CI’CZ’C3)
=1-x+0.5x" - 0.161547x + 0.0319249x"
—0.00106469x° — 0.000894311x° + 0.0000269763x
~1.86401 x 10 °x® + 1.93748 x 10" %’

—2.34472 x 108%™ + 2.24376 x 107 x".

(55)
The comparison between the approximate solution and the
exact solution is shown in Figures 2(a) and 2(b). We observe

that the results agree very well with the exact solution.

Example 3. Consider the first order of nonlinear delay differ-
ential equation [14]

u,(x)=—2u2<g>+l, 0<x<1, u(0)=0 (56)

which has the exact solution
u(x) = sin(x). (57)

By applying the same method as in Examples 1 and 2, we have
the following:

Liv(x.p)] = 2L2P),

dx
N p) = P () 1

(58)
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FIGURE 2: (a) Comparison between the three-term OHAM approximate solution and the exact solution for Example 2 and (b) residual error

R(x) given by (50) using three-term OHAM approximate solution.

According to OHAM, we have the following zero-, first-,
second- and the third-order approximate solutions:

Uy (x) = x,

u (x,Cy) = éXS’

uz (x,C,C,,Cy)
1 1 1 1
= —C1x3 + —Cfx3 + —Cfxs + —Cfx3
6 3 60 6
1 1 1 1
+ —Cix° + ——C1x + =Cyx” + =C,Cyx°
60 5040 6 3
1 s 1 3
+ %CICZX + 8C3x .
(59)

From (59), the third-order approximate solution by
OHAM is given as

i (x,Cy,Cy,Cq) = 1y (x) + 1y (x,Cy)
+u, (x,Cy,C,) +uy (x,C, C,, Cy) .
(60)

By using (60) in (14) and applying the method as discussed in
(15) and (16), we obtain the following values of C;’s:

C, = -0.9892887781, C, =0.0001159690,

(61)
C; = 3.3939542758.
The approximate solution now becomes
ii(x,C,,C,,Cy) = x — 0.166665x
(62)

+0.00832857x" — 0.000192105x”.

From Figures 3(a) and 3(b), we observe that the results agree
very well with the exact solution; as we increase the order
of the problem the accuracy increases and the residual error
will decrease as shown in Figure 3(b). We observed that the
absolute maximum error for solving this example via HAM is
1.2x107° while the absolute maximum error by using OHAM
is 4 x 107%, which revealed that the proposed method is more
accurate than HAM.

Example 4. Consider the third-order nonlinear delay differ-
ential equation [14]

m 2 (X
u (x)=2u 5

(63)

0<x<1,u(0)=0,u0)=1u"(0)=0.

The exact solution of the above problem is given as
u(x) =sin(x). (64)

By applying the present method, the linear and nonlinear
operators are defined as

Liv(x p) = TUL)

NG p)] = LB _pp (X

dx3
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FIGURE 3: (a) Comparison between three-term OHAM approximate solution and the exact solution for Example 3 and (b) the residual error
for Example 3 using two-term and three-term OHAM approximate solutions.

According to OHAM, we have the following zero-, first-,
second- and third-order approximate solutions:

3

X
Uy (X)) =X ——,
) =x =%

1 1 1
u (x,C)=-—C,x° + —Cx' - ———C,x°
120 5040 580608

U (x, Cy, Cz)

1 1 1
= ——Clx5 + —C1x7 - C1x9
120 5040 580608

1 1 1
- —CxX+ —Cx - ——Cx°
120 5040 1451520
1 2 11 101 2 13
-———Cjx +————Cix
39916800 1275293859840

1 2 15 1 5
- —————Cix~ - —Cyx
9738607656960 120

1 1
C,x” - Cyx’
5040 580608

u3 (x,C,, G, Cy)

>

1 1 1
= ——Cx+—Cx - ———C,x°
120 5040 580608

1 1 1
- —Cfx5 — fx7 - Cfx9

60 2520 725760

1 101

SRS NG ST LS

19958400 637646929920

1 215 1 35

-———————Cjx - —Cx
4869303829480

120

1 1
+ C?x7 Cix9
5040 2903040

311 491 3 13
- 1X —Clx
19958400 6376469299200
1223 3 15
+ lx
2678117105664000
~ 341827 3 17
149186120241276518400 !

1 1
+ ——Cyx’ = ———C3x°
5040 580608

B 263 i
91675269781634049638400

1 1 1
- —C2x5 + —C2x7 - C2x9
120 5040 580608

1 5 1 7
- @Clsz + —2520C1C2x

1 1
- —C,Cx’ - —————C,C,x"!
725760 19958400
101 1
+———C,Cpx" - —C3x°
637646929920 120
1
4869303828480
N 38033 e
10204330624503313858560 |

C,C,x"

(66)

From (66), the third-order approximate solution by OHAM
is given as
i1 (x,C1, Gy, C5) = g (%) + 1y (x,Cy)

+u, (x,Cp,C,) +us (x,C,Cy, Cy).
(67)
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FIGURE 4: (a) Comparison between three-term OHAM approximate solution and the exact solution for Example 4 and (b) the residual error

for Example 4 using three-term OHAM approximate solution.
By using (67) in (14) and applying the method as discussed in
(15) and (16), we obtain the following values of C;’s:

C, = 2.7354549148, C, = —-1.3589185618,

(68)
C; = -1.0003665216.
The approximate solution now becomes
i(x,C,,C,,Cy)
=x - éx3 +0.00833639x” — 0.000198485x"
+1.72296 x 10 °x” + 1.80627 x 10 x"' (69)

— 571017 x 10 2x" + 7.40356 x 10 P x"

53 19

— 4.68993 x —50x"" + 7.62895 x 10> x

—5.87208 x 10°0x*!.

Numerical results of the solution are displayed in Figures 4(a)
and 4(b).

Example 5. Consider the system of delay differential equation
(14]

) () =y (x— 1),

wy (x) =y (x = 1) + 1y (x = 0.2), (70)
Uy (X) = uy (x - 1),
with initial conditions
uw(0)=1, 1w,0)=1, w0 =1 (71

Following the same procedure, we have

L;[v;(x.p)] = W, i=1,2,3,
dv, (x,
Nl G ) = D)y ),
dv, (x,
N, [v,(x,p)] = % -y (x-Lp)-v,(x-02,p),
dvs (x, p) _

N; [vs (x, p)] = v, (x=1,p).

dx
(72)

According to OHAM formulation, we have the following:

zeroth-order solution:

upo(x) =1,
Uyo(x) =1, (73)
usg (x) =1,
first-order solution:
uyq (x) = -Cyx,
Uy (x) = —2K;x, (74)
us; (x) = -Ax,
second-order solution:
U, (x) = -Cix — ZC%x + %C?xz - Cyx,
(75)

3
Uy, (x) = —2K,x - 3.4K}x + Efoz - 2K,x,

Uz, (x) =-Ax— 3A21x + Azlx2 - A,x.
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Making use of (73)-(75) and extending the solutions up to a
fifth order, the approximate solutions by OHAM for p = 1 are

i, (x,C,,C,,C5,Cy, Cs)
=10 (%) + 1y (6,Cy) + 1y, (x,Cp, Cy)
+ 5 (%,C1,Cp, Gs) + Uy (x,C1, G, G5, Cy)
+1u5(x,C,C,,C5,Cy, Cs) s
iU, (x,Kl,Kz,K3,K4,K5)
=y (X) + 1y (X, Ky) + 155 (%, K}, K;)
+ Uy, (x, K}, Ky, K;5) + Uyy (x, K}, K, K5, Ky)
+ Uy (x, KI,KZ,K3,K4,K5) ,
i3 (x, A, Ay As, Ay As)
=1y (%) +uyy (%, A1) + 1y, (x, A1, A,)
+ i3 (%, A Ay Ag) + iy (X, Ay Ay, Ag, Ay)
+uys (6, AL AL A AL As).
(76)

By using the proposed procedure which is described in
Section 2 on [0, 1], we use the residual error

R, = ’:ZI’ (x,C,Cy, C5, Gy, Cs)
—u,(x-1,C,,C,,C5,C,, Cs) s

R, = 56' (x, Kl’K2>K3’K4)K5)
-u, (x-1,C,,C,,C5,C,, Cs) (77)
—u, (x—0.2,K,K,, K3, Ky, Ks)

R = ﬁ;’ (X, A Ay As Ay As)
—u, (x - 1,K;, K, K3, Ky, Ks)

The following values of C;’s, K;’s and A;’s are obtained:

C, = -0.58668069, C, = -0.08423352,

C, = 0.00786513,  C, = 0.00069702,
Cs = —0.00034937,

K, = -0.75856373, K, = —0.14305522,

K, = 007154350, K, = —0.02323472, (78)
K5 = —0.00280683,

A, = —0.67739965, A, = —0.08965635,

A, = 003646196, A, = —0.01330410,

A = 0.00453433.

Mathematical Problems in Engineering
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FIGURE 5: The residual errors for Example 5 using the five-term
OHAM approximate solution.

By using the above values, the approximate solutions are

Uy (x, Cy, Gy, G5, Cy, Cs)
=1+ 0.567178x + 0.160857x” + 0.0302719x"
+0.00434813x" + 0.000579199x,
i, (x, Ky, Ky, K3, Ky, Ks)
=1+ 1.3299x + 0.714785x> + 0.205164x> (79)
+0.0536786x" + 0.0125583x,
i (%, Ay, Ay, A, Ay As)
=1+ 0.182376x + 0.230372x" + 0.0785302x"

+0.0228859x* + 0.00594311x°.

From Figure 5, we can observe the accuracy of the solution
obtained by the five-term approximate solution using OHAM
which is quite good.

5. Conclusions

In this work, OHAM is employed for the first time to propose
a new analytic approximate solution of delay differential
equations (DDEs). This method has been tested in various
examples of linear and nonlinear and system of initial value
problems of DDEs and was seen to yield satisfactory results.
The OHAM provides us with a simple way to optimally
control and adjust the convergence solution series and it gives
a good approximation in few terms which is converged to the
exact solution and proved the efficiency and reliability of the
method. This fact is obvious from the use of the auxiliary
function H(p). In OHAM, it is important to solve a set of
nonlinear algebraic equations with 1 unknown convergence
control parameters, C;,C,,...,C,,, and this makes it time
consuming, especially for large m.
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