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We extend for the first time the applicability of the optimal homotopy asymptotic method (OHAM) to find the algorithm of
approximate analytic solution of delay differential equations (DDEs). The analytical solutions for various examples of linear and
nonlinear and system of initial value problems of DDEs are obtained successfully by this method. However, this approach does not
depend on small or large parameters in comparison to other perturbationmethods.Thismethod provides us with a convenient way
to control the convergence of approximation series. The results which are obtained revealed that the proposed method is explicit,
effective, and easy to use.

1. Introduction

Delay differential equation (DDE) is a form of differential
equations in which derivative of the unknown function in a
given time 𝑡 is specified in terms of the values at an earlier
point in time.

DDEs have the general form

𝑢
󸀠

𝑖
(𝑥) = 𝑓 (𝑥, 𝑢

𝑖
(𝑥) , 𝑢

𝑖
(𝜉
𝑗
(𝑥))) ,

𝑖 = 1, 2, . . . ,𝑀, 𝑗 = 1, 2, . . . , 𝑁,

(1)

where 𝜉
𝑗
(𝑥) = 𝑎

𝑗
𝑥 + 𝑏
𝑗
is the delay function.

Many problems of physics, biological models, control
system, and medical and biochemical fields are modelled by
DDEs. Recent studies in such diverse fields have shown that
DDEs play an important role in explaining many different
phenomena. Patel et al. [1] introduced an iterative scheme
for the optimal control systems described by DDEs with a
quadratic cost functional. In physiology, Glass and Mackey
[2] applied time delays to many physiological models. Busen-
berg and Tang [3] created a model for cell cycle by delay
equations. In recent years, DDEs are used to design models
as HIV-1 therapy for fighting a virus with another virus [4].

In the last years, a great deal of attention has been devoted
to study DDEs. Hence, they are solved by numerical method
and approximation approach, such as Adomian decomposi-
tion method [5, 6], homotopy perturbation method (HPM)
[7, 8],multiquadric approximation scheme [9, 10], variational
iteration method (VIM) [8, 11, 12], spline methods [13],
homotopy analysis method (HAM) [14], Chebyshev polyno-
mials [15], Galerkin method [16], Legendre wavelet method
[17], differential transform method [18], and Runge-Kutta
method [19]. Recently, a new approach of homotopy which is
called optimal homotopy asymptotic method (OHAM) was
proposed and developed by Marinca et al. [20–24] for the
approximate solution nonlinear problems of thin film flow
of a fourth-grade fluid and for the study of the behavior
of nonlinear mechanical vibration of electrical machines.
In OHAM, the control and adjustment of the convergence
region are provided in a convenient way. Furthermore, the
OHAMhas been built in convergence criteria similar to those
of HAM but with greater degree of flexibility. Islam et al. [25]
have applied this method successfully to nonlinear problems
and have also shown its effectiveness and accuracy. Idrees et
al. [26] used OHAM to study the squeezing flow between two
infinite planar plates slowly approaching each other.
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The aim of this paper is to apply OHAM to get an
approximate analytic solution of DDEs.The capability of this
approach is tested upon several examples which offer an
approximate solution in a series form that converges to exact
solution in few terms. The rest of this paper is organized as
follows. In Section 2, we describe the basic idea of OHAM.
In Section 3, we provide the convergent theorem for this
type of equations. Section 4 presents several examples to
demonstrate the efficiency of the framework. The conclusion
of this study is presented in Section 5.

2. Description of the Method

In this section, framework of the proposed method is given
and represented in the following differential equation:

𝐿
𝑖
(𝑢
𝑖
(𝑥)) + 𝑔

𝑖
(𝑥) + 𝑁

𝑖
(𝑢
𝑖
(𝑥) , 𝑢

𝑖
(𝜉
𝑗
(𝑥))) = 0,

𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀,

(2)

where 𝐿
𝑖
are the linear operators and 𝑁

𝑖
are the nonlinear

operators contain delay function, 𝑢
𝑖
(𝑥) is an unknown func-

tion, 𝑥 denotes an independent variable, 𝑔
𝑖
(𝑥) is a known

function, and 𝜉
𝑗
(𝑥) are the delay functions.

According to OHAM, we construct a homotopy
ℎ
𝑖
(V
𝑖
(𝑥, 𝑝), 𝑝) : 𝑅 × [0, 1] → 𝑅 which satisfies

(1 − 𝑝) 𝐿
𝑖
[(V
𝑖
(𝑥, 𝑝) − 𝑢

𝑖,0
(𝑥) ]

= 𝐻
𝑖
(𝑝) [𝐿

𝑖
V (𝑥, 𝑝) + 𝑔

𝑖
(𝑥)

+𝑁
𝑖
(V
𝑖
(𝑥, 𝑝) , V

𝑖
(𝜉
𝑗
(𝑥) , 𝑝)) ] ,

(3)

where 𝑥 ∈ 𝑅, 𝑝 ∈ [0, 1] is an embedding parameter,𝐻
𝑖
(𝑝) is

a nonzero auxiliary function for 𝑝 ̸= 0, 𝐻(0) = 0, and V(𝑥, 𝑝)
is an unknown function. Obviously, when 𝑝 = 0 and 𝑝 = 1 it
holds that V

𝑖
(𝑥, 0) = 𝑢

𝑖,0
(𝑥) and V

𝑖
(𝑥, 1) = V

𝑖
(𝑥), respectively.

Thus, as 𝑝 varies from 0 to 1, the solution V
𝑖
(𝑥, 𝑝) approach

from 𝑢
𝑖,0
to V
𝑖
(𝑥), where 𝑢

𝑖,0
(𝑥) is the initial guess that satisfies

the linear operator and the initial conditions

𝐿
𝑖
(𝑢
𝑖,0
(𝑥)) + 𝑔 (𝑥) = 0. (4)

Next, we choose the auxiliary function𝐻
𝑖
(𝑝) in the form

𝐻
𝑖
(𝑝) = 𝑝𝐶

1
+ 𝑝
2
𝐶
2
+ 𝑝
3
𝐶
3
+ ⋅ ⋅ ⋅ , (5)

where 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . are convergence control parameters

which can be determined later. 𝐻(𝑝) can be expressed in
another form as reported by Herişanu and Marinca [24].

To get an approximate solution, we expand V
𝑖
(𝑥, 𝑝, 𝐶

𝑘
) in

Taylor’s series about 𝑝 in the following manner:

V
𝑖
(𝑥, 𝑝, 𝐶

𝑘
) = 𝑢
𝑖,0
(𝑥) +

∞

∑

𝑘=1

𝑢
𝑖,𝑘
(𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) 𝑝
𝑘
. (6)

By substituting (6) into (3) and equating the coefficient of like
powers of 𝑝, we obtain the following linear equations. Define
the vectors

𝐶⃗
𝑖
= {𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑖
} ,

𝑢⃗
𝑖,𝑠
= {𝑢
𝑖,0
(𝑥) , 𝑢

𝑖,1
(𝑥, 𝐶
1
) , . . . , 𝑢

𝑖,𝑠
(𝑥, 𝐶⃗
𝑠
) , 𝑢
𝑖,0
(𝜉
𝑗
(𝑥)) ,

𝑢
𝑖,1
(𝜉
𝑗
(𝑥) , 𝐶

1
) , . . . , 𝑢

𝑖,𝑠
(𝜉
𝑗
(𝑥) , 𝐶⃗

𝑠
) } ,

(7)

where 𝑠 = 1, 2, 3, . . . and 𝑗 = 1, 2, . . . ,𝑀. The zeroth-order
problem is given by (4), and the first- and second-order
problems are given as

𝐿
𝑖
(𝑢
𝑖,1
(𝑥)) = 𝐶

1
𝑁
𝑖,0
(𝑢⃗
𝑖,0
) + 𝑔 (𝑥) , (8)

𝐿
𝑖
(𝑢
𝑖,2
(𝑥)) − 𝐿

𝑖
(𝑢
𝑖,1
(𝑥))

= 𝐶
2
𝑁
𝑖,0
(𝑢⃗
𝑖,0
) + 𝐶
1
[𝐿
𝑖
(𝑢
𝑖,1
(𝑥)) + 𝑁

𝑖,1
(𝑢⃗
𝑖,1
)] .

(9)

The general governing equations for 𝑢
𝑘
(𝑥) are

𝐿 (𝑢
𝑘
(𝑥)) − 𝐿 (𝑢

𝑘−1
(𝑥))

= 𝐶
𝑘
𝑁
0
(𝑢
0
(𝑥))

+

𝑘−1

∑

𝑚=1

𝐶
𝑚
[𝐿 (𝑢
𝑘−𝑚
(𝑥)) + 𝑁

𝑘−𝑚
(𝑢⃗
𝑖,𝑘−1
)] ,

(10)

where 𝑘 = 2, 3, . . . and𝑁
𝑖,𝑚
(𝑢
𝑖,0
(𝑥), 𝑢
𝑖,1
(𝑥), . . . , 𝑢

𝑖,𝑚
(𝑥)) is the

coefficient of 𝑝𝑚 in the expansion of 𝑁(V(𝑥, 𝑝)) about the
embedding parameter 𝑝:

𝑁
𝑖
(V (𝑥, 𝑝, 𝐶

𝑖
)) = 𝑁

𝑖,0
(𝑢
0
(𝑥)) +

∞

∑

𝑚=1

𝑁
𝑖,𝑚
(𝑢⃗
𝑖,𝑚
) 𝑝
𝑚
. (11)

It has been observed that the convergence of the series (6)
depends upon the auxiliary constants 𝐶

1
, 𝐶
2
, 𝐶
3
, . . .. If it is

convergent at 𝑝 = 1, one has

V
𝑖
(𝑥, 𝐶
𝑘
) = 𝑢
0
(𝑥) +

∞

∑

𝑘=1

𝑢
𝑖,𝑘
(𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) . (12)

The result of the𝑚th-order approximation is given as

Ṽ
𝑖
(𝑥, 𝐶
𝑘
) = 𝑢
0
(𝑥) +

𝑚

∑

𝑘=1

𝑢
𝑖,𝑘
(𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) . (13)

Substituting (12) into (2) yields the following residual:

𝑅
𝑖
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑚
)

= 𝐿
𝑖
(Ṽ
𝑖
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑚
)) + 𝑔

𝑖
(𝑥)

+ 𝑁
𝑖
(Ṽ
𝑖
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑚
)) .

(14)

If 𝑅
𝑖
= 0, then 𝑢̃ will be the exact solution. Generally such

a case will not arise for nonlinear problems, but we can
minimize the functional

𝐽
𝑖
(𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑚
) = ∫

𝑏

𝑎

𝑅
2

𝑖
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑚
) 𝑑𝑥,

(15)
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where 𝑎 and 𝑏 are the endpoints of the given problem.
The unknown convergence control parameters 𝐶

𝑖
(𝑖 =

1, 2, 3, . . . , 𝑚) can be calculated from the system of equations

𝜕𝐽
𝑖

𝜕𝐶
𝑖

= 0, 𝑖 = 1, 2, . . . , 𝑚. (16)

It should be noted that our process included the auxiliary
function 𝐻

𝑖
(𝑝) which provides us an easy way to set and

optimally control the convergent area and the rate of the
solution series.

3. Convergence Theorem

In this section, we introduce the convergence of the solution
for DDEs.

Theorem 1. If the series (12) converges to 𝑢(𝑥), where 𝑢
𝑘
(𝑥) ∈

𝐿(𝑅
+
) is produced by (8) and the 𝑘-order deformation (10), then

𝑢(𝑥) is the exact solution of (2).

Proof. Since the series

∞

∑

𝑘=1

𝑢
𝑖,𝑘
(𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) (17)

converges, it can be written as

𝑆
𝑖
(𝑥) =

∞

∑

𝑘=1

𝑢
𝑖,𝑘
(𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) , (18)

and it holds that

lim
𝑘→∞

𝑢
𝑖,𝑘
(𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) = 0. (19)

The left hand-side of (10) satisfies

𝑢
𝑖,1
(𝑥, 𝐶
1
) +

𝑛

∑

𝑘=2

𝑢
𝑖,𝑘
(𝑥, 𝐶⃗
𝑘
) −

𝑛

∑

𝑘=2

𝑢
𝑖,𝑘−1
(𝑥, 𝐶⃗
𝑘−1
)

= 𝑢
𝑖,2
(𝑥, 𝐶⃗
2
) − 𝑢
𝑖,1
(𝑥, 𝐶
1
) + ⋅ ⋅ ⋅ + 𝑢

𝑖,𝑛
(𝑥, 𝐶⃗
𝑛
)

− 𝑢
𝑖,𝑛−1
(𝑥, 𝐶⃗
𝑛−1
)

= 𝑢
𝑖,𝑛
(𝑥, 𝐶⃗
𝑛
) .

(20)

According to (18) we have

𝑢
𝑖,1
(𝑥, 𝐶
1
) +

𝑛

∑

𝑘=2

𝑢
𝑖,𝑘
(𝑥, 𝐶⃗
𝑘
) −

𝑛

∑

𝑘=2

𝑢
𝑖,𝑘−1
(𝑥, 𝐶⃗
𝑘−1
)

= lim
𝑛→∞

𝑢
𝑖,𝑛
(𝑥, 𝐶⃗
𝑛
) = 0.

(21)

Using the linear operator 𝐿
𝑖
,

𝐿
𝑖
(𝑢
𝑖,1
(𝑥, 𝐶
1
)) +

∞

∑

𝑘=2

𝐿
𝑖
(𝑢
𝑖,𝑘
(𝑥, 𝐶⃗
𝑘
))

−

∞

∑

𝑘=2

𝐿
𝑖
(𝑢
𝑖,𝑘−1
(𝑥, 𝐶⃗
𝑘−1
))

= 𝐿
𝑖
(𝑢
𝑖,1
(𝑥, 𝐶
1
)) + 𝐿

𝑖

∞

∑

𝑘=2

𝑢
𝑖,𝑘
(𝑥, 𝐶⃗
𝑘
)

− 𝐿
𝑖

∞

∑

𝑘−1

𝑢
𝑖,𝑘−1
(𝑥, 𝐶⃗
𝑘−1
) = 0

(22)

which satisfies

𝐿
𝑖
(𝑢
𝑖,1
(𝑥, 𝐶
1
)) + 𝐿

𝑖

∞

∑

𝑘=2

𝑢
𝑖,𝑘
(𝑥, 𝐶⃗
𝑘
) − 𝐿
𝑖

∞

∑

𝑘−1

𝑢
𝑖,𝑘−1
(𝑥, 𝐶⃗
𝑘−1
)

=

∞

∑

𝑘=2

[𝐶
𝑘
𝑁
𝑖,0
(𝑢
𝑖,0
(𝑥))

+

𝑘−1

∑

𝑚=1

𝐶
𝑚
[𝐿
𝑖
(𝑢
𝑖,𝑘−𝑚
(𝑥, 𝐶⃗
𝑘−𝑚
))

+𝑁
𝑖,𝑘−1−𝑚

(𝑢⃗
𝑖,𝑘−1
) ] ] + 𝑔

𝑖
(𝑥) = 0.

(23)

Also the right hand side can be written as

∞

∑

𝑘=1

[

𝑘

∑

𝑚=1

𝐶
𝑚−𝑘

× [𝐿
𝑖
(𝑢
𝑖,𝑚−1
(𝑥, 𝐶⃗
𝑚−1
)) + 𝑁

𝑖,𝑚−1
(𝑢⃗
𝑖,𝑘−1
)] ]

+ 𝑔
𝑖
(𝑥) = 0.

(24)

Now, if the 𝐶
𝑚
, 𝑚 = 1, 2, . . ., is properly chosen, then (24)

leads to

𝐿
𝑖
(𝑢
𝑖
(𝑥)) + 𝑁

𝑖
(𝑢
𝑖
(𝑥) , 𝑢

𝑖
(𝜉
𝑗
(𝑥))) + 𝑔

𝑖
(𝑥) = 0, (25)

which is the exact solution.

4. Applications

In this section, we will present a few examples with a known
analytic solution in order to demonstrate the effectiveness
and high precision of this algorithm.

Example 1. Consider the following linear delay differential
equation [5]:

𝑢
󸀠

(𝑥) =
1

2
𝑒
𝑥/2
𝑢 (
𝑥

2
) +
1

2
𝑢 (𝑥) , 0 ≤ 𝑥 ≤ 1, 𝑢 (0) = 1,

(26)
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with the exact solution

𝑢 (𝑥) = 𝑒
𝑥
. (27)

Applying the procedure which is described in Section 2, the
linear and nonlinear operators are

𝐿 [V (𝑥, 𝑝)] =
𝑑V (𝑥, 𝑝)

𝑑𝑥
,

𝑁 [V (𝑥, 𝑝)]

=
𝑑V (𝑥, 𝑝)

𝑑𝑥
−
1

2
𝜓 (𝑥; 𝑝) V (

𝑥

2
, 𝑝) −

1

2
V (𝑥, 𝑝) ,

V (0, 𝑝) = 1,

(28)

where 𝜓(𝑥; 𝑝) is the expansion Taylor series of 𝑒𝑥/2 with
respect to 𝑝, which can be written as

𝜓 (𝑥; 𝑝) =

∞

∑

𝑘=0

1

𝑘!
(
𝑥

2
)

𝑘

𝑝
𝑘
. (29)

Now, apply (4) to 𝑝 = 0 to give the zeroth-order problem
as

𝑢
󸀠

0
(𝑥) = 0, 𝑢

0
(0) = 1. (30)

The solution of the zeroth-order deformation is

𝑢
0
(𝑥) = 0. (31)

The first-order deformation which is obtained from (8) is
given as

𝑢
󸀠

1
(𝑥, 𝐶
1
) = −

1

4
(4 + 𝑥) 𝐶

1
, 𝑢
0
(0) = 0, (32)

and has the solution

𝑢
1
(𝑥, 𝐶
1
) = −𝐶

1
𝑥 −
1

8
𝐶
1
𝑥
2
. (33)

The second-order deformation is given by (9):

𝑢
󸀠

2
(𝑥, 𝐶
1
, 𝐶
2
) = 𝑢
󸀠

1
(𝑥, 𝐶
1
) − 𝐶
2
−
1

4
𝑥𝐶
2

−
1

16
𝑥
2
𝐶
2
−
1

2
𝐶
1
𝑢
1
(
𝑥

2
, 𝐶
1
)

−
1

4
𝑥𝐶
1
𝑢
1
(
𝑥

2
, 𝐶
1
) −
1

16
𝑥
2
𝐶
1
𝑢
1
(
𝑥

2
, 𝐶
1
)

−
1

2
𝐶
1
𝑢
1
(𝑥, 𝐶
1
) + 𝐶
1
𝑢
󸀠

1
(𝑥, 𝐶
1
) ,

(34)

with initial condition

𝑢
2
(0) = 0. (35)

The solution of (34) is given by

𝑢
2
(𝑥, 𝐶
1
, 𝐶
2
) = − 𝐶

1
𝑥 −
1

8
𝐶
1
𝑥
2
− 𝐶
2

1
𝑥 +
1

4
𝐶
2

1
𝑥
2

+
13

192
𝐶
2

1
𝑥
3
+
5

512
𝐶
2

1
𝑥
4
+
1

2560
𝐶
2

1
𝑥
5

− 𝐶
2
𝑥 −
1

8
𝐶
2
𝑥
2
−
1

48
𝐶
2
𝑥
3
.

(36)

According to (10), the third-order deformation is defined as

𝑢
󸀠

3
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

= 𝑢
󸀠

2
(𝑥, 𝐶
1
, 𝐶
2
) − 𝐶
3
−
1

4
𝐶
3
𝑥 −
1

16
𝐶
3
𝑥
2
−
1

96
𝐶
3
𝑥
3

−
1

2
𝐶
2
𝑢
1
(
𝑥

2
, 𝐶
1
) −
1

4
𝐶
2
𝑥𝑢
1
(
𝑥

2
, 𝐶
1
)

−
1

16
𝐶
2
𝑥
2
𝑢
1
(
𝑥

2
, 𝐶
1
) −
1

96
𝐶
2
𝑥
3
𝑢
1
(
𝑥

2
, 𝐶
1
)

−
1

2
𝐶
2
𝑢
1
(𝑥, 𝐶
1
) −
1

2
𝐶
1
𝑢
2
(
𝑥

2
, 𝐶
1
, 𝐶
2
)

−
1

4
𝐶
1
𝑥𝑢
2
(
𝑥

2
, 𝐶
1
, 𝐶
2
) −
1

16
𝐶
1
𝑥
2
𝑢
2
(
𝑥

2
, 𝐶
1
, 𝐶
2
)

−
1

96
𝐶
1
𝑥
3
𝑢
2
(
𝑥

2
, 𝐶
1
, 𝐶
2
) −
1

2
𝐶
1
𝑢
2
(𝑥, 𝐶
1
, 𝐶
2
)

+ 𝐶
2
𝑢
󸀠

1
(𝑥, 𝐶
1
) + 𝐶
1
𝑢
󸀠

2
(𝑥, 𝐶
1
, 𝐶
2
) ,

(37)

with initial condition

𝑢
3
(0) = 0, (38)

and has the solution

𝑢
3
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

= −𝐶
1
𝑥 −
1

8
𝐶
1
𝑥
2
− 2𝐶
2

1
𝑥 +
1

2
𝐶
2

1
𝑥
2
+
13

96
𝐶
2

1
𝑥
3

+
5

256
𝐶
2

1
𝑥
4
+
7

3840
𝐶
2

1
𝑥
5
+
1

18432
𝐶
2

1
𝑥
6

− 𝐶
3

1
𝑥 +
5

8
𝐶
3

1
𝑥
2
+
11

192
𝐶
3

1
𝑥
3
+
17

4096
𝐶
3

1
𝑥
4

−
199

245760
𝐶
3

1
𝑥
5
−
377

1474560
𝐶
3

1
𝑥
6

−
109

5898240
𝐶
3

1
𝑥
7
−

7

7864320
𝐶
3

1
𝑥
8

−
1

70778880
𝐶
3

1
𝑥
9
− 𝐶
2
𝑥 −
1

8
𝐶
2
𝑥
2
−
1

48
𝐶
2
𝑥
3

− 2𝐶
1
𝐶
2
𝑥 +
1

2
𝐶
1
𝐶
2
𝑥
2
+
11

96
𝐶
1
𝐶
2
𝑥
3

+
23

1024
𝐶
1
𝐶
2
𝑥
4
−
23

7680
𝐶
1
𝐶
2
𝑥
5
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Exact solution
OHAM solution
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Figure 1: (a) Comparison between the three-term OHAM approximate solution and the exact solution for Example 1 and (b) residual error
𝑅(𝑥) given by (41) using the three-term OHAM approximate solution.

+
5

36864
𝐶
1
𝐶
2
𝑥
6
+

1

258048
𝐶
1
𝐶
2
𝑥
7

− 𝐶
3
𝑥 −
1

8
𝐶
3
𝑥
2
−
1

48
𝐶
3
𝑥
3
−
1

384
𝐶
3
𝑥
4
.

(39)

By using (31), (33), (36), and (39), the third-order approxi-
mate solution by OHAM for 𝑝 = 1 is

𝑢̃ (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) = 𝑢
0
(𝑥) + 𝑢

1
(𝑥, 𝐶
1
) + 𝑢
2
(𝑥, 𝐶
1
, 𝐶
2
)

+ 𝑢
3
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) .

(40)

By using the proposed method of Section 2 on [0, 1], we use
the residual error:

𝑅 = 𝑢̃
󸀠
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) −
1

2
𝑒
𝑥/2
𝑢̃ (
𝑥

2
, 𝐶
1
, 𝐶
2
, 𝐶
3
)

−
1

2
𝑢̃ (𝑥, 𝐶

1
, 𝐶
2
, 𝐶
3
) .

(41)

The Less Square error can be formed as

𝐽 (𝐶
1
, 𝐶
2
, 𝐶
3
) = ∫

1

0

𝑅
2
𝑑𝑥,

𝜕𝐽 (𝐶
1
, 𝐶
2
, 𝐶
3
)

𝜕𝐶
1

=
𝜕𝐽 (𝐶
1
, 𝐶
2
, 𝐶
3
)

𝜕𝐶
2

=
𝜕𝐽 (𝐶
1
, 𝐶
2
, 𝐶
3
)

𝜕𝐶
3

= 0.

(42)

Thus, the following optimal values of 𝐶
𝑖
’s are obtained:

𝐶
1
= −1.1862449850, 𝐶

2
= 0.0255300261,

𝐶
3
= −0.0070171914.

(43)

In this case, our approximate solution is

𝑢̃ (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

= 1 + 1.00397𝑥 + 0.479341𝑥
2
+ 0.194878𝑥

3

+ 0.0349963𝑥
4
+ 0.00455719𝑥

5

+ 0.00050723𝑥
6
+ 0.0000309654𝑥

7

+ 1.4858 × 10
−6
𝑥
8
+ 2.35841 × 10

−8
𝑥
9
.

(44)

Equations (44) and (41) are plotted in Figures 1(a) and 1(b),
respectively. Figure 1(a) shows a comparison between the
approximate solution which is obtained by using OHAM and
exact solution (27).The residual error is plotted in Figure 1(b).
We noted that the absolute maximum error for solving this
example via HAM is 0.04 while the absolute maximum error
via OHAM is 0.2×10−3, which leads to conclude that OHAM
is more accurate than HAM.

Example 2. Consider the linear delay differential equation of
third order [5]

𝑢
󸀠󸀠󸀠

(𝑥) = −𝑢 (𝑥) − 𝑢 (𝑥 − 0.3) + 𝑒
−𝑥+0.3

, 0 ≤ 𝑥 ≤ 1,

𝑢
󸀠

(0) = −1, 𝑢
󸀠󸀠

(0) = 1, 𝑢 (𝑥) = 𝑒
−𝑥
, 𝑥 ≤ 0,

(45)

with exact solution

𝑢 (𝑥) = 𝑒
−𝑥
. (46)
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According to the method which was described in the above
section, we start with

𝐿 [V (𝑥, 𝑝)] =
𝑑
3V (𝑥, 𝑝)

𝑑𝑥
3
,

𝑁 [V (𝑥, 𝑝)]

=
𝑑
3V (𝑥, 𝑝)

𝑑𝑥
3
+ V (𝑥, 𝑝) + V (𝑥 − 0.3, 𝑝) − 𝑒−𝑥+0.3.

(47)

By applying OHAM, we have the following zero-, first-,
second-, and the third-order approximate solutions:

𝑢
0
(𝑥) = 1 − 𝑥 + 0.5𝑥

2
, (48)

𝑢
1
(𝑥, 𝐶
1
) = 0.174167𝐶

1
𝑥
3

− 0.0541667𝐶
1
𝑥
4
+ 0.0166667𝐶

1
𝑥
5
,

(49)

𝑢
2
(𝑥, 𝐶
1
, 𝐶
2
)

= 0.174167𝐶
1
𝑥
3
− 0.0541667𝐶

1
𝑥
4

+ 0.0166667𝐶
1
𝑥
5
+ 0.173303𝐶

2

1
𝑥
3

− 0.0519354𝐶
2

1
𝑥
4
+ 0.0134917𝐶

2

1
𝑥
5

+ 0.00356944𝐶
2

1
𝑥
6
− 0.000634921𝐶

2

1
𝑥
7

+ 0.0000992063𝐶
2

1
𝑥
8
+ 0.166667𝐶

2
𝑥
3

− 0.0416667𝐶
2
𝑥
4
+ 0.00833333𝐶

2
𝑥
5
,

(50)

𝑢
3
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

= 0.174167𝐶
1
𝑥
3
− 0.0541667𝐶

1
𝑥
4

+ 0.0166667𝐶
1
𝑥
5
+ 0.346606𝐶

2

1
𝑥
3

− 0.103871𝐶
2

1
𝑥
4
+ 0.0269833𝐶

2

1
𝑥
5

+ 0.00713889𝐶
2

1
𝑥
6
− 0.00126984𝐶

2

1
𝑥
7

+ 0.000198413𝐶
2

1
𝑥
8
+ 0.172448𝐶

3

1
𝑥
3

− 0.0497316𝐶
3

1
𝑥
4
+ 0.0103718𝐶

3

1
𝑥
5

+ 0.0070607𝐶
3

1
𝑥
6
− 0.00119984𝐶

3

1
𝑥
7

+ 0.000156374𝐶
3

1
𝑥
8
+ 0.000017306𝐶

3

1
𝑥
9

− 2.09436 × 10
−6
𝐶
3

1
𝑥
10

+ 2.00417 × 10
−7
𝐶
3

1
𝑥
11
+ 0.166667𝐶

2
𝑥
3

− 0.0416667𝐶
2
𝑥
4
+ 0.00833333𝐶

2
𝑥
5

+ 0.33916𝐶
1
𝐶
2
𝑥
3
− 0.0915255𝐶

1
𝐶
2
𝑥
4

+ 0.0189125𝐶
1
𝐶
2
𝑥
5
+ 0.00682639𝐶

1
𝐶
2
𝑥
6

− 0.00109127𝐶
1
𝐶
2
𝑥
7
+ 0.00014881𝐶

1
𝐶
2
𝑥
8

+ 0.165917𝐶
3
𝑥
3
− 0.0397917𝐶

3
𝑥
4

+ 0.00583333𝐶
3
𝑥
5
+ 0.00138889𝐶

3
𝑥
6
.

(51)

By adding (48)–(50) and (2), we obtain

𝑢̃ (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) = 𝑢
0
(𝑥) + 𝑢

1
(𝑥, 𝐶
1
)

+ 𝑢
2
(𝑥, 𝐶
1
, 𝐶
2
) + 𝑢
3
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) .

(52)

Following the procedure described in Section 2 regarding the
domain between 𝑎 = 0 and 𝑏 = 1, we use the residual

𝑅 = 𝑢̃
󸀠󸀠󸀠
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) + 𝑢̃ (𝑥, 𝐶

1
, 𝐶
2
, 𝐶
3
)

+ 𝑢̃ (𝑥 − 0.3, 𝐶
1
, 𝐶
2
, 𝐶
3
) − 𝑒
−𝑥+0.3

.

(53)

The following optimal values of 𝐶
𝑖
’s are obtained:

𝐶
1
= 0.2237074205, 𝐶

2
= −0.5559972626,

𝐶
3
= −0.4753337145.

(54)

By substituting values in (52), we have

𝑢̃ (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

= 1 − 𝑥 + 0.5𝑥
2
− 0.161547𝑥

3
+ 0.0319249𝑥

4

− 0.00106469𝑥
5
− 0.000894311𝑥

6
+ 0.0000269763𝑥

7

− 1.86401 × 10
−6
𝑥
8
+ 1.93748 × 10

−7
𝑥
9

− 2.34472 × 10
−8
𝑥
10
+ 2.24376 × 10

−9
𝑥
11
.

(55)

The comparison between the approximate solution and the
exact solution is shown in Figures 2(a) and 2(b). We observe
that the results agree very well with the exact solution.

Example 3. Consider the first order of nonlinear delay differ-
ential equation [14]

𝑢
󸀠

(𝑥) = −2𝑢
2
(
𝑥

2
) + 1, 0 ≤ 𝑥 ≤ 1, 𝑢 (0) = 0, (56)

which has the exact solution

𝑢 (𝑥) = sin (𝑥) . (57)

By applying the samemethod as in Examples 1 and 2, we have
the following:

𝐿 [V (𝑥, 𝑝)] =
𝑑V (𝑥, 𝑝)

𝑑𝑥
,

𝑁 [V (𝑥, 𝑝)] =
𝑑V (𝑥, 𝑝)

𝑑𝑥
+ 2V2 (

𝑥

2
, 𝑝) − 1.

(58)
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Exact solution
OHAM solution
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Figure 2: (a) Comparison between the three-term OHAM approximate solution and the exact solution for Example 2 and (b) residual error
𝑅(𝑥) given by (50) using three-term OHAM approximate solution.

According to OHAM, we have the following zero-, first-,
second- and the third-order approximate solutions:

𝑢
0
(𝑥) = 𝑥,

𝑢
1
(𝑥, 𝐶
1
) =
1

6
𝑥
3
,

𝑢
2
(𝑥, 𝐶
1
, 𝐶
2
) =
1

6
𝐶
1
𝑥
3
+
1

6
𝐶
2

1
𝑥
3
+
1

120
𝐶
2

1
𝑥
5
+
1

6
𝐶
2
𝑥
3
,

𝑢
3
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

=
1

6
𝐶
1
𝑥
3
+
1

3
𝐶
2

1
𝑥
3
+
1

60
𝐶
2

1
𝑥
5
+
1

6
𝐶
3

1
𝑥
3

+
1

60
𝐶
3

1
𝑥
5
+
1

5040
𝐶
3

1
𝑥
7
+
1

6
𝐶
2
𝑥
3
+
1

3
𝐶
1
𝐶
2
𝑥
3

+
1

60
𝐶
1
𝐶
2
𝑥
5
+
1

6
𝐶
3
𝑥
3
.

(59)
From (59), the third-order approximate solution by

OHAM is given as
𝑢̃ (𝑥, 𝐶

1
, 𝐶
2
, 𝐶
3
) = 𝑢
0
(𝑥) + 𝑢

1
(𝑥, 𝐶
1
)

+ 𝑢
2
(𝑥, 𝐶
1
, 𝐶
2
) + 𝑢
3
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) .

(60)
By using (60) in (14) and applying the method as discussed in
(15) and (16), we obtain the following values of 𝐶

𝑖
’s:

𝐶
1
= −0.9892887781, 𝐶

2
= 0.0001159690,

𝐶
3
= 3.3939542758.

(61)

The approximate solution now becomes

𝑢̃ (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) = 𝑥 − 0.166665𝑥

3

+ 0.00832857𝑥
5
− 0.000192105𝑥

7
.

(62)

From Figures 3(a) and 3(b), we observe that the results agree
very well with the exact solution; as we increase the order
of the problem the accuracy increases and the residual error
will decrease as shown in Figure 3(b). We observed that the
absolute maximum error for solving this example via HAM is
1.2×10

−6 while the absolutemaximumerror by usingOHAM
is 4 × 10−8, which revealed that the proposed method is more
accurate than HAM.

Example 4. Consider the third-order nonlinear delay differ-
ential equation [14]

𝑢
󸀠󸀠󸀠

(𝑥) = 2𝑢
2
(
𝑥

2
) − 1,

0 ≤ 𝑥 ≤ 1, 𝑢 (0) = 0, 𝑢
󸀠

(0) = 1, 𝑢
󸀠󸀠

(0) = 0.

(63)

The exact solution of the above problem is given as

𝑢 (𝑥) = sin (𝑥) . (64)

By applying the present method, the linear and nonlinear
operators are defined as

𝐿 [V (𝑥, 𝑝)] =
𝑑
3V (𝑥, 𝑝)

𝑑𝑥
3
,

𝑁 [V (𝑥, 𝑝)] =
𝑑
3V (𝑥, 𝑝)

𝑑𝑥
3
− 2V2 (

𝑥

2
, 𝑝) + 1.

(65)
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Exact solution
OHAM solution
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Figure 3: (a) Comparison between three-term OHAM approximate solution and the exact solution for Example 3 and (b) the residual error
for Example 3 using two-term and three-term OHAM approximate solutions.

According to OHAM, we have the following zero-, first-,
second- and third-order approximate solutions:

𝑢
0
(𝑥) = 𝑥 −

𝑥
3

6
,

𝑢
1
(𝑥, 𝐶
1
) = −

1

120
𝐶
1
𝑥
5
+
1

5040
𝐶
1
𝑥
7
−

1

580608
𝐶
1
𝑥
9
,

𝑢
2
(𝑥, 𝐶
1
, 𝐶
2
)

= −
1

120
𝐶
1
𝑥
5
+
1

5040
𝐶
1
𝑥
7
−

1

580608
𝐶
1
𝑥
9

−
1

120
𝐶
2

1
𝑥
5
+
1

5040
𝐶
2

1
𝑥
7
−

1

1451520
𝐶
2

1
𝑥
9

−
1

39916800
𝐶
2

1
𝑥
11
+

101

1275293859840
𝐶
2

1
𝑥
13

−
1

9738607656960
𝐶
2

1
𝑥
15
−
1

120
𝐶
2
𝑥
5

+
1

5040
𝐶
2
𝑥
7
−

1

580608
𝐶
2
𝑥
9
,

𝑢
3
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

= −
1

120
𝐶
1
𝑥
5
+
1

5040
𝐶
1
𝑥
7
−

1

580608
𝐶
1
𝑥
9

−
1

60
𝐶
2

1
𝑥
5
+
1

2520
𝐶
2

1
𝑥
7
−

1

725760
𝐶
2

1
𝑥
9

−
1

19958400
𝐶
2

1
𝑥
11
+

101

637646929920
𝐶
2

1
𝑥
13

−
1

4869303829480
𝐶
2

1
𝑥
15
−
1

120
𝐶
3

3
𝑥
5

+
1

5040
𝐶
3

1
𝑥
7
+

1

2903040
𝐶
3

1
𝑥
9

−
1

19958400
𝐶
3

1
𝑥
11
+

491

6376469299200
𝐶
3

1
𝑥
13

+
1223

2678117105664000
𝐶
3

1
𝑥
15

−
341827

149186120241276518400
𝐶
3

1
𝑥
17

+
1

5040
𝐶
3
𝑥
7
−

1

580608
𝐶
3
𝑥
9

−
263

91675269781634049638400
𝐶
3

1
𝑥
21

−
1

120
𝐶
2
𝑥
5
+
1

5040
𝐶
2
𝑥
7
−

1

580608
𝐶
2
𝑥
9

−
1

60
𝐶
1
𝐶
2
𝑥
5
+
1

2520
𝐶
1
𝐶
2
𝑥
7

−
1

725760
𝐶
1
𝐶
2
𝑥
9
−

1

19958400
𝐶
1
𝐶
2
𝑥
11

+
101

637646929920
𝐶
1
𝐶
2
𝑥
13
−
1

120
𝐶
3
𝑥
5

−
1

4869303828480
𝐶
1
𝐶
2
𝑥
15

+
38033

10204330624503313858560
𝐶
3

1
𝑥
19
.

(66)

From (66), the third-order approximate solution by OHAM
is given as

𝑢̃ (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) = 𝑢
0
(𝑥) + 𝑢

1
(𝑥, 𝐶
1
)

+ 𝑢
2
(𝑥, 𝐶
1
, 𝐶
2
) + 𝑢
3
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) .

(67)
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Exact solution
OHAM solution

0.0

0.2

0.4

0.6

0.8

1.00.0 0.2 0.4 0.6 0.8
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5 × 10
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2 × 10
−6

x

R

(b)

Figure 4: (a) Comparison between three-term OHAM approximate solution and the exact solution for Example 4 and (b) the residual error
for Example 4 using three-term OHAM approximate solution.

By using (67) in (14) and applying the method as discussed in
(15) and (16), we obtain the following values of 𝐶

𝑖
’s:

𝐶
1
= 2.7354549148, 𝐶

2
= −1.3589185618,

𝐶
3
= −1.0003665216.

(68)

The approximate solution now becomes

𝑢̃ (𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
)

= 𝑥 −
1

6
𝑥
3
+ 0.00833639𝑥

5
− 0.000198485𝑥

7

+ 1.72296 × 10
−6
𝑥
9
+ 1.80627 × 10

−29
𝑥
11

− 5.71017 × 10
−32
𝑥
13
+ 7.40356 × 10

−35
𝑥
15

− 4.68993 × −50𝑥
17
+ 7.62895 × 10

53
𝑥
19

− 5.87208 × 10
−56
𝑥
21
.

(69)

Numerical results of the solution are displayed in Figures 4(a)
and 4(b).

Example 5. Consider the systemof delay differential equation
[14]

𝑢
󸀠

1
(𝑥) = 𝑢

1
(𝑥 − 1) ,

𝑢
󸀠

2
(𝑥) = 𝑢

1
(𝑥 − 1) + 𝑢

2
(𝑥 − 0.2) ,

𝑢
󸀠

3
(𝑥) = 𝑢

2
(𝑥 − 1) ,

(70)

with initial conditions

𝑢
1
(0) = 1, 𝑢

2
(0) = 1, 𝑢

3
(0) = 1. (71)

Following the same procedure, we have

𝐿
𝑖
[V
𝑖
(𝑥, 𝑝)] =

𝑑V
𝑖
(𝑥, 𝑝)

𝑑𝑥
, 𝑖 = 1, 2, 3,

𝑁
1
[V
1
(𝑥, 𝑝)] =

𝑑V
1
(𝑥, 𝑝)

𝑑𝑥
− V
1
(𝑥 − 1, 𝑝) ,

𝑁
2
[V
2
(𝑥, 𝑝)] =

𝑑V
2
(𝑥, 𝑝)

𝑑𝑥
− V
1
(𝑥 − 1, 𝑝) − V

2
(𝑥 − 0.2, 𝑝) ,

𝑁
3
[V
3
(𝑥, 𝑝)] =

𝑑V
3
(𝑥, 𝑝)

𝑑𝑥
− V
2
(𝑥 − 1, 𝑝) .

(72)

According to OHAM formulation, we have the following:

zeroth-order solution:

𝑢
1,0
(𝑥) = 1,

𝑢
2,0
(𝑥) = 1,

𝑢
3,0
(𝑥) = 1,

(73)

first-order solution:

𝑢
1,1
(𝑥) = −𝐶

1
𝑥,

𝑢
2,1
(𝑥) = −2𝐾

1
𝑥,

𝑢
3,1
(𝑥) = −𝐴

1
𝑥,

(74)

second-order solution:

𝑢
1,2
(𝑥) = −𝐶

1
𝑥 − 2𝐶

2

1
𝑥 +
1

2
𝐶
2

1
𝑥
2
− 𝐶
2
𝑥,

𝑢
2,2
(𝑥) = −2𝐾

1
𝑥 − 3.4𝐾

2

1
𝑥 +
3

2
𝐾
2

1
𝑥
2
− 2𝐾
2
𝑥,

𝑢
3,2
(𝑥) = −𝐴

1
𝑥 − 3𝐴

2

1
𝑥 + 𝐴

2

1
𝑥
2
− 𝐴
2
𝑥.

(75)
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Making use of (73)–(75) and extending the solutions up to a
fifth order, the approximate solutions by OHAM for 𝑝 = 1 are

𝑢̃
1
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
)

= 𝑢
1,0
(𝑥) + 𝑢

1,1
(𝑥, 𝐶
1
) + 𝑢
1,2
(𝑥, 𝐶
1
, 𝐶
2
)

+ 𝑢
1,3
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
) + 𝑢
1,4
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
)

+ 𝑢
1,5
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
) ,

𝑢̃
2
(𝑥, 𝐾
1
, 𝐾
2
, 𝐾
3
, 𝐾
4
, 𝐾
5
)

= 𝑢
2,0
(𝑥) + 𝑢

2,1
(𝑥, 𝐾
1
) + 𝑢
2,2
(𝑥, 𝐾
1
, 𝐾
2
)

+ 𝑢
2,3
(𝑥, 𝐾
1
, 𝐾
2
, 𝐾
3
) + 𝑢
2,4
(𝑥, 𝐾
1
, 𝐾
2
, 𝐾
3
, 𝐾
4
)

+ 𝑢
2,5
(𝑥, 𝐾
1
, 𝐾
2
, 𝐾
3
, 𝐾
4
, 𝐾
5
) ,

𝑢̃
3
(𝑥, 𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
5
)

= 𝑢
2,0
(𝑥) + 𝑢

2,1
(𝑥, 𝐴
1
) + 𝑢
2,2
(𝑥, 𝐴
1
, 𝐴
2
)

+ 𝑢
2,3
(𝑥, 𝐴
1
, 𝐴
2
, 𝐴
3
) + 𝑢
2,4
(𝑥, 𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
)

+ 𝑢
2,5
(𝑥, 𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
5
) .

(76)

By using the proposed procedure which is described in
Section 2 on [0, 1], we use the residual error

𝑅
1
= 𝑢
1

󸀠
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
)

− 𝑢
1
(𝑥 − 1, 𝐶

1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
) ,

𝑅
2
= 𝑢
2

󸀠
(𝑥, 𝐾
1
, 𝐾
2
, 𝐾
3
, 𝐾
4
, 𝐾
5
)

− 𝑢
1
(𝑥 − 1, 𝐶

1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
)

− 𝑢
2
(𝑥 − 0.2, 𝐾

1
, 𝐾
2
, 𝐾
3
, 𝐾
4
, 𝐾
5
) ,

𝑅
3
= 𝑢
3

󸀠
(𝑥, 𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
5
)

− 𝑢
2
(𝑥 − 1,𝐾

1
, 𝐾
2
, 𝐾
3
, 𝐾
4
, 𝐾
5
) .

(77)

The following values of 𝐶
𝑖
’s, 𝐾
𝑖
’s and 𝐴

𝑖
’s are obtained:

𝐶
1
= −0.58668069, 𝐶

2
= −0.08423352,

𝐶
3
= 0.00786513, 𝐶

4
= 0.00069702,

𝐶
5
= −0.00034937,

𝐾
1
= −0.75856373, 𝐾

2
= −0.14305522,

𝐾
3
= 0.07154350, 𝐾

4
= −0.02323472,

𝐾
5
= −0.00280683,

𝐴
1
= −0.67739965, 𝐴

2
= −0.08965635,

𝐴
3
= 0.03646196, 𝐴

4
= −0.01330410,

𝐴
5
= 0.00453433.

(78)
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x
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i
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Figure 5: The residual errors for Example 5 using the five-term
OHAM approximate solution.

By using the above values, the approximate solutions are

𝑢̃
1
(𝑥, 𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐶
5
)

= 1 + 0.567178𝑥 + 0.160857𝑥
2
+ 0.0302719𝑥

3

+ 0.00434813𝑥
4
+ 0.000579199𝑥

5
,

𝑢̃
2
(𝑥, 𝐾
1
, 𝐾
2
, 𝐾
3
, 𝐾
4
, 𝐾
5
)

= 1 + 1.3299𝑥 + 0.714785𝑥
2
+ 0.205164𝑥

3

+ 0.0536786𝑥
4
+ 0.0125583𝑥

5
,

𝑢̃
2
(𝑥, 𝐴
1
, 𝐴
2
, 𝐴
3
, 𝐴
4
, 𝐴
5
)

= 1 + 0.182376𝑥 + 0.230372𝑥
2
+ 0.0785302𝑥

3

+ 0.0228859𝑥
4
+ 0.00594311𝑥

5
.

(79)

From Figure 5, we can observe the accuracy of the solution
obtained by the five-term approximate solution usingOHAM
which is quite good.

5. Conclusions

In this work, OHAM is employed for the first time to propose
a new analytic approximate solution of delay differential
equations (DDEs). This method has been tested in various
examples of linear and nonlinear and system of initial value
problems of DDEs and was seen to yield satisfactory results.
The OHAM provides us with a simple way to optimally
control and adjust the convergence solution series and it gives
a good approximation in few terms which is converged to the
exact solution and proved the efficiency and reliability of the
method. This fact is obvious from the use of the auxiliary
function 𝐻(𝑝). In OHAM, it is important to solve a set of
nonlinear algebraic equations with𝑚 unknown convergence
control parameters, 𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑚
, and this makes it time

consuming, especially for large𝑚.
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[22] V. Marinca and N. Herişanu, “Application of optimal homotopy
asymptotic method for solving nonlinear equations arising in
heat transfer,” International Communications in Heat and Mass
Transfer, vol. 35, no. 6, pp. 710–715, 2008.

[23] N. Herisanu, V. Marinca, T. Dordea, and G. Madescu, “A
new analytical approach to nonlinear vibration of an electric
machine,” Proceedings of Romanian Academy A, vol. 9, no. 3,
2008.
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