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3Horticulture Department, Agriculture Faculty, Ege University, 35100 İzmir, Turkey
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Citrus is one of the world’s important fruit crops. Recently, citrus molecular genetics and biotechnology work have been accelerated
in the world. Genetic transformation, a biotechnological tool, allows the release of improved cultivars with desirable characteristics
in a shorter period of time and therefore may be useful in citrus breeding programs. Citrus transformation has now been achieved
in a number of laboratories by variousmethods.Agrobacterium tumefaciens is usedmainly in citrus transformation studies. Particle
bombardment, electroporation,A. rhizogenes, and a newmethod called RNA interference are used in citrus transformation studies
in addition to A. tumefaciens. In this review, we illustrate how different gene transformation methods can be employed in different
citrus species.

1. Introduction

Citrus species are the most widely grown fruit crops. Despite
substantial genetic diversity and interspecific fertility, the
genus Citrus includes some of the most difficult species to
breed [1, 2]. This is due to several obstacles for conventional
breeding. For example, most species are highly heterozygous
and produce progeny that segregate widely for many charac-
ters when crosses are made. The juvenile periods are often
very long, self- and cross-incompatibility and pollen and/or
ovule sterility are relatively common, and the presence of
adventitious somatic embryos in the nucellus of developing
ovules of the most of Citrus greatly limits hybrid production
[2, 3].

The genus Citrus possesses several undesirable character-
istics including salt and cold sensitivity [4, 5]; they are also
susceptible to diseases caused by fungi, bacteria and viruses,
such as Citrus exocortis viroid (CEV), Citrus infectious
variegation virus (CIVV), Citrus cachexia viroid (CCaV)
and Citrus tristeza closterovirus (CTV) [5, 6]. Classical
genetic selection, gene transfer, grafting, and micrografting
techniques can contribute to the improvement of Citrus and
propagation of selected species.Therefore, in vitromanipula-
tion procedures leading to a rapid, direct bud regeneration for
efficient micropropagation as well as genetic transformation

are needed as a first step towards Citrus improvement.
Practical benefits resulting from in vitro culturemethods have
already been reported inCitrus [5, 7, 8]. Recent developments
in gene transfer techniques via the classical regeneration
method have been applied to this genus and have opened the
way to induce a specific genetic change within a period of
time shorter than using the classical genetic selectionmethod
[5, 9, 10].

Conventional breeding methods have demonstrated lim-
itations with respect to citrus improvement due to some of
the biological characteristics of woody plants such as nucellar
polyembryony, high heterozygosity, long juvenile period, and
autoincompatibility [11, 12]. The development of biotechno-
logical tools has made it possible to overcome some of these
problems. In the specific case of citrus breeding programs,
somatic hybridization [12–14] and genetic transformation [12,
15, 16] have been applied in many countries [10, 12, 17, 18].

In recent years, there has been a major thrust in cit-
rus improvement as competition from international citrus
markets, disease, and pest pressure and other abiotic and
biotic stress conditions stimulate worldwide interest [19, 20].
Several strategies exist for the genetic improvement of citrus
including conventional breeding and genetic transformation
[20, 21]. Currently, genetic transformation of citrus as a tool
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for citrus improvement is gaining popularity. This method is
especially useful in cases where it is not possible to introduce
a particular trait of interest to another elite cultivar using
conventional breeding. Citrus cultivars vary in their response
to in vitro organogenesis and genetic transformation. This
results in the need for cultivar-specific optimization of in vitro
protocols [20, 22].

Among the several methods available for the genetic
transformation of citrus, the most popular method to trans-
form a wide range of citrus cultivars is Agrobacterium-
mediated transformation using epicotyl explants as target
cells for incorporation of the T-DNA [20, 23]. However, this
method is not suitable for the transformation of any seedless
cultivar. Also, special cultivars in themandarin group remain
robust to transform using this method [20, 22, 24].

2. Transformation Studies in Citrus

Genetic transformation and somatic hybridization studies are
already integrated in Citrus breeding programs in several
countries. Genetic transformation of Citrus is a promising
tool that enables the introduction of desirable traits without
altering the genetic background [25]. Genetic transforma-
tion of citrus has been reported, by using several methods
(Table 1).

Agrobacterium has been the most frequently used genetic
transformationmethod inCitruswith explants collected from
seedlings germinated in vitro or under greenhouse conditions
[68].

Transformation studies have been done for two decades
in citrus. In the last few years, different transformation
methods such as RNA silencing are used. In order to carry out
successful gene transformation studies in citrus, optimized
in vitro regeneration protocol is needed. Researchers should
optimize efficient regeneration protocol before starting trans-
formation studies. There are also many efficient regeneration
protocols published in different citrus species.

Orbović et al. [36] investigated the effects of seed age
on shoot regeneration potential and transformation rate of
“Duncan” and “Flame” grapefruit cultivars, alongwith “Ham-
lin” sweet orange cultivar. Genetic transformation of citrus
explants was carried out as previously described [93] usingA.
tumefaciens strain EHA105 [94] containing a binary vectors
derived from pD35s [22]. In conclusion, the regeneration
potential and transformability of citrus juvenile explants
are different among cultivars and also change within the
fruit harvest season. Because of these findings, especially the
latter one, it will be extremely difficult to develop a univer-
sal protocol for genetic transformation of citrus. Optimal
transformation efficiency will require flexible procedures that
account for cultivar variability and timing of seed collection.
In another study, a protocol was developed for regeneration
of transgenic plants via A. tumefaciens-mediated transfor-
mation of leaf segments from “Valencia” sweet orange (C.
sinensis L. Osbeck) using gfp (green fluorescence protein)
as a vital marker [27]. The transformation methodology
described by Khan et al. [27] was an important finding for
generating transgenic plants using leaf segments as explants.

In addition to transformation studies via A. tumefaciens,
recently, A. rhizogenes has been used. Many reports suggest
the use of A. rhizogenes for expression of the rol genes and
also to deliver foreign genes to susceptible plants [95]. The
hairy root harbours theT-DNAsegment of Ri-plasmidwithin
its nuclear genomes [96]. A. rhizogenes are also capable of
transferring the T-DNA of binary vectors in trans, thereby
facilitating the selection of transgenic plants from screened
hairy roots [95]. A. rhizogenes-mediated transformation sys-
tem was found to be very useful in genetic manipulation of
plants for the production of phytochemicals [97], large scale
secondary metabolite production [98], monoclonal antibody
production [99], and phytoremediation [100].There aremany
reports that suggest the successful use of A. rhizogenes har-
bouring binary vectors with desired gene constructs [95] for
plant genetic transformation [101]. Due to low transformation
efficiency of A. rhizogenes, many researchers have worked to
optimize transformation methods.

Chávez-Vela et al. [72] used A. rhizogenes A4 agropine-
type strain to develop the transformation system. A4 contains
wild-type plasmid pRi A4 which confers hairy-root genotype
and binary vector pESC4. In the study seventy-five-day-old
sour orange seedlings were used and transgenic sour orange
(C. aurantium L.) plants were regenerated from A. rhizogenes
transformed roots. 91% of explants produced transformed
roots with an average of 3.6 roots per explant.

In another study transgenicMexican lime (C. aurantifolia
(Christm.) Swing) plants were regenerated from tissues trans-
formed by A. rhizogenes strain A4, containing the wild-type
plasmid pRiA4 and the binary vector pESC4 with nos-npt II
and cab-gus genes. More than 300 Mexican lime transgenic
plants were obtained, 60 of which were adapted to growing
in soil [2].

In addition to the indirect gene transfer methods, there
are studies performed by direct gene transfer methods in
citrus. Bespalhok Filho et al. [69] carried out to optimize
the conditions for transient gene expression through particle
bombardment on Carrizo citrange (C. sinensis × Poncirus
trifoliata) thin epicotyl sections. The best conditions for
transient GUS expression were M-25 tungsten particles,
1550 psi helium pressure, 9 cm distance between specimen,
and DNA/particle holder and culture of explants in a high
osmolarity medium (0.2M mannitol + 0.2M sorbitol) 4 h
prior and 20 h after bombardment. Under these condi-
tions, an average of 102 blue spots per bombardment (20
explants/plate) were achieved. It is stated that protocol is
currently being used for transformation of Carrizo citrange
and sweet orange (C. sinensis).

Electroporation is an effective direct gene transfer system
used for citrus transformation. Hidaka and Omura [90]
used electroporation methods for gene transformation in
citrus. Protoplasts were prepared from embryogenic callus
of “Ohta” ponkan (C. reticulata Blanco) and electropora-
tion with exponential decay pulses was carried out in the
solution containing the 𝛽-glucuronidase (GUS) chimeric
gene coupled to the CaMV 35S promoter (pBI221). At 24 hr
after incubation, significant GUS activity was detected in
the cells by fluorometric assay. Another alternative method
for direct gene transformation had been developed in sweet
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Table 1: Transformation researches in citrus.

Species Transferred genes Transformation method References
C. sinensis L. Osb. GUS and nptII A. tumefaciens [26]
C. sinensis L. Osb. gfp A. tumefaciens [27]
C. sinensis L. Osb. GUS A. tumefaciens [28]
C. sinensis L. Osb. and Carrizo citrange uidA, nptII A. tumefaciens [29]
C. paradisiMacf. RdRp, Gfp, and Gus A. tumefaciens [30]
C. sinensis L. Osb. CTV-CP A. tumefaciens [31]
C. aurantifolia p25, p20, and p23 RNA interference [32]
C. aurantifolia Swingle AtSUC2, RSs1, RTBV, GUS, rolC A. tumefaciens [33]
C. paradisi attE A. tumefaciens [34]
C. unshiuMarc miraculin A. tumefaciens [35]
C. sinensis L. Osbeck and C. paradisi
Macf. GFP A. tumefaciens [36]

C. sinensis L. CTV-GFP A. tumefaciens [37]
C. sinensis Osb. Shiva A and Cecropin B A. tumefaciens [38]

C. sinensis CPsV cp (ihpCP), 54K (ihp54K),
and 24K (ihp24K)

A. tumefaciens
RNA silencing [39]

C. sinensis L. Osb. GFP and nptII A. tumefaciens [40]
C. sinensis L. Osb. pthA-nls A. tumefaciens [41]
Poncirus trifoliata L. Raf. AhBADH A. tumefaciens [42]
C. sinensis L. Osb. Cy-GFP and Er-GFP A. tumefaciens [43]
C. aurantifolia Swingle gus-egfp A. tumefaciens [44]
Tetraploid citrus rootstock selection
“Orange #16” egfp-nptII A. tumefaciens [45]

Carrizo citrange manA and egfp A. tumefaciens [22]
C. sinensis, C. reticulata C. amblycarpa
and C. depressa nptII, hptII, and GFP A. tumefaciens [20]

Carrizo citrange and C. sinensis L. Osb. Gfp A. tumefaciens [46]
Carrizo citrange, C. paradisiMacf., C.
aurantifolia Swingle
C. sinensis L. Osb.

EGFP A. tumefaciens [23]

“Swingle” citrumelo and C. sinensis L.
Osb. GUS and nptII Sonication-assisted

A. tumefaciens (SAAT) [47]

C. sinensis cv. Hamlin hrpN A. tumefaciens [48]
Poncirus trifoliata [L.] Raf. uidA and nptII A. tumefaciens [49]
Poncirus trifoliata [L.] Raf GFP andMAC12.2 A. tumefaciens [50]
Carrizo citrange and C. sinensis L. Osb. uidA and iaaM/H marker genes A. tumefaciens [51]
C. sinensis L. Osb. cp and nos genes A. tumefaciens [52]
C. sinensis L. Osb. Nospro-nptII-Noster A. tumefaciens [53]
Carrizo citrange and C. sinensis L. Osb. ipt gene A. tumefaciens [54]

C. paradiseMacf. CTV-derived candidate resistance A. tumefaciens
RNA-mediated resistance [55]

Poncirus trifoliata L. Raf. gfp A. tumefaciens [56]
Carrizo citrange nptII A. tumefaciens [57]
C. aurantium, C. macrophylla, C. limon
and Troyer citrange CTV-p61 and p23U A. tumefaciens [58]

C. sinensis L. Osb. attA A. tumefaciens [59]
C. limonia Osb. bO A. tumefaciens [60]
C. paradisi RdRp A. tumefaciens [61]
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Table 1: Continued.

Species Transferred genes Transformation method References
C. jambhiri Lush GUS and nptII A. tumefaciens [62]
C. sinensis L. Osb. gfp and pme PEG [63]
Swingle citrumelo uidA, nptII, and GUS A. tumefaciens [64]
Carrizo citrange GUS and nptII A. tumefaciens [65]
Carrizo citrange and C. aurantifolia GUS, GFP, and nptII A. tumefaciens [66]
Carrizo citrange Citrus blight-associated A. tumefaciens [67]
C. sinensis and C. limonia GUS A. tumefaciens [68]
Carrizo citrange uidA and nptII Particle bombardment [69]
C. sinensis pTA29-barnase A. tumefaciens [70]
Citrus sinensis PMI A. tumefaciens [12]
Citrus sinensis GUS and nptII A. tumefaciens [71]
Citrus aurantium L. GUS and nptII A. rhizogenes [72]
Citrus paradisiMacf. cp and GUS A. tumefaciens [73]
C. sinensis L. Osb. GUS Electroporation [74]
Carrizo citrange and C. sinensis L. Osb. GUS A. tumefaciens [75]
Citrus sinensis L. Osbeck GUS and nptII A. tumefaciens [18]
C. reticulata Blanco pTA29-barnase A. tumefaciens [76]
C. paradisiMacf. Carotenoid biosynthetic genes A. tumefaciens [16]
Carrizo citrange LFY and AP1 A. tumefaciens [77]
C. aurantium L. cp A. tumefaciens [78]
C. paradisiMacf. CP and T36 A. tumefaciens [79]
Troyer citrange Bar and uidA A. tumefaciens [80]
C. aurantifolia Swing. cp A. tumefaciens [81]
C. sinensis (L.) Osb. Gfp PEG [82]
C. aurantifolia Swing. GUS A. tumefaciens [83]
C. paradisiMacf. GUS, uncp, gna A. tumefaciens [84]
Carrizo citrange uidA and nptII A. tumefaciens [85]
C. sinensis L. Osb. GUS A. tumefaciens [86]
C. aurantifolia (Christm.) Swing. GUS and nptII A. rhizogenes [2]
C. aurantium L. cp A. tumefaciens [10]
Tangelo GUS and nptII Particle bombardment [87]
Carrizo citrange GUS and nptII A. tumefaciens [88]
C. sinensis L. Osb. GUS and nptII A. tumefaciens [89]
C. reticulata Blanco GUS Electroporation [90]
Citrus spp. GUS and nptII A. tumefaciens [91]
Citrus spp. cat and nptII PEG [92]

orange (C. sinensis (L.) Osbeck). Plasmid DNA encoding the
nondestructive selectablemarker enhanced green fluorescent
protein gene was introduced using polyethylene glycol into
protoplasts of “Itaborai” sweet orange isolated from an
embryogenic nucellar-derived suspension culture. Following
protoplast culture in liquid medium and transfer to solid
medium, transformed calluses were identified via expression
of the green fluorescent protein, physically separated from
nontransformed tissue and cultured on somatic embryogen-
esis induction medium. Transgenic plantlets were recovered
from germinating somatic embryos and by in vitro rooting of
shoots [82].

As well as the transformation studies conducted for gene
expression, several studies conducted for gene silencing.
RNA interference (RNAi) are a posttranscriptional gene-
silencing phenomenon induced by double-stranded RNA.
It has been widely used as a knockdown technology to
analyze gene function in various organisms. Although RNAi
was first discovered in worms, related phenomena such as
posttranscriptional gene silencing and coat protein-mediated
protection from viral infection had been observed in plants
prior to this. In plants, RNAi is often achieved through trans-
genes that produce hairpin RNA. For genetic improvement
of crop plants, RNAi has advantages over antisense-mediated
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gene silencing and cosuppression, in terms of its efficiency
and stability [102]. Soler et al. [32] stated Citrus tristeza virus
(CTV), the causal agent of the most devastating viral disease
of citrus, has evolved three silencing suppressor proteins
acting at intra- (p23 and p20) and/or intercellular level (p20
and p25) to overcome host antiviral defence. Mexican lime
was transformed with an intron-hairpin vector carrying full-
length, untranslatable versions of the genes p25, p20, and
p23 from CTV strain T36 to silence the expression of these
critical genes in CTV-infected cells. Three transgenic lines
presented complete resistance to viral infection, with all
their propagations remaining symptomless and virus-free
after graft inoculation with CTV-T36, either in the nontrans-
genic rootstock or in the transgenic scion. Accumulation of
transgene-derived siRNAswas necessary but not sufficient for
CTV resistance. Inoculation with a divergent CTV strain led
to partially breaking the resistance, thus showing the role of
sequence identity in the underlying mechanism. Results are a
step forward to developing transgenic resistance to CTV and
also show that targeting simultaneously by RNA interference
(RNAi) the three viral silencing suppressors appear critical
for this purpose, although the involvement of concurrent
RNAi mechanisms cannot be excluded.

3. Conclusion

Genetic transformation is an attractive alternative technique
for citrus genetic improvement. However, transformation
efficiencies are generally low, and protocols are dependent on
species, or even cultivar dependent. One of the limitations
within this technology is low plant regeneration frequencies
especially for many of the economically important citrus
species [65]. In addition, difficulty in rooting transgenic
shoots for some citrus cultivars has been reported [10, 89,
91]. Development of effective genetic transformants therefore
requires specific studies on in vitro regeneration conditions
for each genotype.

The development of direct genetic manipulation tech-
niques has provided new opportunities for plant improve-
ment. Plant transformation has made it possible to modify
just one or two traits, while retaining the unique charac-
teristics of the original cultivar. The characters that could
potentially be manipulated by genetic transformation of
Citrus include pest and disease resistance, growth habit, and
fruit quality. In order to use this technology, it is essential to
develop efficient genetic transformation systems for Citrus.
[2].
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[61] B. Çevik, R. F. Lee, and C. L. Niblett, “Genetic transformation
of Citrus paradisi with antisense and untranslatable RNA-
dependent RNA polymerase genes of Citrus tristeza clos-
terovirus,” Turkish Journal of Agriculture and Forestry, vol. 30,
no. 3, pp. 173–182, 2006.

[62] M. Ahmad and B. Mirza, “An efficient protocol for transient
transformation of intact fruit and transgene expression in
Citrus,” Plant Molecular Biology Reporter, no. 23, pp. 419–420,
2005.

[63] W. Guo, Y. Duan, O. Olivares-Fuster et al., “Protoplast transfor-
mation and regeneration of transgenic Valencia sweet orange
plants containing a juice quality-related pectin methylesterase
gene,” Plant Cell Reports, vol. 24, no. 8, pp. 482–486, 2005.

[64] H. B. C. Molinari, J. C. Bespalhok, A. K. Kobayashi, L. F.
P. Pereira, and L. G. E. Vieira, “Agrobacterium tumefaciens-
mediated transformation of Swingle citrumelo (Citrus paradisi
Macf. x Poncirus trifoliata L. Raf.) using thin epicotyl sections,”
Scientia Horticulturae, vol. 99, no. 3-4, pp. 379–385, 2004.
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