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We are concerned with a type of impulsive fractional differential equations attached with integral boundary conditions and get the
existence of at least one positive solution via global bifurcation techniques.

1. Introduction

Fractional differential equations have been extensively stud-
ied in recent years (see, for instance, [1–7] and their refer-
ences). In addition, since Rabinowitz established unilateral
global bifurcation theorems, there have beenmany researches
in global bifurcation theory and it has been applied to obtain
the existence and multiplicity for solutions of differential
equations (see, for instance, [8–16] and their references).
However, the previous researches seldom involve both global
bifurcation techniques and fractional differential equations.
In [16], the following problem was studied.

𝐷𝛼0+𝑢 (𝑡) + 𝑟𝑓 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑡𝑛−𝛼𝑢(𝑛−2) (𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 = 𝑡𝑛−𝛼𝑢(𝑛−3) (𝑡)󵄨󵄨󵄨󵄨󵄨𝑡=0 ⋅ ⋅ ⋅

= 𝑡𝑛−𝛼𝑢 (𝑡)󵄨󵄨󵄨󵄨𝑡=0 = 𝑢 (1) = 0,
(1)

where the fractional difference was of Riemann-Liouville
type. Under suitable conditions, the existence of at least one
positive solution and one negative solutionwas got.Wewould
like to conduct further research on the above problem. For
instance, in practical applications,𝑓may rely not only on 𝑢(𝑡)
but also on 𝑢󸀠(𝑡), which will give rise to additional difficulties
for the study. Moreover, what if the boundary value condi-
tions are nonlocal rather than local? Can we add impulsive
terms into the system? As a reply to above questions, we will
tackle the following impulsive Caputo fractional differential

equations attached with integral boundary value conditions
in this paper.

𝑐𝐷𝛼0+𝑢 (𝑡) + 𝑎𝑓 (𝑡, 𝑢 (𝑡) , 𝑢󸀠 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑢󸀠 (0) = 0,
𝑢 (1) = ∫1

0
𝑘 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

Δ𝑢 (𝜉) = ∫𝜉
0
𝑔 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

Δ𝑢󸀠 (𝜉) = ∫𝜉
0
ℎ (𝑡) 𝑢 (𝑡) 𝑑𝑡,

(2)

where 𝑓 ∈ 𝐶([0, 1] × R × R,R) satisfies 𝑓(𝑡, 𝑥, 𝑦) ≥ 0 when𝑥 ≥ 0 and 𝑦 ≤ 0; 𝑘 ∈ 𝐶([0, 1], [0, +∞]); 𝜉 ∈ (0, 1); 𝑔, ℎ ∈𝐶([0, 𝜉], (−∞, 0]);
Δ𝑢 (𝜉) fl lim

𝑡→𝜉+
𝑢 (𝑡) − lim

𝑡→𝜉−
𝑢 (𝑡) ;

Δ𝑢󸀠 (𝜉) fl lim
𝑡→𝜉+

𝑢󸀠 (𝑡) − lim
𝑡→𝜉−

𝑢󸀠 (𝑡) . (3)

We set 1 < 𝛼 ≤ 2 throughout this paper.
Through global bifurcation techniques, we get the exis-

tence of at least one positive solution of (2) (seeTheorem 14).
Moreover, for the sake of convenience of use, we give a
corollary of Theorem 14 (see Theorem 15).
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The rest of this paper is organized as follows. In Section 2,
we will present some preliminary knowledge and some
conditions for (2) thatweneed.Wewill prove someproperties
of several functions in Section 3 as a preparation of Section 4.
In Section 4, we will present ourmain results and prove them.
In Section 5, we present an example as an application of the
main results. Finally, an appendix is given to prove a formula
which will be used in the proof of the main results.

2. Preliminary

Firstly, we introduce several spaces that this paper needs.
In this paper, we set

𝑃𝐶 [0, 1] = {𝑔 : 𝑔 (𝑡) are continuous on [0, 𝜉] , (𝜉, 1] ;
there exists lim

𝑡→𝜉+
𝑔 (𝑡)}

(4)

as well as

𝑃𝐶1 [0, 1] = {𝑔 : 𝑔, 𝑔󸀠 ∈ 𝑃𝐶 [0, 1]} . (5)

Secondly, we introduce some knowledge of fractional
integral and fractional derivative.

Definition 1 (see [3]). The fractional integral of order 𝛽 > 0
for a function 𝑔 is defined as

𝐼𝛽0 𝑔 (𝑡) = 1Γ (𝛽) ∫𝑡
0
(𝑡 − 𝑠)𝛽−1 𝑔 (𝑠) 𝑑𝑠, 𝑡 ≥ 0. (6)

Definition 2 (see [3]). The Riemann-Liouville derivative of
fractional order 𝛼 for a function 𝑔 is defined as

𝑟𝑙𝐷𝛼0𝑔 (𝑡) = 𝑑2𝑑𝑡2 𝐼2−𝛼0 𝑔 (𝑡) , 𝑡 > 0. (7)

For 𝑔 ∈ 𝐿𝑝(𝑎, 𝑏) (1 ≤ 𝑝 ≤ +∞), it is well known that
𝑟𝑙𝐷𝛼0𝐼𝛼0 𝑔(𝑡) = 𝑔(𝑡) holds almost everywhere on [𝑎, 𝑏]. What is
more, 𝑟𝑙𝐷𝛼0𝐼𝛼0 𝑔(𝑡) = 𝑔(𝑡) holds on (𝑎, 𝑏) if 𝑔 ∈ 𝐶(𝑎, 𝑏).
Definition 3 (see [3]). The Caputo derivative of fractional
order 𝛼 for a function is defined as

𝑐𝐷𝛼0𝑔 (𝑡) = 𝑟𝑙𝐷𝛼0 [𝑔 (𝑡) − 𝑔 (0) − 𝑔󸀠 (0) 𝑡] , 𝑡 ∈ [0, 1] . (8)

Clearly, (8) is equivalent to

𝑐𝐷𝛼0𝑔 (𝑡) = 𝑟𝑙𝐷𝛼0𝑔 (𝑡) − 𝑔 (0)Γ (1 − 𝛼) 𝑡−𝛼 − 𝑔󸀠 (0)Γ (2 − 𝛼) 𝑡1−𝛼,
𝑡 ∈ [0, 1] .

(9)

Moreover, for 𝑔 ∈ 𝐶1[0, 1] and 𝜙 ∈ 𝐿[0, 1], it is well known
that

𝑐𝐷𝛼0𝑔 (𝑡) = 𝜙 (𝑡) 󳨐⇒ 𝑔 (𝑡) = 𝐼𝛼0 𝜙 (𝑡) + 𝐶0 + 𝐶1𝑡. (10)

However, (10) does not necessarily hold if 𝑔 does not belong
to 𝐶1[0, 1]. Since 𝑢(𝑡) and 𝑢󸀠(𝑡) considered in (2) are not
continuous at 𝑡 = 𝜉, we need some modification on
Definition 3. So we generalize Definition 3 in the following
way, which will be applied to (2).

Definition 4. The Caputo derivative of fractional order 𝛼 for
a function 𝑔 ∈ 𝑃𝐶1[0, 1] is defined as

𝑐𝐷𝛼0𝑔 (𝑡) = 𝑟𝑙𝐷𝛼0 (𝑔 − 𝑔𝜉) (𝑡) , 𝑡 ∈ [0, 1] , (11)

where

𝑔𝜉 (𝑡) fl {{{
𝑔 (0) + 𝑔󸀠 (0) 𝑡, 𝑡 ∈ [0, 𝜉] ,
𝑔 (0) + 𝑔 (𝜉+) − 𝑔 (𝜉−) + 𝑔󸀠 (0) 𝑡 + 𝑔󸀠 (𝜉+) (𝑡 − 𝜉) − 𝑔󸀠 (𝜉−) (𝑡 − 𝜉) , 𝑡 ∈ (𝜉, 1] . (12)

With the above definition, we have a conclusion similar
to (10), which will be represented as (13).

Lemma 5. For 𝑔 ∈ 𝑃𝐶1[0, 1] and 𝜙 ∈ 𝐿[0, 1], if 𝑐𝐷𝛼0𝑔(𝑡) =𝜙(𝑡) for 𝑡 ∈ (0, 1), there must be

𝑔 (𝑡) = {{{
𝐼𝛼0 𝜙 (𝑡) + 𝐶1 + 𝐶2𝑡, 𝑡 ∈ [0, 𝜉) ,
𝐼𝛼0 𝜙 (𝑡) + 𝐶3 + 𝐶4𝑡, 𝑡 ∈ (𝜉, 1] . (13)

Proof. Suppose that

𝑐𝐷𝛼0𝑔 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ (0, 1) ; (14)
that is

𝑟𝑙𝐷𝛼0 (𝑔 − 𝑔𝜉) (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ (0, 1) . (15)

We know that

𝑔 (𝑡) − 𝑔𝜉 (𝑡) = {{{
𝐼𝛼0 𝜙 (𝑡) + 𝑑1𝑡𝛼−1 + 𝑑2𝑡𝛼−2, 𝑡 ∈ [0, 𝜉) ,
𝐼𝛼0 𝜙 (𝑡) + 𝑑1𝑡𝛼−1 + 𝑑2𝑡𝛼−2 + 𝑑3 (𝑡 − 𝜉)𝛼−1 + 𝑑4 (𝑡 − 𝜉)𝛼−2 , 𝑡 ∈ (𝜉, 1] . (16)
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𝑔󸀠 (𝑡) − 𝑔󸀠𝜉 (𝑡) = {{{
𝐼𝛼−10 𝜙 (𝑡) + 𝑑1 (𝛼 − 1) 𝑡𝛼−2 + 𝑑2 (𝛼 − 2) 𝑡𝛼−3, 𝑡 ∈ [0, 𝜉) ,
𝐼𝛼−10 𝜙 (𝑡) + 𝑑1 (𝛼 − 1) 𝑡𝛼−2 + 𝑑2 (𝛼 − 2) 𝑡𝛼−3 + 𝑑3 (𝛼 − 1) (𝑡 − 𝜉)𝛼−2 + 𝑑4 (𝛼 − 2) (𝑡 − 𝜉)𝛼−3 , 𝑡 ∈ (𝜉, 1] . (17)

Since 𝑔, 𝑔𝜉 ∈ 𝑃𝐶1[0, 1], we know that 𝑔 − 𝑔𝜉 ∈ 𝑃𝐶1[0, 1].
Then by (17) we know that

𝑑1 = 𝑑2 = 𝑑3 = 𝑑4 = 0. (18)

So (13) turns to be

𝑔 (𝑡) − 𝑔𝜉 (𝑡) = 𝐼𝛼0 𝜙 (𝑡) , 𝑡 ∈ [0, 1] ; (19)

that is

𝑔 (𝑡) = 𝐼𝛼0 𝜙 (𝑡) + 𝑔𝜉 (𝑡) , 𝑡 ∈ [0, 1] . (20)

Choosing suitable 𝐶1, 𝐶2, 𝐶3, 𝐶4, we finish the proof.

If we set

𝐶 (𝑡) = {{{
𝑎 + 𝑏𝑡, 𝑡 ∈ [0, 𝜉] ;
𝑐 + 𝑑𝑡, 𝑡 ∈ (𝜉, 1] , (21)

where 𝑎, 𝑏, 𝑐, and 𝑑 are constant real numbers, then we will
have the following conclusion.

Lemma 6. One has

𝑐𝐷𝛼0𝐶 (𝑡) = 0, 𝑡 ∈ [0, 1] . (22)

Proof. It is easy to see that 𝐶(𝑡) − 𝐶𝜉(𝑡) = 0 for 𝑡 ∈ [0, 1] and
then it is clear that

𝑐𝐷𝛼0𝐶 (𝑡) = 0, 𝑡 ∈ [0, 1] . (23)

Lemma 7. For 𝑝(𝑡) ∈ 𝑃𝐶[0, 1], 𝑢 ∈ 𝑋 is a solution of

𝑐𝐷𝛼0𝑢 (𝑡) + 𝑝 (𝑡) = 0, 𝑡 ∈ (0, 1) ,
𝑢󸀠 (0) = 0,
𝑢 (1) = ∫1

0
𝑘 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

Δ𝑢 (𝜉) = ∫𝜉
0
𝑔 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

Δ𝑢󸀠 (𝜉) = ∫𝜉
0
ℎ (𝑡) 𝑢 (𝑡) 𝑑𝑡

(24)

if and only if

𝑢 (𝑡) = − 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑝 (𝑠) 𝑑𝑠

+ 1Γ (𝛼) ∫
1

0
(1 − 𝑠)𝛼−1 𝑝 (𝑠) 𝑑𝑠

− ∫𝜉
0
𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠

− (1 − 𝜉) ∫𝜉
0
ℎ (𝑠) 𝑢 (𝑠) 𝑑𝑠

+ ∫1
0
𝑘 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝜉] ;

(25a)

𝑢 (𝑡) = − 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑝 (𝑠) 𝑑𝑠

+ 1Γ (𝛼) ∫
1

0
(1 − 𝑠)𝛼−1 𝑝 (𝑠) 𝑑𝑠

− (1 − 𝑡) ∫𝜉
0
ℎ (𝑠) 𝑢 (𝑠) 𝑑𝑠

+ ∫1
0
𝑘 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (𝜉, 1] .

(25b)

Proof. If 𝑢 ∈ 𝑋 is a solution of (24), by Lemma 5 we know
that
𝑢 (𝑡)

= {{{{{{{
− 1Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑝 (𝑠) 𝑑𝑠 + 𝑐1 + 𝑐2𝑡, 𝑡 ∈ [0, 𝜉] ;

− 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑝 (𝑠) 𝑑𝑠 + 𝑐3 + 𝑐4𝑡, 𝑡 ∈ (𝜉, 1] .

(26)

Since 𝑢󸀠(0) = 0, Δ𝑢(𝜉) = ∫𝜉
0
𝑔(𝑡)𝑢(𝑡)𝑑𝑡, Δ𝑢󸀠(𝜉) =

∫𝜉
0
ℎ(𝑡)𝑢(𝑡)𝑑𝑡, and 𝑢(1) = ∫1

0
𝑘(𝑡)𝑢(𝑡)𝑑𝑡, we know that

𝑐2 = 0;
𝑐1 + ∫𝜉
0
𝑔 (𝑡) 𝑢 (𝑡) 𝑑𝑡 = 𝑐3 + 𝑐4𝜉;

𝑐2 + ∫𝜉
0
ℎ (𝑡) 𝑢 (𝑡) 𝑑𝑡 = 𝑐4;

− 1Γ (𝛼) ∫
1

0
(1 − 𝑠)𝛼−1 𝑝 (𝑠) 𝑑𝑠 + 𝑐3 + 𝑐4

= ∫1
0
𝑘 (𝑡) 𝑢 (𝑡) 𝑑𝑡.

(27)
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𝑐1 = 1Γ (𝛼) ∫
1

0
(1 − 𝑠)𝛼−1 𝑝 (𝑠) 𝑑𝑠 − ∫𝜉

0
𝑔 (𝑡) 𝑢 (𝑡) 𝑑𝑡

− (1 − 𝜉) ∫𝜉
0
ℎ (𝑡) 𝑢 (𝑡) 𝑑𝑡 + ∫1

0
𝑘 (𝑡) 𝑢 (𝑡) 𝑑𝑡;

𝑐2 = 0;
𝑐3 = 1Γ (𝛼) ∫

1

0
(1 − 𝑠)𝛼−1 𝑝 (𝑠) 𝑑𝑠 − ∫𝜉

0
ℎ (𝑡) 𝑢 (𝑡) 𝑑𝑡

+ ∫1
0
𝑘 (𝑡) 𝑢 (𝑡) 𝑑𝑡;

𝑐4 = ∫𝜉
0
ℎ (𝑡) 𝑢 (𝑡) 𝑑𝑡;

(28)

that is, 𝑢 satisfies (25a) and (25b).
If (25a) and (25b) hold, by Lemma 6 we know that

𝑐𝐷𝛼0𝑢 (𝑡) = −𝑐𝐷𝛼0𝐼𝛼0 𝑝 (𝑡) . (29)

Since 𝑝(𝑡) ∈ 𝑃𝐶[0, 1], we know that 𝐼𝛼0 𝑝 ∈ 𝐶[0, 1] are con-
tinuous on [0, 1] as well as 𝐼𝛼0 𝑝(0) = 0 and [𝐼𝛼0 𝑝]󸀠(0) = 0, so
(29) turns to be

𝑐𝐷𝛼0𝑢 (𝑡) = −𝑐𝐷𝛼0𝐼𝛼0 𝑝 (𝑡) = −𝑟𝑙𝐷𝛼0𝐼𝛼0 𝑝 (𝑡) = −𝑝 (𝑡) . (30)

All the other conditions of (24) can be verified by direct
computations and we omit it here.

Thirdly, we introduce some knowledge of order cone.

Definition 8. Let 𝑋 be a real Banach space and let 𝐾 be a
subset of𝑋. Then𝐾 is called an order cone if

(i) 𝐾 is closed, nonempty, and𝐾 ̸= 𝜃;
(ii) 𝑎, 𝑏 ∈ R, 𝑎, 𝑏 ≥ 0, 𝑥, 𝑦 ∈ 𝐾 ⇒ 𝑎𝑥 + 𝑏𝑦 ∈ 𝐾;
(iii) 𝑥 ∈ 𝐾 and −𝑥 ∈ 𝐾 ⇒ 𝑥 = 𝜃.

On this basis, 𝑢 ∈ 𝐾 is denoted by 𝑢 ≥ 𝜃, while 𝑢 > 𝜃 means
that 𝑢 ∈ 𝐾 and 𝑢 ̸= 𝜃. Moreover, 𝐾 is called to be solid if
int(𝐾) ̸= 𝜙; that is,𝐾 has interior points. 𝑢 ≫ 𝜃means that 𝑢
is an interior point of𝐾.

In this paper, we set

𝑋 = {𝑢 : 𝑢 ∈ 𝑃𝐶1 [0, 1] , lim
𝑡→0+

𝑢󸀠 (𝑡)𝑡𝛼−1 exist} . (31)

Then𝑋 is a Banach space endowed with the norm

‖𝑢‖ = sup
𝑡∈[0,1]

|𝑢 (𝑡)| + sup
𝑡∈(0,1]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢󸀠 (𝑡)𝑡𝛼−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (32)

We set the cone

𝐾 fl {𝑢 ∈ 𝑋 : 𝑢 (𝑡) ≥ 0, 𝑢󸀠 (𝑡) ≤ 0 for 𝑡 ∈ [0, 1]} . (33)

Clearly 𝐾 is a solid cone in 𝑋. By the way, for any 𝑢 > 𝜃, it
is obvious that 𝑢(0) > 0 and 𝑢󸀠(0) = 0, which will be useful
lately in this paper.

Fourthly, we introduce two lemmas which are very
important in this paper.

Lemma 9 (see [17, Corollary 15.12]). We set

𝑆+ = {(𝜇, 𝑢) ∈ R × 𝑋 : (𝜇, 𝑢) is a solution of 𝑢
= 𝜇 (𝐿𝑢 + 𝑁𝑢) with 𝜇 > 0, 𝑢 > 𝜃} . (34)

If (H1) and (H2) are satisfied, then (𝑟(𝐿)−1, 𝜃) is a bifurcation
point of 𝑢 = 𝜇(𝐿𝑢 + 𝑁𝑢) and 𝑆+ contains an unbounded solu-
tion component 𝐶+(𝑟(𝐿)−1) which passes through (𝑟(𝐿)−1, 𝜃).

If additionally (H3) is satisfied, then (𝜇, 𝑢) ∈ 𝐶+(𝑟(𝐿)−1)
and 𝜇 ̸= 𝑟(𝐿)−1 always imply that 𝜇 > 0 and 𝑢 > 𝜃.

The conditions that Lemma 9 needs are stated as below.

(𝐻1) The operators 𝐿,𝑁 : 𝑋 → 𝑋 are compact on the real
Banach space𝑋. 𝐿+𝑁 is positive: that is, (𝐿+𝑁)𝑢 ≥ 𝜃
when 𝑢 ≥ 𝜃. 𝐿 is linear and ‖𝑁𝑢‖/‖𝑢‖ → 0 as ‖𝑢‖ →0. Moreover,𝑋 has an order cone𝐾 with𝑋 = 𝐾 −𝐾.

(𝐻2) The spectral radius 𝑟(𝐿) of 𝐿 is positive.
(𝐻3) 𝐿 is strongly positive: that is, 𝐿𝑢 ≫ 𝜃 for 𝑢 > 𝜃.

Lemma 10 (see [18, Theorem 19.3]). Let𝑋 be a Banach space
and let 𝐾 ⊂ 𝑋 be a solid cone. 𝐿 : 𝑋 → 𝑋 is linear, compact,
and strongly positive. Then we have the following:

(a) 𝑟(𝐿) > 0, 𝑟(𝐿) is a simple eigenvalue with an eigen-
vector ] ≫ 𝜃 and there is no other eigenvalue with posi-
tive eigenvector.

(b) For 𝑦 > 𝜃, 𝜆 ≤ 𝑟(𝐿), the equation 𝜆𝑢 − 𝐿𝑢 = 𝑦 has no
solution in 𝐾.

(c) Let 𝑆 : 𝑋 → 𝑋 be a linear operator. If 𝑆𝑥 − 𝐿𝑥 ≥ 𝜃 on𝐾, then 𝑟(𝑠) ≥ 𝑟(𝐿), while 𝑟(𝑠) > 𝑟(𝐿) if 𝑆𝑥 − 𝐿𝑥 ≫ 𝜃
for 𝑥 > 𝜃.

At last, we present here some conditions that we need in
this paper.

(𝐶1) At least one of the following two conditions is satis-
fied:

(1) 𝑘(𝑠) does not identically vanish on any subinter-
val of [0, 1].

(2) 𝑘(0) > 0.
(𝐶2) There exist 𝑎0, 𝑎∞ ∈ 𝐶([0, 1], [0, +∞)) and 𝑏0, 𝑏∞ ∈𝐶([0, 1], (−∞, 0]) such that

lim
𝑥,𝑦→0

𝑓 (𝑠, 𝑥, 𝑦) − 𝑎0 (𝑠) 𝑥 − 𝑏0 (𝑠) 𝑦|𝑥| + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 = 0,
lim

𝑥≥0,𝑦≤0;|𝑥|+|𝑦|→∞

𝑓 (𝑠, 𝑥, 𝑦) − 𝑎∞ (𝑠) 𝑥 − 𝑏∞ (𝑠) 𝑦
|𝑥| + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 = 0

(35)

for all 𝑠 ∈ [0, 1] uniformly. What is more, 𝑎𝑖(0) > 0,𝑖 = 0,∞.
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(𝐶3) There exists a function 𝜑 ∈ 𝐶([0, 1], [0, +∞)) such
that

𝑓 (𝑠, 𝑥, 𝑦) ≥ 𝜑 (𝑠) 𝑥 (36)

for all (𝑠, 𝑥, 𝑦) ∈ [0, 1]×[0, +∞)×(−∞, 0]. In addition,𝜑(0) > 0.

3. Property of 𝐻,𝐿0, 𝐿∞, (𝐼−𝐺)−1𝐿0
and (𝐼−𝐺)−1𝐿∞

In this paper, we set

(𝐻𝑢) (𝑡) = − 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) 𝑑𝑠 + 1Γ (𝛼) ∫

1

0
(1 − 𝑠)𝛼−1 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] ;

(𝐺𝑢) (𝑡) = {{{{{{{
−∫𝜉
0
𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠 − (1 − 𝜉) ∫𝜉

0
ℎ (𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫1

0
𝑘 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝜉] ;

− (1 − 𝑡) ∫𝜉
0
ℎ (𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫1

0
𝑘 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (𝜉, 1] ;

(𝐿0𝑢) (𝑡) = − 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 [𝑎0 (𝑠) 𝑢 (𝑠) + 𝑏0 (𝑠) 𝑢󸀠 (𝑠)] 𝑑𝑠 + 1Γ (𝛼) ∫

1

0
(1 − 𝑠)𝛼−1 [𝑎0 (𝑠) 𝑢 (𝑠) + 𝑏0 (𝑠) 𝑢󸀠 (𝑠)] 𝑑𝑠,

𝑡 ∈ [0, 1] ;
(𝐿∞𝑢) (𝑡) = − 1Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 [𝑎1 (𝑠) 𝑢 (𝑠) + 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)] 𝑑𝑠 + 1Γ (𝛼) ∫

1

0
(1 − 𝑠)𝛼−1 [𝑎∞ (𝑠) 𝑢 (𝑠) + 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)] 𝑑𝑠,

𝑡 ∈ [0, 1] .

(37)

Lemma 11. 𝐻 : 𝑋 → 𝑋 is positive and compact.

Proof. Firstly, we will prove that 𝐻𝑢 ∈ 𝑋 for all 𝑢 ∈ 𝑋. With
all the other properties of𝑋 easily verified, we only show here
that (𝐻𝑢)󸀠(𝑡)/𝑡𝛼−1 converges, while 𝑡 → 0+.

We know that

(𝐻𝑢)󸀠 (𝑡)
= − 1Γ (𝛼 − 1) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−2 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) 𝑑𝑠. (38)

So,

lim
𝑡→0+

(𝐻𝑢)󸀠 (𝑡)𝑡𝛼−1
= − 1Γ (𝛼 − 1) lim𝑡→0+

∫𝑡
0
(𝑡 − 𝑠)𝛼−2 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) 𝑑𝑠

𝑡𝛼−1
= − lim
𝑡→0+

𝑓 (𝜏, 𝑢 (𝜏) , 𝑢󸀠 (𝜏))
Γ (𝛼 − 1)

∫𝑡
0
(𝑡 − 𝑠)𝛼−2 𝑑𝑠

𝑡𝛼−1 ,
𝜏 ∈ [0, 𝑡]

= − lim
𝑡→0+

𝑓 (𝜏, 𝑢 (𝜏) , 𝑢󸀠 (𝜏))
Γ (𝛼) , 𝜏 ∈ [0, 𝑡]

= −𝑓 (0, 𝑢 (0) , 0)Γ (𝛼) .

(39)

Secondly, we show that𝐻 is positive.

In fact, for 𝑢 ≥ 𝜃, observing the expression of 𝐻𝑢, it is
easy to see that (𝐻𝑢)(𝑡) ≥ 0 and (𝐻𝑢)󸀠(𝑡) ≤ 0 for 𝑡 ∈ [0, 1].

Thirdly, we will prove that 𝐻 is compact. To this end, we
only need to show that {(𝐻𝑢)(𝑡) : 𝑢 ∈ 𝐷} and {(𝐻𝑢)󸀠(𝑡)/𝑡𝛼−1 :𝑢 ∈ 𝐷} are uniformly bounded and equicontinuous on (0, 1]
for any bounded subset of 𝑋 named 𝐷. We only prove the
later one since the proof of another one is easier.

Since 𝐷 is bounded, we can choose a constant number𝑀 > 0 such that ‖𝑢‖ ≤ 𝑀 for all 𝑢 ∈ 𝐷, which implies that|𝑢(𝑡)| ≤ 𝑀 and |𝑢󸀠(𝑡)/𝑡𝛼−1| ≤ 𝑀 and hence |𝑢󸀠(𝑡)| ≤ 𝑀. Then
there exists a constant number𝑀 such that 𝑓(𝑠, 𝑢(𝑠), 𝑢󸀠(𝑠)) ≤𝑀 for all 𝑠 ∈ [0, 1], 𝑢 ∈ 𝐷. So we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝐻𝑢)󸀠 (𝑡)𝑡𝛼−1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 1Γ (𝛼 − 1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0

(𝑡 − 𝑠)𝛼−2 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠))
𝑡𝛼−1 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑀Γ (𝛼 − 1) ∫

𝑡

0

(𝑡 − 𝑠)𝛼−2𝑡𝛼−1 𝑑𝑠 = 𝑀Γ (𝛼) ,
(40)

which means that {(𝐻𝑢)󸀠(𝑡)/𝑡𝛼−1 : 𝑢 ∈ 𝐷} is uniformly
bounded on (0, 1].

Next, we will prove that {(𝐻𝑢)󸀠(𝑡)/𝑡𝛼−1 : 𝑢 ∈ 𝐷} is
equicontinuous on (0, 1]. We know that󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝐻𝑢)󸀠 (𝑡1)𝑡𝛼−11 − (𝐻𝑢)󸀠 (𝑡2)𝑡𝛼−21
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 1Γ (𝛼 − 1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫𝑡1
0

(𝑡1 − 𝑠)𝛼−2 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) 𝑑𝑠
𝑡𝛼−11
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− ∫𝑡2
0

(𝑡2 − 𝑠)𝛼−2 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) 𝑑𝑠
𝑡𝛼−12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1Γ (𝛼 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
1

0
(1 − 𝑟)𝛼−2

⋅ 𝑓 (𝑡1𝑟, 𝑢 (𝑡1𝑟) , 𝑢󸀠 (𝑡1𝑟)) 𝑑𝑟 − ∫1
0
(1 − 𝑟)𝛼−2

⋅ 𝑓 (𝑡2𝑟, 𝑢 (𝑡2𝑟) , 𝑢󸀠 (𝑡2𝑟)) 𝑑𝑟
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤

1Γ (𝛼 − 1) ∫
1

0
(1

− 𝑟)𝛼−2 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑡1𝑟, 𝑢 (𝑡1𝑟) , 𝑢󸀠 (𝑡1𝑟))
− 𝑓 (𝑡2𝑟, 𝑢 (𝑡2𝑟) , 𝑢󸀠 (𝑡2𝑟))󵄨󵄨󵄨󵄨󵄨 𝑑𝑟;󵄨󵄨󵄨󵄨𝑡1𝑟 − 𝑡2𝑟󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨 ;󵄨󵄨󵄨󵄨𝑢 (𝑡1𝑟) − 𝑢 (𝑡2𝑟)󵄨󵄨󵄨󵄨 = 𝑢󸀠 (𝑡∗𝑟) 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨 𝑟 ≤ 𝑀 󵄨󵄨󵄨󵄨𝑡1 − 𝑡2󵄨󵄨󵄨󵄨 ,

𝑡∗ ∈ (𝑡1, 𝑡2) ;
󵄨󵄨󵄨󵄨󵄨𝑢󸀠 (𝑡1𝑟) − 𝑢󸀠 (𝑡2𝑟)󵄨󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑢󸀠 (𝑡1𝑟)(𝑡1𝑟)𝛼−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (𝑡1𝑟)
𝛼−1 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢󸀠 (𝑡2𝑟)(𝑡2𝑟)𝛼−1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋅ (𝑡2𝑟)𝛼−1 ≤ 𝑀(𝑡𝛼−11 + 𝑡𝛼−12 ) .
(41)

By the uniform continuity of 𝑓 on [0, 1] × [−𝑀,𝑀] ×[−𝑀,𝑀] and (41), we know that, for any 𝜀 > 0, there exists𝛿1 > 0 such that 𝑡1, 𝑡2 ∈ (0, 𝛿1] implies

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝐻𝑢)󸀠 (𝑡1)𝑡𝛼−11 − (𝐻𝑢)󸀠 (𝑡2)𝑡𝛼−21

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀. (42)

Moreover, when 𝛿1/2 ≤ 𝑡1 < 𝑡2 ≤ 1, we have that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝐻𝑢)󸀠 (𝑡2)𝑡𝛼−12 − (𝐻𝑢)󸀠 (𝑡1)𝑡𝛼−11

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1Γ (𝛼 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫𝑡2
0

(𝑡2 − 𝑠)𝛼−2 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) 𝑑𝑠
𝑡𝛼−12

− ∫𝑡1
0

(𝑡1 − 𝑠)𝛼−2 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) 𝑑𝑠
𝑡𝛼−11

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 1Γ (𝛼 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫𝑡2
𝑡1

(𝑡2 − 𝑠)𝛼−2 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) 𝑑𝑠
𝑡𝛼−12

+ ∫𝑡1
0

[(𝑡2 − 𝑠)𝛼−2
𝑡𝛼−12 − (𝑡1 − 𝑠)𝛼−2

𝑡𝛼−11 ]

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀Γ (𝛼 − 1) [[
∫𝑡2
𝑡1

(𝑡2 − 𝑠)𝛼−2 𝑑𝑠
𝑡𝛼−12

+ ∫𝑡1
0

((𝑡1 − 𝑠)𝛼−2
𝑡𝛼−11 − (𝑡2 − 𝑠)𝛼−2

𝑡𝛼−12 )𝑑𝑠]
]

= 2𝑀(𝑡2 − 𝑡1)𝛼−1Γ (𝛼) 𝑡𝛼−12 ≤ 2𝛼𝑀Γ (𝛼) 𝛿𝛼−11 (𝑡2 − 𝑡1)𝛼−1 .
(43)

So

󵄨󵄨󵄨󵄨𝑡2 − 𝑡1󵄨󵄨󵄨󵄨 < [Γ (𝛼) 𝛿𝛼−11 𝜀
2𝛼𝑀 ]1/(𝛼−1)

will lead to
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝐻𝑢)󸀠 (𝑡2)𝑡𝛼−12 − (𝐻𝑢)󸀠 (𝑡1)𝑡𝛼−11

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 𝜀,
𝑡1, 𝑡2 ∈ [𝛿12 , 1] .

(44)

We set 𝛿 = min{𝛿1/2, [Γ(𝛼)𝛿𝛼−11 𝜀/2𝛼𝑀]1/(𝛼−1)}; by (42)
and (44), we know that |(𝐻𝑢)󸀠(𝑡2)/𝑡𝛼−12 − (𝐻𝑢)󸀠(𝑡1)/𝑡𝛼−11 | ≤ 𝜀
for all 𝑢 ∈ 𝐷 and 𝑡1, 𝑡2 ∈ (0, 1] satisfy |𝑡2 − 𝑡1| < 𝛿.
Lemma 12. 𝐿0, 𝐿∞ : 𝑋 → 𝑋 are linear, compact, and posi-
tive.

Proof. Similar to Lemma 11, we can verify that 𝐿0, 𝐿∞ : 𝑋 →𝑋 are compact and positive. Moreover, they are obviously
linear operators.

Lemma 13. If (C1) holds and ‖𝐺‖ < 1, then (𝐼 − 𝐺)−1𝐿0 and(𝐼 − 𝐺)−1𝐿∞ are linear, compact, and strongly positive.

Proof. It is obvious that 𝐺 : 𝑋 → 𝑋 is a positive linear
operator. So if ‖𝐺‖ < 1, 𝐼 − 𝐺 will have a positive linear
bounded inverse operator:

(𝐼 − 𝐺)−1 = 𝐼 + 𝐺 + 𝐺2 + ⋅ ⋅ ⋅ . (45)

Since 𝐿0 and 𝐿∞ are compact, we know that (𝐼 − 𝐺)−1𝐿0 and(𝐼 −𝐺)−1𝐿∞ are compact. In the next, we will only prove that(𝐼−𝐺)−1𝐿0 is strongly positive since the proof for another one
is similar.

For any given 𝑥 ∈ 𝑋, 𝑥 > 𝜃, if we set
𝑦 = (𝐼 − 𝐺)−1 𝐿0𝑥, (46)

we will know that 𝑦 ≥ 𝐿0𝑥 > 𝜃 (noticing the expression of𝐿0, we can see that 𝐿0 will turn any positive element of 𝑋 to
be a positive element of𝑋). By (46), we know that

(𝐼 − 𝐺) 𝑦 = 𝐿0𝑥 (47)

and hence

𝑦 = 𝐺𝑦 + 𝐿0𝑥. (48)
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Since 𝑦 > 𝜃, we know that 𝑦󸀠(𝑡) ≤ 0 for 0 ∈ [0, 1], so by (𝐶1)
and (48), we will know that

𝑦 (𝑡) ≥ 𝑦 (1) = (𝐺𝑦) (1) + (𝐿0𝑥) (1)
= ∫1
0
𝑘 (𝑠) 𝑦 (𝑠) 𝑑𝑠 > 0. (49)

On the other hand, for 𝑡 ∈ (0, 1], by (𝐶2) and 𝑢(0) > 0, we
will know that

𝑦󸀠 (𝑡) = (𝐺𝑦)󸀠 (𝑡) + (𝐿0𝑥)󸀠 (𝑡) ≤ (𝐿0𝑥)󸀠 (𝑡)
= − 1Γ (𝛼 − 1)
⋅ ∫𝑡
0
(𝑡 − 𝑠)𝛼−2 [𝑎0 (𝑠) 𝑢 (𝑠) + 𝑏0 (𝑠) 𝑢󸀠 (𝑠)] 𝑑𝑠

≤ − 1Γ (𝛼 − 1) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−2 𝑎0 (𝑠) 𝑢 (𝑠) 𝑑𝑠 < 0.

(50)

What is more, similar to (39), we have

lim
𝑡→0+

𝑦󸀠 (𝑡)𝑡𝛼−1 = − 1Γ (𝛼 − 1) lim𝑡→0+ 1𝑡𝛼−1
⋅ ∫𝑡
0
(𝑡 − 𝑠)𝛼−2 [𝑎0 (𝑠) 𝑢 (𝑠) + 𝑏0 (𝑠) 𝑢󸀠 (𝑠)] 𝑑𝑠

= −𝑎0 (0) 𝑢 (0)Γ (𝛼) < 0.
(51)

By (50) and (51) and the piecewise continuity of 𝑦󸀠(𝑡) on[0, 1], we know that theremust exist a positive number 𝜏 such
that

sup
𝑡∈(0,1]

𝑦󸀠 (𝑡)𝑡𝛼−1 < −𝜏. (52)

Equations (49) and (52) exactly mean that 𝑦 ≫ 𝜃.
4. Main Results and the Proof

Theorem 14. Suppose that (C1)–(C3) hold and ‖𝐺‖ < 1; then
there must exist at least one positive solution of (2) if 1/𝑟((𝐼 −𝐺)−1𝐿∞) < 𝑎 < 1/𝑟((𝐼 − 𝐺)−1𝐿0) or 1/𝑟((𝐼 − 𝐺)−1𝐿∞) > 𝑎 >1/𝑟((𝐼 − 𝐺)−1𝐿0).
Proof. The proof is divided into three parts.

In Part 1, we consider the auxiliary equation (see (53))
whose solutions of the kind 𝜇 = 1 will be the solutions of
(2) and we transform it into a functional operator equation
(see (57)).

InPart 2, wewill verify that (𝐼−𝐺)−1𝐿0, (𝐼−𝐺)−1𝑁0 satisfy
all the conditions required to apply Lemmas 9 and 10, where𝑁0 will be defined in Part 1.

In Part 3, we apply Lemmas 9 and 10 to get the existence
of at least one positive solution of (2).

Part 1. We consider the following problem.

𝑐𝐷𝛼0+𝑢 (𝑡) + 𝜇𝑎𝑓 (𝑡, 𝑢 (𝑡) , 𝑢󸀠 (𝑡)) = 0, 𝑡 ∈ (0, 1) ,
𝑢󸀠 (0) = 0,
𝑢 (1) = ∫1

0
𝑘 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

Δ𝑢 (𝜉) = ∫𝜉
0
𝑔 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

Δ𝑢󸀠 (𝜉) = ∫𝜉
0
ℎ (𝑡) 𝑢 (𝑡) 𝑑𝑡.

(53)

We call (𝜇, 𝑢) ∈ R×𝑋 to be a solution of (53) if it satisfies
(53). It is clear that any solution of (53) of the form (1, 𝑢) yields
a solution 𝑢 of (2).

Due to Lemma 7, (𝜇, 𝑢) ∈ R × 𝑋 is a solution of (53) if
and only if

𝑢 = 𝜇𝑎𝐻𝑢 + 𝐺𝑢; (54)

that is,

𝑢 = 𝜇𝑎 (𝐼 − 𝐺)−1𝐻𝑢. (55)

If we set

𝑁0𝑢 = 𝐻𝑢 − 𝐿0𝑢, (56)

then 𝑢 is a solution of (53) if and only if

𝑢 = 𝜇𝑎 [(𝐼 − 𝐺)−1 𝐿0𝑢 + (𝐼 − 𝐺)−1𝑁0𝑢] . (57)

Part 2. By Lemmas 11–13, we have confirmed that (𝐼 −𝐺)−1𝐻, (𝐼 − 𝐺)−1𝐿0, (𝐼 − 𝐺)−1𝑁0 are compact, (𝐼 − 𝐺)−1𝐻
is positive, and (𝐼 − 𝐺)−1𝐿0 is strongly positive. Now we only
need to verify that

lim
‖𝑢‖→0

󵄩󵄩󵄩󵄩󵄩(𝐼 − 𝐺)−1𝑁0𝑢󵄩󵄩󵄩󵄩󵄩‖𝑢‖ = 0. (58)

∀𝜀 > 0, by (𝐶2), there must exist a number 𝛿 > 0 such that|𝑥| < 𝛿 and |𝑦| < 𝛿 imply

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑠, 𝑥, 𝑦) − 𝑎0 (𝑠) 𝑥 − 𝑏0 (𝑠) 𝑦|𝑥| + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 <
Γ (𝛼 + 1)2 𝜀. (59)

Then, if ‖𝑢‖ < 𝛿, there will be

󵄨󵄨󵄨󵄨(𝑁0𝑢) (𝑡)󵄨󵄨󵄨󵄨‖𝑢‖ =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−

1Γ (𝛼) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−1 [𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎0 (𝑠) 𝑢 (𝑠) − 𝑏0 (𝑠) 𝑢󸀠 (𝑠)]‖𝑢‖ 𝑑𝑠
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+ 1Γ (𝛼) ∫
1

0

(1 − 𝑠)𝛼−1 [𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎0 (𝑠) 𝑢 (𝑠) − 𝑏0 (𝑠) 𝑢󸀠 (𝑠)]‖𝑢‖ 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤

1Γ (𝛼)
⋅ ∫𝑡
0
(𝑡 − 𝑠)𝛼−1

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎0 (𝑠) 𝑢 (𝑠) − 𝑏0 (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨‖𝑢‖ 𝑑𝑠 + 1Γ (𝛼)
⋅ ∫1
0
(1 − 𝑠)𝛼−1

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎0 (𝑠) 𝑢 (𝑠) − 𝑏0 (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨‖𝑢‖ 𝑑𝑠 ≤ 1Γ (𝛼)
⋅ ∫𝑡
0
(𝑡 − 𝑠)𝛼−1

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎0 (𝑠) 𝑢 (𝑠) − 𝑏0 (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨|𝑢 (𝑠)| + 󵄨󵄨󵄨󵄨𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 + 1Γ (𝛼)
⋅ ∫1
0
(1 − 𝑠)𝛼−1

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎0 (𝑠) 𝑢 (𝑠) − 𝑏0 (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨|𝑢 (𝑠)| + 󵄨󵄨󵄨󵄨𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 ≤ 𝛼𝜀2 ∫𝑡
0
(𝑡 − 𝑠)𝛼−1 𝑑𝑠 + 𝛼𝜀2 ∫1

0
(1 − 𝑠)𝛼−1 𝑑𝑠 = 𝜀𝑡𝛼2

+ 𝜀2 ≤ 𝜀.
(60)

Moreover, we know that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝑁0𝑢)󸀠 (𝑡)𝑡𝛼−1 ‖𝑢‖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
1Γ (𝛼 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫
𝑡

0

(𝑡 − 𝑠)𝛼−2 [𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎0 (𝑠) 𝑢 (𝑠) − 𝑏0 (𝑠) 𝑢󸀠 (𝑠)]𝑡𝛼−1 ‖𝑢‖ 𝑑𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1Γ (𝛼 − 1) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−2 󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎0 (𝑠) 𝑢 (𝑠) − 𝑏0 (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑡𝛼−1 ‖𝑢‖ 𝑑𝑠

≤ 1Γ (𝛼 − 1) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−2𝑡𝛼−1
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎0 (𝑠) 𝑢 (𝑠) − 𝑏0 (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨|𝑢 (𝑠)| + 󵄨󵄨󵄨󵄨𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 1Γ (𝛼 − 1) Γ (𝛼 + 1)2 𝜀 ∫𝑡
0

(𝑡 − 𝑠)𝛼−2𝑡𝛼−1 𝑑𝑠 = 1Γ (𝛼 − 1) Γ (𝛼 + 1)2 𝜀 1𝛼 − 1 = 𝛼𝜀2 ≤ 𝜀.

(61)

By (60) and (61), we will know that

lim
‖𝑢‖→0

󵄩󵄩󵄩󵄩𝑁0𝑢󵄩󵄩󵄩󵄩‖𝑢‖ = 0. (62)

Equation (62) together with the boundedness of (𝐼−𝐺)−1 will
lead to

lim
‖𝑢‖→0

󵄩󵄩󵄩󵄩󵄩(𝐼 − 𝐺)−1𝑁0𝑢󵄩󵄩󵄩󵄩󵄩‖𝑢‖ 󳨀→ 0. (63)

Part 3. Applying Lemmas 9 and 10, we can draw a conclusion
as below.

For (57), from (1/𝑎𝑟((𝐼 − 𝐺)−1𝐿0), 𝜃) there emanates an
unbounded continua of positive solutions 𝐶+ ⊂ 𝐷+, where

𝐷+ = {(𝜇, 𝑢) ∈ R × 𝑋 : 𝑢 = 𝜇𝑎 (𝐼 − 𝐺)−1𝐻𝑢 with 𝜇
> 0, 𝑢 > 𝜃} . (64)

Furthermore, (𝜇, 𝑢) ∈ 𝐶+ and 𝜇 ̸= 1/𝑎𝑟((𝐼 − 𝐺)−1𝐿0) always
imply that 𝑢 > 𝜃.

To verify the existence of at least one positive solution of
(2), we only need to show that𝐶+ crosses the hyperplane {1}×𝑋 inR×𝑋. To this end, it will be enough to show that𝐶+ joins(1/𝑎𝑟((𝐼 − 𝐺)−1𝐿0), 𝜃) to (1/𝑎𝑟((𝐼 − 𝐺)−1𝐿∞), +∞).

Suppose that (𝜇𝑛, 𝑢𝑛) ∈ 𝐶+ satisfy 𝜇𝑛 + ‖𝑢𝑛‖ → ∞. To
begin with, we will show that {𝜇𝑛} is bounded. Defining 𝐿𝜑 as
(𝐿𝜑𝑢) (𝑡) = − 1Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 𝜑 (𝑠) 𝑢 (𝑠) 𝑑𝑠

+ 1Γ (𝛼) ∫
1

0
(1 − 𝑠)𝛼−1 𝜑 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

𝑡 ∈ [0, 1] ,
(65)

similar to Lemma 13, we can verify that (𝐼 − 𝐺)−1𝐿𝜑 :𝐾 → 𝐾 is linear, compact, and strongly positive. Then,
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due to Lemma 10(b), we see that there is a contradiction for
sufficiently large 𝑛 in the following inequality:

𝑢𝑛 = 𝜇𝑛𝑎 (𝐼 − 𝐺)−1𝐻𝑢𝑛 ≥ 𝜇𝑛𝑎 (𝐼 − 𝐺)−1 𝐿𝜑𝑢𝑛. (66)

Then, {𝜇𝑛} is bounded and hence lim𝑛→∞‖𝑢𝑛‖ → ∞.
We choose a subsequence of {𝜇𝑛} converging to 𝜇∗.

Without loss of generality, we relabel the subsequence to be{𝜇𝑛} just for convenience.
Now we set

𝑁∞𝑢 = 𝐻𝑢 − 𝐿∞𝑢; (67)

then

V𝑛 = 𝑢𝑛󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩
= 𝜇𝑛𝑎 (𝐼 − 𝐺)−1 𝐿∞𝑢𝑛󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 + 𝜇𝑛𝑎 (𝐼 − 𝐺)−1𝑁∞𝑢𝑛󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩
= 𝜇𝑛𝑎 (𝐼 − 𝐺)−1 𝐿∞V𝑛 + 𝜇𝑛𝑎(𝐼 − 𝐺)−1𝑁∞𝑢𝑛󵄩󵄩󵄩󵄩𝑢𝑛󵄩󵄩󵄩󵄩 .

(68)

Since (𝐼 − 𝐺)−1𝐿∞ is compact, we can find a subsequence of{(𝐼 − 𝐺)−1𝐿∞V𝑛} named {(𝐼 − 𝐺)−1𝐿∞V𝑛𝑘} converging to V0 ∈𝑋.Moreover, we know that

lim
𝑢∈𝐾,‖𝑢‖→∞

(𝐼 − 𝐺)−1𝑁∞𝑢‖𝑢‖ = 𝜃
(see the proof in the appendix) ,

(69)

so
lim
𝑘→∞

V𝑛𝑘 = 𝜇∗𝑎V0 fl V∗. (70)

It is obvious that V∗ > 𝜃 and ‖V∗‖ = 1. Let 𝑘 → ∞ in V𝑛𝑘 =𝜇𝑛𝑘𝑎(𝐼 − 𝐺)−1𝐿∞V𝑛𝑘 + 𝜇𝑛𝑘𝑎((𝐼 − 𝐺)−1𝑁∞𝑢𝑛𝑘/‖𝑢𝑛𝑘‖); we know
that

V∗ = 𝜇∗𝑎 (𝐼 − 𝐺)−1 𝐿∞V∗. (71)

Since (𝐼 − 𝐺)−1𝐿∞ : 𝑋 → 𝑋 is linear, compact, and
strongly positive, by Lemma 10 and (71) we know that

𝜇∗ = 1
𝑎𝑟 ((𝐼 − 𝐺)−1 𝐿∞) , (72)

which implies that𝐶+ joins (1/𝑎𝑟((𝐼−𝐺)−1𝐿0), 𝜃) to (1/𝑎𝑟((𝐼−𝐺)−1𝐿∞), +∞).
As a corollary of Theorem 14, we have the following

conclusion.

Theorem 15. Suppose that (C1)–(C3) hold. If

−∫𝜉
0
𝑔 (𝑠) 𝑑𝑠 − (1 − 𝜉) ∫𝜉

0
ℎ (𝑠) 𝑑𝑠 + ∫1

0
𝑘 (𝑠) 𝑑𝑠 < 1,

−∫𝜉
0
ℎ (𝑠) 𝑑𝑠 < 𝜉𝛼−1,

(73)

then there must exist at least one positive solution of (2) when1/𝑟((𝐼 − 𝐺)−1𝐿∞) < 𝑎 < 1/𝑟((𝐼 − 𝐺)−1𝐿0) or 1/𝑟((𝐼 −𝐺)−1𝐿∞) > 𝑎 > 1/𝑟((𝐼 − 𝐺)−1𝐿0).

Proof. With all the other conditions of Theorem 14 satisfied,
we only need to verify that ‖𝐺‖ < 1. For any 𝑢 ∈ 𝑋 and 𝑡 ∈[0, 𝜉], we have

|(𝐺𝑢) (𝑡)| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨− ∫𝜉
0
𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑠

− (1 − 𝜉) ∫𝜉
0
ℎ (𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫1

0
𝑘 (𝑠) 𝑢 (𝑠) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ −∫𝜉
0
𝑔 (𝑠) |𝑢 (𝑠)| 𝑑𝑠 − (1 − 𝜉) ∫𝜉

0
ℎ (𝑠) |𝑢 (𝑠)| 𝑑𝑠

+ ∫1
0
𝑘 (𝑠) |𝑢 (𝑠)| 𝑑𝑠 ≤ [−∫𝜉

0
𝑔 (𝑠) 𝑑𝑠

− (1 − 𝜉) ∫𝜉
0
ℎ (𝑠) 𝑑𝑠 + ∫1

0
𝑘 (𝑠) 𝑑𝑠] ‖𝑢‖ .

(74)

For any 𝑢 ∈ 𝑋 and 𝑡 ∈ (𝜉, 1], we have
|(𝐺𝑢) (𝑡)|

= 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨− (1 − 𝑡) ∫𝜉
0
ℎ (𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫1

0
𝑘 (𝑠) 𝑢 (𝑠) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ − (1 − 𝜉) ∫𝜉
0
ℎ (𝑠) |𝑢 (𝑠)| 𝑑𝑠 + ∫1

0
𝑘 (𝑠) |𝑢 (𝑠)| 𝑑𝑠

≤ [− (1 − 𝜉) ∫𝜉
0
ℎ (𝑠) 𝑑𝑠 + ∫1

0
𝑘 (𝑠) 𝑑𝑠] ‖𝑢‖ .

(75)

For any 𝑢 ∈ 𝑋 and 𝑡 ∈ [0, 𝜉], we have
(𝐺𝑢)󸀠 (𝑡) = 0. (76)

For any 𝑢 ∈ 𝑋 and 𝑡 ∈ (𝜉, 1], we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝐺𝑢)󸀠 (𝑡)𝑡𝛼−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫𝜉
0
ℎ (𝑠) 𝑢 (𝑠) 𝑑𝑠

𝑡𝛼−1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ −∫𝜉

0
ℎ (𝑠) |𝑢 (𝑠)| 𝑑𝑠

𝑡𝛼−1

< −∫𝜉
0
ℎ (𝑠) 𝑑𝑠
𝜉𝛼−1 ‖𝑢‖ .

(77)

By (74)–(77), we know that ‖𝐺‖ < 1.
5. Example

Example 1. Consider the following problem.

𝑐𝐷3/20+ 𝑢 (𝑡) + 𝑎 [2𝑢 (𝑡) + 𝑒𝑢󸀠(𝑡) sin 𝑢 (𝑡) − 𝑢󸀠 (𝑡)] = 0,
𝑡 ∈ [0, 1] ,



10 Advances in Mathematical Physics

𝑢󸀠 (0) = 0,
𝑢 (1) = ∫1

0
(1 − 𝑡) 𝑢 (𝑡) 𝑑𝑡,

Δ𝑢 (12) = −∫1/2
0

𝑡2𝑢 (𝑡) 𝑑𝑡,

Δ𝑢󸀠 (12) = −∫1/2
0

𝑡𝑢 (𝑡) 𝑑𝑡.
(𝐸1)

If we set

(𝐿0𝑢) (𝑡) = − 1Γ (3/2) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 [3𝑢 (𝑠) − 𝑢󸀠 (𝑠)] 𝑑𝑠 + 1Γ (3/2) ∫

1

0
(1 − 𝑠)𝛼−1 [3𝑢 (𝑠) − 𝑢󸀠 (𝑠)] 𝑑𝑠;

(𝐿∞𝑢) (𝑡) = − 1Γ (3/2) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 [2𝑢 (𝑠) − 𝑢󸀠 (𝑠)] 𝑑𝑠 + 1Γ (3/2) ∫

1

0
(1 − 𝑠)𝛼−1 [2𝑢 (𝑠) − 𝑢󸀠 (𝑠)] 𝑑𝑠;

(𝐺𝑢) (𝑡) = {{{{{{{
∫1/2
0

𝑠2𝑢 (𝑠) 𝑑𝑠 + 12 ∫1/2
0

𝑠𝑢 (𝑠) 𝑑𝑠 + ∫1
0
(1 − 𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 12] ;

(1 − 𝑡) ∫1/2
0

𝑠𝑢 (𝑠) 𝑑𝑠 + ∫1
0
(1 − 𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ (12 , 1]

(78)

then there must be at least one positive solution of (𝐸1) when1/𝑟((𝐼−𝐺)−1𝐿∞) > 𝑎 > 1/𝑟(𝐼−𝐺)−1(𝐿0). (We can verify that𝑟((𝐼 − 𝐺)−1𝐿0) ≥ 𝑟((𝐼 − 𝐺)−1𝐿∞) by Lemma 10.)

Proof. Let 𝛼 = 3/2, 𝜉 = 1/2, 𝑓(𝑠, 𝑥, 𝑦) = 2𝑥 + 𝑒𝑦 sin 𝑥 − 𝑦,𝑔(𝑠) = −𝑠2, ℎ(𝑠) = −𝑠, 𝑘(𝑠) = 1 − 𝑠; then (𝐸1) turns to
be (2). Now we set 𝑎0(𝑠) ≡ 3, 𝑏0(𝑠) ≡ −1, 𝑎∞(𝑠) ≡ 2,𝑏∞(𝑠) ≡ −1, 𝜑(𝑠) ≡ 1. We can verify that (𝐶1)–(𝐶3) hold.
Then by Theorem 15 we know that there must be at least one
positive solution of (𝐸1) when 1/𝑟((𝐼 − 𝐺)−1𝐿∞) > 𝑎 >1/𝑟(𝐼 − 𝐺)−1(𝐿0).

Appendix

At the very first, we recall that

(𝑁∞𝑢) (𝑡) = − 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 [𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠))

− 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)] 𝑑𝑠 + 1Γ (𝛼)

⋅ ∫1
0
(1 − 𝑠)𝛼−1 [𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠)

− 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)] 𝑑𝑠,
(𝑁∞𝑢)󸀠 (𝑡) = − 1Γ (𝛼 − 1) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−2

⋅ [𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠)
− 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)] 𝑑𝑠.

(A.1)

For any 𝜀 > 0 and 𝑢 ∈ 𝐾, since

lim
𝑥≥0,𝑦≤0;|𝑥|+|𝑦|→∞

𝑓 (𝑠, 𝑥, 𝑦) − 𝑎∞ (𝑠) 𝑥 − 𝑏∞ (𝑠) 𝑦
|𝑥| + 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 = 0 (A.2)

for all 𝑠 ∈ [0, 1] uniformly, similar to (60)-(61) we can find
sufficiently large number𝑀1 such that

1Γ (𝛼) ∫𝐼𝑢∩[0,𝑡] (𝑡 − 𝑠)𝛼−1
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨|𝑢 (𝑠)| + 󵄨󵄨󵄨󵄨𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

+ 1Γ (𝛼) ∫𝐼𝑢∩[0,1] (1 − 𝑠)𝛼−1
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨|𝑢 (𝑠)| + 󵄨󵄨󵄨󵄨𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 ≤ 𝜀2 ,

(A.3)

1Γ (𝛼 − 1) ∫𝐼𝑢∩[0,𝑡]
(𝑡 − 𝑠)𝛼−2𝑡𝛼−1

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨|𝑢 (𝑠)| + 󵄨󵄨󵄨󵄨𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠 ≤ 𝜀2 , (A.4)

where

𝐼𝑢 = {0 ≤ 𝑠 ≤ 1 : |𝑢 (𝑠)| + 󵄨󵄨󵄨󵄨󵄨𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 > 𝑀1} . (A.5)

What ismore, because𝑓(𝑠, 𝑥, 𝑦)−𝑎∞(𝑠)𝑥−𝑏∞(𝑠)𝑦 is bounded
on {(𝑠, 𝑥, 𝑦) : 𝑠 ∈ [0, 1], |𝑥| + |𝑦| ≤ 𝑀1}, we can find
sufficiently large𝑀2 such that
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1Γ (𝛼) ∫𝐽𝑢∩[0,𝑡] (𝑡 − 𝑠)𝛼−1
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑀2 𝑑𝑠

+ 1Γ (𝛼) ∫𝐽𝑢∩[0,1] (1 − 𝑠)𝛼−1
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑀2 𝑑𝑠 ≤ 𝜀2 ,

(A.6)

1Γ (𝛼 − 1) ∫𝐽𝑢∩[0,𝑡]
(𝑡 − 𝑠)𝛼−2𝑡𝛼−1

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑀2 𝑑𝑠 ≤ 𝜀2 , (A.7)

where

𝐽𝑢 = {0 ≤ 𝑠 ≤ 1 : |𝑢 (𝑠)| + 󵄨󵄨󵄨󵄨󵄨𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨 ≤ 𝑀1} . (A.8)

So, by (A.3) and (A.6), we know that, for 𝑢 ∈ 𝐾 with ‖𝑢‖ ≥𝑀2, there must be

󵄨󵄨󵄨󵄨[𝑁∞ (𝑢)] (𝑡)󵄨󵄨󵄨󵄨‖𝑢‖ ≤ 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1

⋅
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨‖𝑢‖ 𝑑𝑠

+ 1Γ (𝛼) ∫
1

0
(1 − 𝑠)𝛼−1

⋅
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨‖𝑢‖ 𝑑𝑠

= 1Γ (𝛼) ∫𝐼𝑢∩[0,𝑡] (𝑡 − 𝑠)𝛼−1

⋅
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨‖𝑢‖ 𝑑𝑠

+ 1Γ (𝛼) ∫𝐼𝑢∩[0,1] (1 − 𝑠)𝛼−1

⋅
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨‖𝑢‖ 𝑑𝑠

+ 1Γ (𝛼) ∫𝐽𝑢∩[0,𝑡] (𝑡 − 𝑠)𝛼−1

⋅
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨‖𝑢‖ 𝑑𝑠

+ 1Γ (𝛼) ∫𝐽𝑢∩[0,1] (1 − 𝑠)𝛼−1

⋅
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨‖𝑢‖ 𝑑𝑠

≤ 1Γ (𝛼) ∫𝐼𝑢∩[0,𝑡] (𝑡 − 𝑠)𝛼−1

⋅
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨|𝑢 (𝑠)| + 󵄨󵄨󵄨󵄨𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨 𝑑s

+ 1Γ (𝛼) ∫𝐼𝑢∩[0,1] (1 − 𝑠)𝛼−1

⋅
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨|𝑢 (𝑠)| + 󵄨󵄨󵄨󵄨𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

+ 1Γ (𝛼) ∫𝐽𝑢∩[0,𝑡] (𝑡 − 𝑠)𝛼−1

⋅
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑀2 𝑑𝑠

+ 1Γ (𝛼) ∫𝐽𝑢∩[0,1] (1 − 𝑠)𝛼−1

⋅
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑀2 𝑑𝑠

≤ 𝜀.
(A.9)

On the other hand, by (A.4) and (A.7), we know that, for 𝑢 ∈𝐾 with ‖𝑢‖ ≥ 𝑀2, there must be

󵄨󵄨󵄨󵄨󵄨[𝑁∞ (𝑢)]󸀠 (𝑡)󵄨󵄨󵄨󵄨󵄨𝑡𝛼−1 ‖𝑢‖ ≤ 1Γ (𝛼 − 1) ∫
𝑡

0

(𝑡 − 𝑠)𝛼−2𝑡𝛼−1
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨‖𝑢‖ 𝑑𝑠

≤ 1Γ (𝛼 − 1) ∫𝐼𝑢∩[0,𝑡]
(𝑡 − 𝑠)𝛼−2𝑡𝛼−1

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨|𝑢 (𝑠)| + 󵄨󵄨󵄨󵄨𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨 𝑑𝑠

+ 1Γ (𝛼 − 1) ∫𝐽𝑢∩[0,𝑡]
(𝑡 − 𝑠)𝛼−2𝑡𝛼−1

󵄨󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠) , 𝑢󸀠 (𝑠)) − 𝑎∞ (𝑠) 𝑢 (𝑠) − 𝑏∞ (𝑠) 𝑢󸀠 (𝑠)󵄨󵄨󵄨󵄨󵄨𝑀2 𝑑𝑠 ≤ 𝜀.

(A.10)
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By (A.9) and (A.10), we know that

lim
𝑢∈𝐾,‖𝑢‖→∞

𝑁∞𝑢‖𝑢‖ = 𝜃. (A.11)

Equation (A.11) together with the boundedness of (𝐼 − 𝐺)−1
will lead to

lim
𝑢∈𝐾,‖𝑢‖→∞

(𝐼 − 𝐺)−1𝑁∞𝑢‖𝑢‖ = 𝜃. (A.12)
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