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The goal of this investigation is to study the three layered (core layer, intermediate layer, and peripheral layer) tubular flow of
power law fluids with variable viscosity by peristalsis in order to investigate the strength of the role played by an artificially
generated intermediate layer to ease constipation.The solution is carried out under the long wavelength and low Reynolds number
approximations in the wave frame of reference as the flow is creeping one. The stream functions for each layer such as core layer,
intermediate layer, and peripheral layer are determined.The expressions for axial pressure gradient, interfaces, trapping, and reflux
limits are obtained. The effects of power law index and viscosities on pressure across one wavelength, mechanical efficiency, and
trapping are discussed numerically. It is found that the pressure required to restrain flow rates and themechanical efficiency increase
with the viscosities of the intermediate and peripheral layers as well as with the flow behaviour index. It is observed that the
axisymmetric flow in intestines is less prone to constipation than two-dimensional flow and may be more easily overcome with
introducing a viscous intermediate layer.

1. Introduction

Chyme is a semidigested food mixed with intestinal secrants
and is generally non-Newtonian in nature. Its inherent
physical behavior is very close to the concept of power-law
fluids. A viscous mucuos layer is present as a peripheral layer
in the small intestine that acts as a lubricant to safeguard
the inner surface of the intestine from the rough contents of
the chyme passing through it and secretes enzymes to help
digestion. The flow of chyme in intestines is due to peristalsis
which is a series of rhythmic muscular contractions of the
intestinal wall. This is coordinated in such a way that waves
appear to start at the point of commencement of oesophagus
at the neck and propagate up to the end to culminate after
pushing the contents into the stomach through the cardiac
sphincter. Further, the flow inside an intestine may be two-
dimensional or axisymmetric depending on the state of the
content.

In view of huge applications of peristaltic steady and
unsteady flow of Newtonian and non-Newtonian fluids,

many theoretical studies have been reported in literature
time to time. Ng and Ma [1] introduced the Lagrangian
approach for peristaltic pumping. Takagi and Balmforth [2,
3] discussed the peristaltic pumping with rigid object and
viscous fluids in elastic tube. Dudchenko and Guria [4]
studied the self-sustained peristaltic waves. Though these
recently published articles are significant contributions in the
area of peristalsis, none of them are directly applicable to
intestinal flow.Thus, it looks better to concentrate on themost
relevant papers.

Brasseur et al. [5] developed two layers peristaltic flow
models and studied the effect of peripheral layer viscosity
on peristaltic transport through a channel and presented a
modified result that a more viscous peripheral layer improves
pumping performance while a less viscous peripheral layer
degrades the pumping performance. Later on, Rao and Usha
[6] extended the previous analytical investigation [5] for a
cylindrical flow that yielded similar results.Misra and Pandey
[7, 8] investigated peristaltic transport of a non-Newtonian
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fluid modeled as power-law fluid through a channel as well
as a tube in the presence of a peripheral layer and pointed out
that flow is enhanced with the peripheral layer viscosity as
well as the flow behavior index. They [9] further investigated
the peripheral layer effect on a core layer of Casson fluid
modelled for blood flow in a channel as well as a tube. Apart
from several other results, they concluded that the peripheral
layer viscosity favours pumping performance whether the
core layer is a power-law fluid or a Casson fluid. Recently,
a more general analysis of peristaltic transport with three
layers of different viscosities, namely, core, intermediate, and
peripheral layers, has been presented by Elshehawey and
Gharsseldien [10]. They modeled embryo transfer (the final
step of IVF) considering the fluid close to it as the core layer,
the culture fluid as intermediate layer, and the intrauterine
fluid as peripheral layer. However, this concept of three
layers appears appropriate for investigating the role of an
artificially generated intermediate layer through medication
to intervene constipation. The three-layered peristaltic flow
model [10] was further applied by Tripathi [11] to study
the axisymmetric blood flow through stenosed arteries by
considering red blood cells as the core layer, platelets/white
blood cells as the intermediate layer and plasma as the
peripheral layer. In a previous attempt [12], we studied
such a flow for a channel and concluded that an artificially
generated comparatively viscous intermediate layer may help
ease constipation.One of the refereeswas of the opinion that a
more appropriate study will be for the tubular geometry.This
motivated us to go for this finer quantitative investigation.

In recent years, this mechanism (peristalsis) has been
exploited in biomedical engineering, industrial technologies,
and toxic waste conveyance in chemical process engineering.
Continuous refinements in designs require increasinglymore
sophisticated models for peristaltic flows using complex
working fluids (non-Newtonian, nanotechnological, etc.).
The proposed model may be applicable and help investigate
similar flows discussed above of biomedical and chemical
industries.Therefore, we propose to investigate axisymmetric
peristaltic flow of a power-law fluid in three layers through
a cylindrical tube. The models [6, 7, 11, 13] will be special
cases of this model. Comparative study with previous inves-
tigations is made.

This paper is designed as follows. Section 2 presents
the formulation of the model wherein a dimensionless set
of governing equations subject to appropriate boundary
conditions is derived. Analytical wave form solutions are
obtained in Section 3. Interface analysis, pumping charac-
teristic, mechanical efficiency, trapping, and reflux are pre-
sented in subsequent sections: from 4 through 8, respectively.
Section 9 provides the detailed numerical results along with
interpretations.The final section concludes with our findings.

2. Formulation of the Model

We consider the flow of a power-law fluid through a tube
in three layers differing in terms of viscosity. As discussed
above, the three layers will be called core, intermediate,
and peripheral layer. The walls of the tube are considered

𝜇2

𝜇1

𝜇0 q3

q2

q1

𝛽

𝛼

H

H2

H1

Figure 1: The diagram represents the geometry of the three-layered
peristaltic tubular flow. 𝐻, 𝐻
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to be flexible so as to model the small intestine and also
because periodic transverse progressive wave trains are to
propagate along the walls. Details of the geometry of three-
layered (peripheral layer, intermediate layer, and core layer)
peristaltic flow region are presented in Figure 1.

The following nondimensional variables are used in the
analysis:
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where 𝑐, 𝜆, 𝑎, 𝑛, and 𝜇
0
represent, respectively, the wave-

speed, the wavelength, the radius of the tube, the power-law
flow behavior index, and the viscosity parameter of the core
fluid. The other parameters are 𝑥, 𝑦, 𝑡, 𝑝, 𝜇, 𝜓, ℎ, ℎ

1
, and

ℎ
2
which represent, respectively, axial and transverse coor-

dinates, time, pressure, viscosity, stream function, and the
distance from the centre line of the outer, the intermediate,
and the core layer boundary; their primed counterparts are
the corresponding quantities in the dimensionless form. Re
is the Reynolds number.

Using the nondimensional variables and dropping the
primes, the equation of the wall may be given by 𝑟 = 𝐻(𝑧 −
𝑡), which may acquire an arbitrary form. Since the three
fluids are mutually immiscible and properly conserve the
respective masses during the flow, the interfaces between the
intermediate and core layers, denoted by 𝑟 = 𝐻

1
(𝑧−𝑡), and the

peripheral and intermediate layers, denoted by 𝑟 = 𝐻
2
(𝑧 − 𝑡),

will be streamlines.
Using the nondimensional variables defined above and

considering the long wavelength and low Reynolds number
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approximations, the governing equations of the flow of a
power-law fluid, after dropping the primes, reduce to
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(2)

The following are the transformations from the laboratory
frame to the wave frame:

𝑧 − 𝑡 = 𝑥, 𝑟 = 𝑟, 𝑢 − 1 = 𝑤,

V = V, 𝑝 = 𝑝,

(3)

where the terms on the left side of the equality sign are in the
laboratory frame and those on the right side are in the wave
frame; explicitly,𝑥 and𝑤 are the axial coordinate and the axial
velocity in the wave frame and 𝑢 is the axial velocity in the
laboratory frame; other parameters remain invariant in both
frames. Accordingly, the stream function 𝜓 and the volume
flow rate 𝑞 in the wave frame are related to the corresponding
terms in the laboratory fame, Ψ being the stream function in
the laboratory frame, as given in the following:
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where 𝑞
1
, 𝑞
2
, and 𝑞

3
are the volume flow rates, respectively,

in the core, intermediate, and peripheral regions in the wave
frame and 𝑄 = ∫1

0
𝑄𝑑𝑡 is the total volume flow rate averaged

over a period, henceforth known as the time-averaged flow
rate, in the laboratory frame. Consider
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where 𝑄
1
and 𝑄

2
are the time-averaged flow rates in the

core and the intermediate layers, respectively, and 𝑞∗
1
and 𝑞∗
2

are parameters defined by the aforementioned expressions
used to show the flow-rate relations between the wave and
laboratory frames. Equations (2) may be expressed in the
wave frame, in terms of stream function 𝜓(𝑟, 𝑥), as follows:
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The variable viscosity is defined as follows:
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and the boundary conditions to be imposed on (6) are
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The first boundary condition is that the stream function
and the velocity gradient are zero on the symmetry line;
the second boundary condition is no-slip condition at the
boundary𝐻 whereas the other three conditions denote mass
conservation in the three layers. This further implies that𝐻

1

as well as𝐻
2
is a streamline in the course of the flow.

3. Solution in the Wave Frame of Reference

Eliminating the pressure from the differential equations (6),
we get
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Integrating this equation and using the boundary conditions
(8), we get
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Introducing definition (7), the stream function for the three
regions is given by
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Moreover, the pressure gradient in view of (12)–(14) is given
by
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These results are valid for any arbitrary wave-shape given
by 𝑦 = 𝐻(𝑥). A further investigation of the problem will,
however, be carried out for a sinusoidal wave form given by

𝐻(𝑥) = 1 + 𝜙 sin 2𝜋𝑥. (16)
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4. Interfaces Analysis

Using the boundary conditions (8), we obtain the following
equations for the two interfaces:
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Equations (17) and (18) will be simultaneously solved numer-
ically to evaluate𝐻
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and𝐻

2
as a function of 𝑥 (see Appendix

for the details of solution).

5. The Pumping Characteristic

Integrating the axial pressure gradient with respect to 𝑧, over
one wavelength, we get
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0

may be explicitly given by

Δ𝑝
0
= −2 (

3𝑛 + 1

𝑛
)

𝑛

⋅ ∫

1

0

{𝛾 (𝑥)
𝐻
2
− 1 − 𝜙

2
/2

𝐻(3𝑛+1)/𝑛
}

⋅



−𝛾 (𝑥)
𝐻
2
− 1 − 𝜙

2
/2

𝐻(3𝑛+1)/𝑛



(𝑛−1)

𝑑𝑥

(21)

and 𝑄
0
may be evaluated from the implicit relation,

∫

1

0

{𝛾 (𝑥)
𝑄
0
+ 𝐻
2
− 1 − 𝜙

2
/2

𝐻(3𝑛+1)/𝑛
}

⋅



−𝛾 (𝑥)
𝑄
0
+ 𝐻
2
− 1 − 𝜙

2
/2

𝐻(3𝑛+1)/𝑛



(𝑛−1)

𝑑𝑥 = 0.

(22)

6. Mechanical Efficiency of Pumping

Themechanical efficiency is defined as the ratio between the
average rate per wavelength at which work is done by the
moving fluid against a pressure head and the average rate at
which the wall does work on the fluid (cf. Shapiro et al. [13]).
For a power-law fluid, it will be given by

𝐸 = 𝑄(∫

1

0

{𝛾 (𝑥)
𝑞 + 𝐻

2

𝐻(3𝑛+1)/𝑛
}



−𝛾 (𝑥)
𝑞 + 𝐻

2

𝐻(3𝑛+1)/𝑛



(𝑛−1)

𝑑𝑥

⋅ (∫

1

0

{𝛾 (𝑥)
𝑞 + 𝐻

2

𝐻(3𝑛+1)/𝑛
}

⋅



−𝛾 (𝑥)
𝑞 + 𝐻

2

𝐻(3𝑛+1)/𝑛



(𝑛−1)

(𝐻
2
− 1) 𝑑𝑥)

−1

) .

(23)

7. Trapping Limits

Trapping is a phenomenon of peristalsis in which an inter-
nally circulating bolus of fluid is formed by closed streamlines
and this trapped bolus is pushed ahead along with the
peristaltic wave (cf. Shapiro et al. [13]). It takes place at high
flow rates and large occlusions. Trapping limit is given by
the value of 𝑄 where 𝜓 = 0 for 𝑦 > 0. For the given wave
information, there is a range of 𝑄 for trapping to occur. The
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shape of the trapped region is obtained by setting 𝜓 = 0 for
𝑦 ̸= 0 in (12) as follows:

𝑟
(𝑛+1)/𝑛

=
1

2𝑛 (𝑞 + 𝐻2)

⋅ [(1 −
1

𝜇
1/𝑛

1

)𝐻
(𝑛+1)/𝑛

1

⋅ {(3𝑛 + 1) (𝑞 + 𝐻
2
) − (𝑛 + 1)𝐻

1

2
}

+ (
1

𝜇
1/𝑛

1

−
1

𝜇
1/𝑛

2

)𝐻
(𝑛+1)/𝑛

2

⋅ {(3𝑛 + 1) (𝑞 + 𝐻
2
) − (𝑛 + 1)𝐻

2

2
}

+
1

𝜇
1/𝑛

2

𝐻
(𝑛+1)/𝑛

{(3𝑛 + 1) (𝑞 + 𝐻
2
) − (𝑛 + 1)𝐻

2
}] .

(24)

For the occurrence of trapping, we must have 𝑟(𝑛+1)/𝑛 > 0 for
some 𝑥. So, for a real and positive 𝑟(𝑛+1)/𝑛, it is required that
both the numerator and denominator be of the same sign.
Here, the denominator has its maximum value at 𝑥 = 1/4

and theminimum value at 𝑥 = 3/4.Thus in this case, we have
two conditions imposed on 𝑄 for the existence of trapping.
Consider

𝑄
−

< 𝑄 < 𝑄
+

, (25)

where

𝑄
−

=
(𝑛 + 1)

(3𝑛 + 1)

⋅ ([(1 −
1

𝜇
1/𝑛

1

)𝐻
(3𝑛+1)/𝑛

1max + (
1

𝜇
1/𝑛

1

−
1

𝜇
1/𝑛

2

)𝐻
(3𝑛+1)/𝑛

2max

+
1

𝜇
1/𝑛

2

(1 + 𝜙)
(3𝑛+1)/𝑛

]

⋅ ([(1 −
1

𝜇
1/𝑛

1

)𝐻
(𝑛+1)/𝑛

1max

+ (
1

𝜇
1/𝑛

1

−
1

𝜇
1/𝑛

2

)𝐻
(𝑛+1)/𝑛

2max

+
1

𝜇
1/𝑛

2

(1 + 𝜙)
(𝑛+1)/𝑛

])

−1

) − 2𝜙 −
𝜙
2

2
,

𝑄
+

=
(𝑛 + 1)

(3𝑛 + 1)

⋅ ([(1 −
1

𝜇
1/𝑛

1

)𝐻
(3𝑛+1)/𝑛

1min

+ (
1

𝜇
1/𝑛

1

−
1

𝜇
1/𝑛

2

)𝐻
(3𝑛+1)/𝑛

2min

+
1

𝜇
1/𝑛

2

(1 − 𝜙)
(3𝑛+1)/𝑛

]

⋅ ([(1 −
1

𝜇
1/𝑛

1

)𝐻
(𝑛+1)/𝑛

1min

+ (
1

𝜇
1/𝑛

1

−
1

𝜇
1/𝑛

2

)𝐻
(𝑛+1)/𝑛

2min

+
1

𝜇
1/𝑛

2

(1 − 𝜙)
(𝑛+1)/𝑛

])

−1

) + 2𝜙 −
𝜙
2

2
.

(26)

𝐻
1max, 𝐻2max, 𝐻1min, and 𝐻

2min are the values of the
interfaces at 𝑥 = 1/4 and 𝑥 = 3/4, respectively. For 𝑛 = 1, the
results reduce to the results of Tripathi [11] for three-layered
peristaltic viscous flow. For 𝜇

1
= 1, the results reduce to those

reported by Misra and Pandey [8] for two-layered power-law
flow, which, for 𝑛 = 1, further reduce to those presented by
Rao andUsha [6] for two-layeredNewtonian flow.The results
of Shapiro et al. [13] model can be obtained by substituting
𝜇
1
= 1, 𝜇

2
= 1, and 𝑛 = 1 in presented model.

8. Reflux Limit

Reflux is another phenomenon concerning peristalsis in
which some fluid particles, on the average, move in a
direction opposite to the net flow (cf. Shapiro et al. [13]).
The volume flow rate 𝑄

𝜓
(𝑥) corresponding to a particle at

a position 𝑧 and time 𝑡 in the laboratory frame, and on the
streamline 𝜓 in the wave frame, is given as

𝑄
𝜓
(𝑥) = 2𝜓 + 𝑟

2
(𝜓; 𝑥) . (27)

On averaging over one cycle, this becomes

𝑄
𝜓
(𝑥) = 2𝜓 + ∫

1

0

𝑟
2
(𝜓; 𝑥) 𝑑𝑥. (28)

For evaluating the reflux limit, we expand 𝑄
𝜓
(𝑥) in a power

series in terms of a small parameter 𝜀 about the wall, where

𝜀 = 𝜓 −
𝑞

2
, (29)

and use the reflux condition
𝑄
𝜓

𝑄

> 1 as 𝜀 → 0. (30)

The coefficients of the first two terms in the expansion of
𝑟
2
(𝜓; 𝑥), that is,

𝑟
2
= 𝐻
2
+ 𝑎
1
𝜀 + 𝑎
2
𝜀
2
+ ⋅ ⋅ ⋅ , (31)
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Figure 2: Pressure difference across one wavelength versus time-averaged volume flow rate for different values of 𝜇
1
at 𝜙 = 0.5, 𝛼 = 0.7,

𝛽 = 0.9, and 𝜇
2
= 0.1 for (a) 𝑛 = 0.5, (b) 𝑛 = 1.0, and (c) 𝑛 = 1.5.

are obtained by using (14) and given by

𝑎
1
= −2,

𝑎
2
= −

4 (𝑞 + 𝐻
2
)

𝐻4𝜇
1/𝑛

2

𝛾 (𝑥) .

(32)

Performing the integration in (28) to the second order
and using condition (30), we obtain the condition for the
occurrence of reflux as follows:

∫

1

0

((𝑄 − 1 −
𝜙
2

2
+ 𝐻
2
)𝐻
(1−𝑛)/𝑛

⋅ ((1 −
1

𝜇
1/𝑛

1

)𝐻
(3𝑛+1)/𝑛

1

+ (
1

𝜇
1/𝑛

1
− 𝜇
1/𝑛

2

)𝐻
(3𝑛+1)/𝑛

2

+
1

𝜇
1/𝑛

2

𝐻
(3𝑛+1)/𝑛

)

−1

)𝑑𝑥

< 0.

(33)

9. Numerical Results and Discussion

We have carried out numerical calculations and plotted
graphs to observe the effects of the viscosities of the interme-
diate and peripheral layers and the flow behaviour index on
pumping, mechanical efficiency, trapping limits, and reflux
limit.

Figures 2(a)–2(c) are based on (15) and are plotted
between the pressure difference across one wavelength (Δ𝑝)



8 Applied Bionics and Biomechanics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.2 0.4 0.6 0.8
Q

Δ
p

−0.1

(a)

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8
Q

Δ
p

−1

(b)

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8
Q

Δ
p

−2

𝜇2 = 1.0

𝜇2 = 0.1

𝜇2 = 0.01

(c)

Figure 3: Pressure difference across one wavelength versus time-averaged volume flow rate for different values of 𝜇
2
at 𝜙 = 0.5, 𝛼 = 0.7,

𝛽 = 0.9, and 𝜇
1
= 0.1 for (a) 𝑛 = 0.5, (b) 𝑛 = 1.0, and (c) 𝑛 = 1.5.

and the time-averaged flow rate (𝑄) to observe the impact of
variation of the intermediate layer viscosity 𝜇

1
. The relation

is linear and the maximum flow rate 𝑄
0
, which is dependent

on 𝜇
1
, is achieved when Δ𝑝 is zero. However, for a fixed

𝜇
2
, increase of many folds in 𝜇

1
brings about only a slight

cut in 𝑄
0
irrespective of the fluid being pseudoplastic (𝑛 =

0.5), Newtonian (𝑛 = 1.0), or dilatant (𝑛 = 1.5) (see
Figures 2(a)–2(c)). But a more interesting observation is that
the pressure required to restrain flow rates has to increase
by a large magnitude if 𝜇

1
is increased even without any

variation in 𝜇
2
. In Figures 2(a)–2(c), the curves for 𝜇

1
=

1.0 show the results for two-layered peristaltic power-law
fluid flow which are similar to results obtained by Misra
and Pandey [8]. The results in Figure 2(c) are verified with
the results (three-layered peristaltic viscous flow) of Tripathi

[11]. Figures 3(a)–3(c) are plotted to examine the influence of
the outer (peripheral) layer viscosity on the pressure versus
time-averaged flow rate relation. It is noticed that for all the
values of flow behavior index, unlike 𝜇

1
an increase in the

viscosity 𝜇
2
of the outer layer causes a slight addition to

the maximum flow rates. However, on the pressure-flow rate
relation 𝜇

1
and 𝜇

2
both have similar effects. The influence of

the flow behaviour index 𝑛 on the pressure-flow rate relation
is qualitatively similar to that of intermediate layer viscosity
𝜇
1
(cf. Figure 4).
To learn the effects of viscosities in different layers and

power-law fluid index on the mechanical efficiency, graphs
(Figures 5–7) between mechanical efficiency and the ratio
of averaged flow rate and maximum averaged flow rate are
plotted based on (23). The relation between them is found
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Figure 4: Pressure difference across one wavelength versus averaged volume flow rate for different values of 𝑛 at 𝜙 = 0.5, 𝛼 = 0.7, 𝛽 = 0.9,
𝜇
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= 0.1, and 𝜇
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= 0.1.
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Figure 5: Mechanical efficiency versus ratio of the time-averaged volume flow rate and the maximum time-averaged volume flow rate for
different 𝜇

1
at 𝜙 = 0.5, 𝛼 = 0.7, 𝛽 = 0.9, and 𝜇

2
= 0.1 for (a) 𝑛 = 0.5, (b) 𝑛 = 1.0, and (c) 𝑛 = 1.5.
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Figure 6: Mechanical efficiency versus ratio of averaged volume flow rate and maximum averaged volume flow rate with the different values
of 𝜇
2
at 𝜙 = 0.5, 𝛼 = 0.7, 𝛽 = 0.9, and 𝜇

1
= 0.1 for fixed values of 𝑛 as follows: (a) 𝑛 = 0.5, (b) 𝑛 = 1.0, and (c) 𝑛 = 1.5.

to be nonlinear. An observation of Figures 5(a)–5(c) reveals
that the pumping performance improves for all values of 𝑛
when the viscosity 𝜇

1
of the intermediate layer is increased.

This too favours the earlier conclusion that flow rate is
enhanced for larger viscosity of the intermediate layer. The
outer layer viscosity 𝜇

2
too is found to improve the pumping

performance with an increase in its magnitude (cf. Figures
6(a)–6(c)). The results of Figures 6 and 7 agree with the
previous results [8, 11]. The pumping efficiency is found to
increase with the flow behavior index (𝑛) for fixed viscosities
of the outer and the intermediate layers. Thus, peristaltic
pumping with a pseudoplastic fluid is less efficient than that
with a fluid (cf. Figure 7).

Reflux is an inherent phenomenon of peristaltic pumping
which is also named reversal flow. To discuss the reflux
phenomenon under the effects of viscosities of both layers,
Figures 8 and 9 are drawn between the amplitude ratio and
averaged flow rate based on (33). It is observed that reflux can

occur in a larger region if the intermediate layer viscosity is
increased (Figure 8). The outer layer viscosity has a similar
effect but the change observed is insignificant (Figure 9).

We have determined the trapping limits based on (26) for
different viscosities of the intermediate and peripheral layers
and also the flow behaviour index to investigate their effects.
It is noticed that when 𝜇

1
varies from 0.01 to 1.0 for the fixed

values of 𝜇
2
at 0.1 and 𝑛 at 0.5, 𝑄− rises from 0.69 to 0.95

and 𝑄+ from 0.95 to 1.1, which means both the lower and
the upper trapping limits increase with 𝜇

1
, the intermediate

layer viscosity. By setting 𝜇
1
= 0.1 and 𝑛 = 0.5, if 𝜇

2
is varied

from 0.01 to 1.0, 𝑄− shifts from 0.98 to 0.68 and 𝑄+from 1.1
to 0.95 showing that both the lower and the upper trapping
limits decrease with 𝜇

2
. When at the fixed values 𝜇

1
= 0.1

and 𝜇
2
= 0.1, 𝑛 varies from 0.5 to 1.5, 𝑄− varies from 0.74 to

0.33, and𝑄+ varies from 1.1 to 1.0 indicating thus that both the
lower and the upper trapping limits decline with increasing
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2
= 0.1, and

𝑛 = 0.5.

𝑛. Depression of trapping limits is an indication that trapping
takes place at lower flow rates whereas elevation of the same
limits means trapping occurs at higher flow rates. Moreover,
the size of the trapped bolus increases with 𝜇

2
and 𝑛 while it

decreases with increasing 𝜇
1
(cf. Figures 10–12).

If the entire flow behaviour is further compared with
two-dimensional channel flow [12], it is observed that not
only the quantity of flow is more but also even the pressure
required to stop the flow is almost ten times, thus indicating
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Figure 9: Averaged flow rate versus amplitude ratio with the
different values of 𝜇

2
at 𝜙 = 0.5, 𝛼 = 0.7, 𝛽 = 0.9, 𝜇

1
= 0.1, and

𝑛 = 0.5.

that the axisymmetric flow is less prone to constipation and
may be more easily overcome with introducing a viscous
intermediate layer.

10. Conclusions

It is found that the maximum flow rate diminishes when
the intermediate layer viscosity and flow behaviour index are
increased or the peripheral layer viscosity is decreased. It
is observed that the pressure required to restrain flow rates
has to increase by a large magnitude if 𝜇

1
is increased even

without any variation in 𝜇
2
and vice versa. This revelation

may lead to the physical interpretation in view of constipation
that though the mucous layer viscosity may not be varied the
introduction of a viscous intermediate layer caused by some
medicinal intervention may cure constipation.

Themechanical efficiency increases with the viscosities of
both the intermediate and the peripheral layers as well as the
flow behaviour index. Reflux region shrinks if the viscosity of
the intermediate layer is increased or that of the peripheral
layer is decreased. Both the lower and the upper trapping
limits increase if either the viscosity of the intermediate layer
is increased or that of the peripheral layer is decreased. The
said limits decline when the flow behaviour index is raised.
Moreover, the size of the trapped bolus increases with the
viscosity of the peripheral layer and the flow behaviour index
but it decreases when the viscosity of the intermediate layer
is increased.

Finally, it is observed that the axisymmetric flow intestine
is less prone to constipation than two-dimensional flow and
may be more easily overcome with introducing a viscous
intermediate layer.
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Figure 10: Streamlines for 𝑄 = 0.7, 𝜙 = 0.5, 𝛼 = 0.7, 𝛽 = 0.9, 𝜇
2
= 0.02, and 𝑛 = 1.5. (a) 𝜇
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1
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Appendix

Equations (17) and (18) form a system of nonlinear algebraic
equations in the variables𝐻

1
and𝐻

2
given by

𝐴
1
𝐻
(5𝑛+1)/𝑛

1
+ 𝐵
1
𝐻
(3𝑛+1)/𝑛

1
+ 𝐶
1
(𝐻
2
)𝐻
2

1
+ 𝐷
1
(𝐻
2
) = 0,

𝐴
2
𝐻
(5𝑛+1)/𝑛

2
+ 𝐵
2
𝐻
(3𝑛+1)/𝑛

2
+ 𝐶
2
(𝐻
1
)𝐻
2

2
+ 𝐷
2
(𝐻
1
) = 0,

(A.1)

where

𝐴
1
= (1 −

1

𝜇
1/𝑛

1

) ,

𝐴
2
= (

1

𝜇
1/𝑛

1

−
1
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Figure 11: Streamlines for𝑄 = 0.7, 𝜙 = 0.5, 𝛼 = 0.7, 𝛽 = 0.9, 𝜇
1
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Figure 12: Streamlines for 𝑄 = 0.7, 𝜙 = 0.5, 𝛼 = 0.7, 𝛽 = 0.9, 𝜇
1
= 0.1, and 𝜇

2
= 0.1. (a) 𝑛 = 1.4, (b) 𝑛 = 1.2, (c) 𝑛 = 1, and (d) 𝑛 = 0.8.

The mean thicknesses of these three layers are taken at 𝑥 = 0
and we assume that the interfaces are 𝐻
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2
(0) = 𝛽

(the same at 𝑥 = 1/2, 1). The values of 𝑞∗
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are related to 𝛼

and 𝛽 in the following way:

𝑞
∗

1
= −𝛼
2
+ (𝑞 + 1)

⋅ (((1 −
3𝑛 + 1

𝑛 + 1

1

𝜇
1/𝑛

1

)𝛼
(3𝑛+1)/𝑛

+ (
3𝑛 + 1

𝑛 + 1
)(

1

𝜇
1/𝑛

1

−
1

𝜇
1/𝑛

2

)𝛼
2
𝛽
(𝑛+1)/𝑛

+(
3𝑛 + 1

𝑛 + 1
)

1

𝜇
1/𝑛

2

𝛼
2
)

⋅ ((1 −
1

𝜇
1/𝑛

1

)𝛼
(3𝑛+1)/𝑛

+ (
1

𝜇
1/𝑛

1

−
1

𝜇
1/𝑛

2

)𝛽
(3𝑛+1)/𝑛

+
1

𝜇
1/𝑛

2

)

−1

) ,

𝑞
∗

2
= −𝛽
2
+ (𝑞 + 1)

⋅ (((1 −
1

𝜇
1/𝑛

1

)𝛼
(3𝑛+1)/𝑛

+ (
1

𝜇
1/𝑛

1

−
3𝑛 + 1

𝑛 + 1

1

𝜇
1/𝑛

2

)𝛽
(3𝑛+1)/𝑛



Applied Bionics and Biomechanics 15

+(
3𝑛 + 1

𝑛 + 1
)

1

𝜇
1/𝑛

2

𝛽
2
)

⋅ ((1 −
1

𝜇
1/𝑛

1

)𝛼
(3𝑛+1)/𝑛

+ (
1

𝜇
1/𝑛

1

−
1

𝜇
1/𝑛

2

)𝛽
(3𝑛+1)/𝑛

+
1

𝜇
1/𝑛

2

)

−1

) .

(A.3)

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] C.-O. Ng and Y. Ma, “Lagrangian transport induced by peri-
staltic pumping in a closed channel,” Physical Review E, vol. 80,
no. 5, Article ID 056307, 2009.

[2] D. Takagi and N. J. Balmforth, “Peristaltic pumping of rigid
objects in an elastic tube,” Journal of Fluid Mechanics, vol. 672,
pp. 219–244, 2011.

[3] D. Takagi and N. J. Balmforth, “Peristaltic pumping of viscous
fluid in an elastic tube,” Journal of Fluid Mechanics, vol. 672, pp.
196–218, 2011.

[4] O. A. Dudchenko and G. T. Guria, “Self-sustained peristaltic
waves: explicit asymptotic solutions,” Physical Review E, vol. 85,
no. 2, Article ID 020902(R), 2012.

[5] J. G. Brasseur, S. Corrsin, and N. Q. Lu, “The influence of
peripheral layer of different viscosity on peristaltic pumping
with Newtonian fluids,” Journal of Fluid Mechanics, vol. 174, pp.
495–519, 1987.

[6] A. R. Rao and S. Usha, “Peristaltic transport of two immiscible
viscous fluids in a circular tube,” Journal of FluidMechanics, vol.
298, pp. 271–285, 1995.

[7] J. C. Misra and S. K. Pandey, “Peristaltic transport of a non-
Newtonian fluid with a peripheral layer,” International Journal
of Engineering Science, vol. 37, no. 14, pp. 1841–1858, 1999.

[8] J. C. Misra and S. K. Pandey, “Peristaltic flow of a multilayered
power-law fluid through a cylindrical tube,” International Jour-
nal of Engineering Science, vol. 39, no. 4, pp. 387–402, 2001.

[9] J. C. Misra and S. K. Pandey, “Peristaltic transport of blood in
small vessels: study of a mathematical model,” Computers and
Mathematics with Applications, vol. 43, no. 8-9, pp. 1183–1193,
2002.

[10] E. F. Elshehawey and Z. M. Gharsseldien, “Peristaltic transport
of three-layered flow with variable viscosity,” Applied Mathe-
matics and Computation, vol. 153, no. 2, pp. 417–432, 2004.

[11] D. Tripathi, “A mathematical study on three layered oscillatory
blood flow through stenosed arteries,” Journal of Bionic Engi-
neering, vol. 9, no. 1, pp. 119–131, 2012.

[12] S. K. Pandey, M. K. Chaube, and D. Tripathi, “Peristaltic trans-
port of multilayered power-law fluids with distinct viscosities: a
mathematical model for intestinal flows,” Journal of Theoretical
Biology, vol. 278, pp. 11–19, 2011.

[13] A. H. Shapiro, M. Y. Jafferin, and S. L. Weinberg, “Peristaltic
pumping with long wavelengths at low Reynolds number,”
Journal of Fluid Mechanics, vol. 37, no. 4, pp. 799–825, 1969.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


