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The dynamics of a ring of seven unidirectionally coupled nonlinear Duffing oscillators is studied. We show that the FFT analysis
presented in form of a bifurcation graph, that is, frequency distribution versus a control parameter, can provide a valuable and
helpful complement to the corresponding typical bifurcation diagram and the course of Lyapunov exponents, especially in context
of detailed identification of the observed attractors. As an example, bifurcation analysis of routes to chaos via 2-frequency and
3-frequency quasiperiodicity is demonstrated.

1. Introduction

The spectral analysis of a signal using the fast Fourier trans-
form (FFT) is a widespread method for investigation and
diagnostics of dynamical systems in science and engineering.
The bibliography concerning the FFT algorithms and their
application is very huge.Therefore, this paper concentrates on
selected application associated with the researched problem
only. The FFT is an algorithm for computing the discrete
Fourier transform (DFT) and its inverse [1]. For 𝑥

0
, . . . , 𝑥

𝑁−1
,

which are complex numbers, the DFT is defined by the
following formula:

𝑋
𝑘
=

𝑁−1

∑

𝑛=0

𝑥
𝑛
𝑒
−(2𝜋𝑖/𝑁)𝑛𝑘

, (1)

where 𝑘 = 0, . . . , 𝑁−1. Using the FFT analysis, the frequency
components included in the timewaveform can be presented.
Calculation of the sum by formula (1) would take 𝑂(𝑁2)
operations. Using the Cooley-Tukey algorithm [2], which is
based on the divide and conquer algorithm, the fast Fourier
transform is calculated recursively dividing the transform of
size 𝑁 = 𝑁1𝑁2 into transform of size 𝑁1 and 𝑁2 with the
use of 𝑂(𝑁) multiplications. The computational complexity
of the fast Fourier transform is𝑂(𝑁log

2
𝑁), instead of𝑂(𝑁2)

algorithm which follows from the formula determining

the DFT. There are other algorithms for calculating the
DFT, for example, the Prime-factor algorithm also called the
Good-Thomas algorithm [3, 4], Bruun’s algorithm [5], Rader’s
algorithm [6], and Bluestein’s algorithm [7]. As a result of
the existence of the above-mentioned algorithms, it became
possible to apply digital signal processing (DSP) [8, 9] and the
use of discrete cosine transform (DCT) to data compression
[10, 11] (e.g., JPEG or MP3 files).

Nowadays, in many areas of science and technology, we
can observe the use of the fast Fourier transform in order to
present the results of research and calculations.The use of the
FFT analysis to study nonlinear dynamical systems is present
in works of many scientists and researchers. A few selected
examples of such applications are mentioned in [12–14]. In a
series of three articles, Krysko et al. used the FFT analysis to
study

(i) dynamics of continuous dynamical systems such as
flexible plate and shallow shells [15],

(ii) classical and novel scenarios of transition from peri-
odic to chaotic solutions of dissipative continuous
mechanical systems [16],

(iii) dynamic loss of stability and different routes of
transition to chaos of flexible curvilinear beam using
Lyapunov exponents [17].
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Figure 1: Scheme representing a ring of seven unidirectionally coupled oscillators.
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Figure 2: Bifurcation diagramof individual node variable𝑥
1
(a), graph of five largest Lyapunov exponents (b), and parallel profile of frequency

spectrum (c) for the ring of seven unidirectionally coupled nonlinear Duffing oscillators versus coupling coefficient 𝜎.
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Figure 3: Time series (a), Poincaré map (b), and FFT spectrum (c) of system (3) for 𝜎 = 0.0332.

One can also mention a few examples of the FFT
application in cases similar to the system analyzed in this
paper. In 2006, Sánchez et al. [18] studied in their works
a ring of unidirectionally coupled Lorenz oscillators. They
observed occurrence of so-called rotating wave between
oscillators and the transition from periodic rotating wave
through quasiperiodic solutions to chaotic rotating wave.
Numerical investigations were confirmed by experimental
research. They used the FFT analysis as a tool for the
presentation of results. Also in the electrical systems the FFT
analysis is widely used. For example, Hajimiri and Lee used
the FFT analysis to study phase noise in nonlinear electrical
oscillators [19, 20]. Also in the article of Razaviwe can observe
the use of the FFT analysis test phase noise in a ring of CMOS
oscillators [21].

In this paper, the FFT analysis is applied to study
dynamics and bifurcations of the ring of unidirectionally
coupled nonlinear Duffing oscillators. In this system a route
to chaos via 2-frequency and 3-frequency quasiperiodicity
can be observed.The FFT investigation accompanies classical

qualitative and quantitative tools for dynamical systems
research as Poincaré maps, bifurcation diagrams, and Lya-
punov exponents.The paper is organized as follows. Section 2
contains a brief description of analyzed ring of Duffing
oscillators. In Section 3, the results of numerical investigation
of the system under consideration are demonstrated. Classi-
cal bifurcation diagrams and values of Lyapunov exponents
are summarized with results of the FFT analysis. Finally,
Section 4 presents a discussion of our results and conclusions.

2. Analyzed System

The system under consideration is a closed ring of 𝑁 =
7 unidirectionally coupled identical oscillators shown in
Figure 1. As a node system we took autonomous single-well
Duffing oscillator given by

𝑥̈
𝑗
+ 𝑑𝑥̇
𝑗
+ 𝑎𝑥
𝑗
+ 𝑏𝑥
3

𝑗
= 0, (2)

where 𝑎, 𝑏, and 𝑑 are real positive parameters. Introducing
the substitution 𝑦

𝑗
= 𝑥̇
𝑗
and assuming diffusive coupling
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Figure 4: Time series (a), Poincaré map (b), and FFT spectrum (c) of system (3) for 𝜎 = 0.0430.

between the oscillators, we can describe the dynamics of each
𝑗th ring node by the following pair of 1st-order ODEs:

𝑥̇
𝑗
= 𝑦
𝑗
,

̇𝑦
𝑗
= −𝑎𝑥

𝑗
− 𝑏𝑥
3

𝑗
− 𝑑𝑦
𝑗
+ 𝜎 (𝑥

𝑗−1
− 𝑥
𝑗
) ,

(3)

where 𝑗 = 1, 2, . . . , 7 and 𝜎 is an overall coupling coefficient
[22].

3. Numerical Investigations

The results of numerical analysis of system (3) are demon-
strated in Figures 2(a)–2(c) and Figures 3–7. The number of
coupled oscillators (𝑁 = 7) was associated with a range of the
3-frequency quasiperiodic solution. For the ring of seven cou-
pled oscillators, the range of occurrence in the 3-frequency
quasiperiodic solution was the biggest. Numerical modeling
and calculations for this work were done in MATLAB

R2009b and Borland-Delphi 6 software, while the graphical
presentation of bifurcation diagrams, time series, Poincaré
maps, Lyapunov exponents, and the FFT analysis was drawn
by means of OriginPro 8.0 program. Assumed parameters of
system (3) are 𝑎 = 1.0, 𝑏 = 10.0, and 𝑑 = 0.03162 and
coupling coefficient 𝜎 is considered as the control parameter.
In Figures 2(a)–2(c), the bifurcation diagram of individual
node variable (Figure 2(a)), the parallel course of five largest
Lyapunov exponents (Figure 2(b)), and the corresponding
bifurcation diagram of the frequency spectrum (Figure 2(c)),
depicting how to vary frequency distribution and density
with increasing control parameter, are shown. In order to
improve the readability of the FFT analysis and elimination
of the noise power, the range of the amplitude fromwhich the
results were presented started at level 10−2 [dB].Then, we can
see the emergence of new peaks along with the emergence
of the next Hopf bifurcation. On the other hand in Figures
3–7 time series, Poincaré maps, and related FFT spectra for
selected values of coupling strength 𝜎 are presented.
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Figure 5: Time series (a), Poincaré map (b), and FFT spectrum (c) of system (3) for 𝜎 = 0.0440.

The bifurcation analysis in Figures 2(a)–2(c) depicts a
transition from stable critical point (equilibrium position)
to chaos via sequence of four consecutive Hopf-type bifur-
cations. The first time such a route to chaos was postulated
was by Landau and Hopf—the Landau-Hopf transition to
the turbulence after a series of infinite number of Hopf-type
bifurcations [23, 24]. On the other hand, Newhouse, Ruelle,
and Takens had formulated the theorem that just after third
successive Hopf bifurcation the 3D torus decays into strange
chaotic attractor in effect of arbitrarily small perturbation, a
NRT scenario [25, 26]. Thus, in the researched case, we can
observe an intermediary scenario of transition to chaos after
fourth Hopf bifurcation.The first Hopf bifurcation occurs for
𝜎 = 𝜎

1
where the system response passes from stationary to

periodic solutions (Figures 3(a)-3(b)) and the first frequency
of oscillation Ω

0
appears which is represented by a single

peakΩ
0
in Figure 3(c). A small increase of coupling strength

leads to the second Hopf bifurcation at 𝜎 = 𝜎
2
. The limit

cycle is converted into quasiperiodic solution (Figures 4(a)-
4(b)), characterized by two incommensurate frequencies Ω

0

and Ω
1
(Figure 4(c)) and two largest Lyapunov exponents

equal to zero (in black and red in Figure 2(b)). Analyzing
the newly formed peaks (Figure 4(c)), the constant difference
(offset) 𝛽

1
can be seen, which represent a beat frequency

defining the approximate period of the torus cycle𝑇 ≈ 2𝜋/𝛽
1
;

see Figure 4(a). Hence, the remaining incommensurate fre-
quency peaks are distributed in the FFT spectrum according
to the following formula:

Ω
𝑛
= Ω
0
+ 𝑛𝛽
1
, (4)

where 𝑛 is a number of torus frequency. The 2D torus exists
until the next Hopf-type bifurcation at 𝜎 = 𝜎

3
where the

transition from the 2D torus to the 3-frequency quasiperi-
odic solution (the 3D torus) takes place (Figures 5(a)-5(b)).
As such, the 3D torus is distinguished with three largest
Lyapunov exponents of zero value in spectrum (black, red,
and green in Figure 2(b)) and third independent frequency
Ω
2
in the FFT spectrum (Figure 5(c)). We can also observe

new frequency peaks which are characterized by a constant
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Figure 6: Time series (a), Poincaré map (b), and FFT spectrum (c) of system (3) for 𝜎 = 0.0471.

offset 𝛽
2
; see Figure 5(c). In the analogy to (4) the third

disproportionate frequency can be described as

Ω
𝑛𝑚
= Ω
𝑛
+ 𝑚𝛽
2
, (5)

where 𝑛, 𝑚 are number of frequency peaks. For instance,
using formula (5), the frequency Ω

−21
from FFT spectrum

depicted in Figure 5(c) can be calculated as follows:

Ω
−21
= Ω
−2
+ 𝛽
2
= Ω
0
− 2𝛽
1
+ 𝛽
2

= 1, 04286 − 2 ∗ 0, 01670 + 0, 00446 = 1, 01392.

(6)

The 3D torus dominates in the interval 𝜎
3
< 𝜎 < 𝜎

5
, but in

the middle of this range the period-doubling bifurcation of
the 3D torus takes place at 𝜎 = 𝜎

4
(see Figures 6(a)-6(b)).

This phenomenon is also reflected on the FFT spectrum
(Figure 6(c)) where additional frequency peaks, shifted by
frequency interval 𝛽

3
, appear after the period-doubling of the

3D torus. Further increase of the coupling strength causes
destruction of the 3D torus, direct transition to chaos, and

next, after small increase of 𝜎 to hyperchaos on 𝑇2 (the 2D
torus), two positive and two Lyapunov exponents equal to
zero (+, +, 0, 0, −, −, . . .) in the spectrum (see Figures 7(a)-
7(b)).The chaotic response manifests with the FFT spectrum
with randomly distributed huge number of frequency peaks
of various amplitudes but frequencies indicating the presence
of the 2D torus in the skeleton of hyperchaotic attractor are
still dominant (see Figure 7(c)).

4. Conclusions and Remarks

In this paper the dynamical system composed of the ring
of seven unidirectionally coupled nonlinear Duffing oscil-
lators is examined using the FFT bifurcation analysis. In
addition, in order to confirm the results obtained by the
FFT method, corresponding study with use of other classical
tools for dynamical systems research (bifurcation diagrams,
Poincaré maps, and Lyapunov exponents) was carried out.
The considered system (3) was selected due to observed
scenario of the transition to chaos via stable 3-frequency
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Figure 7: Time series (a), Poincaré map (b), and FFT spectrum (c) of system (3) for 𝜎 = 0.0500.

quasiperiodicity and its period doubling. Such an original
route to chaos allows exhibiting advantages of the FFT
spectrum analysis.

In general, the FFT method is a tool commonly known
and used in engineering, diagnostics, and also science. Pre-
sented results show that the FFT analysis can be precise and
useful instrument to nonlinear systems research. Obviously,
for systems simulated numerically, as demonstrated here, cal-
culation of the spectrum of Lyapunov exponents seems to be
sufficiently accurate research approach. However, comparing
Figures 2(b) and 2(c), we can see that the bifurcation analysis
of the FFT spectrum can be treated as a valuable complement
of quantitative tools, for example, Lyapunov exponents, and
support for more detailed identification of the systemmotion
character. Then attractor of the system is additionally char-
acterized by frequency peaks distribution and their signal
strength in dB which is determined by peak height in loga-
rithmic scale. It is clearly visible that bifurcations indicated
in the spectrum of Lyapunov exponents (Figure 2(b)) are
reflected in the FFT bifurcation graph (Figure 2(c)) and they
manifest with newly emerging frequency lines at bifurcation

values of the control parameter𝜎 (i.e.,𝜎
1–5); side peaks shifted

by constant frequency intervals 𝛽
1–3 (see Figures 4(c)–6(c)).

A detailed identification of the bifurcation type (Hopf-type
or period-doubling) only on the basis of the FFT graph
from Figure 2(c) requires its juxtaposition with time series,
Poincaré maps, and so forth reconstructed from investigated
signal. The transition to chaos (for 𝜎 = 𝜎

5
in Figures 2(a)–

2(c)) manifests with a transition from the discrete FFT spec-
trum which is characteristic for regular solution (periodic,
multiperiodic, and quasiperiodic; see Figures 3(c)–6(c)) to
the FFT spectrum typical for chaos which is continuous in
some frequency ranges (Figure 7(c)).

Calculation or estimation of Lyapunov exponents can be
in many cases not straightforward (systems with discontinu-
ities [27–32]) or very complex (experimental data), even in
spite of existence of some algorithms allowing the estimation
of these exponents from time series [33–35]. In such cases
demonstrated approach of the FFT bifurcation analysis of
the complex dynamical system as well as the nonclassical
approach to the estimation of Lyapunov exponents [36–39]
can turn out to be especially noteworthy.
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