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Mathematical modeling, theoretical/numerical analysis, and experimental verification of wear processes occurring on the contact
surface of friction linings of a mechanical friction clutch are studied. In contrast to many earlier papers we take into consideration
wear properties and flexibility of friction materials being in friction contact. During mathematical modeling and numerical
simulations we consider a general nonlinear differential model of wear (differential wear model) and amodel of wear in the integral
form (integral wear model). Equations governing contact pressure and wear distributions of individual friction linings, decrease of
distance between clutch shields, and friction torque transmitted by the clutch are derived and compared with experimental data.
Both analytical and numerical analyses are carried out with the qualitative and quantitative theories of differential and integral
equations, including the Laplace transform approach to ODEs. We show that theoretical results and numerical simulations agree
with the experimental data. Finally, a numerical analysis of the proposed mathematical models was carried out in a wider range of
parameters of the considered system.

1. Introduction

A clutch is an important element used for coupling shafts in
many mechanical systems and transmitting torque between
them. In the early period of development of transport,
mechanical industry, and machine engineering, both belts
and transmissions were used to transmit torque between
shafts functioning together. However, a need for individ-
ual power transmissions and a compact coupling of shafts
influenced more advanced modeling of the processes in
mechanical friction clutches. The first and the oldest simple
clutches were used for direct connection of coaxial shafts;
however the present-day demands and future trends in the
technology of clutch production pose numerous demands
with regard to their structure, strength, functioning, and life.
For this reason, basic issues in designing power transmission
systems include an increase of productivity and improvement
of functioning quality of driven machines, enhancement of
the degree of reliability, and obtaining better technoeconomic
indices of these systems. To satisfy these assumptions in
mechanical friction clutches, we should have appropriate

knowledge on mathematical modeling and description of
this system including contact phenomena (friction, wear, and
heat production) occurring therein. The so far mentioned
complex approach allows for a better prediction of the real
systems behavior. The so far discussed phenomena occur
not only in various mechanical friction connections (bars,
bearings, gears, guides, transmissions, clutches, brakes, and
others), but also in every motion in nature and in everyday
life. These phenomena take place at the contact surfaces of
bodies being in friction contact and rubbing against each
other.The science dedicated to these phenomenawhich occur
during friction contact of solid bodies is known as tribology.
Tribology has a long history, and its origins and development
were described in detail by Dowson in the extensive work
History of Tribology [1].

2. Motivation and Goals of the Work

Issues related to the interaction of dynamics, contact phe-
nomena, and accompanying tribological processes in various
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types of mechanical systems have been the object of interest
and investigations of many researchers for many years.
The aforementioned issues have been considered in various
friction connections, like bars, transmissions, gears, guides,
bearings, clutches, brakes, and others. In the investigations
devoted to dynamics, contact phenomena and tribological
processes occurring in the systems with a friction clutch
implied derivation of numerous and different mathematical
models. Often, wear processes were not taken into account
while studying the system dynamics. Simultaneously, a typi-
cal analysis of the mentioned phenomena and processes did
not include inertia of contacting bodies. Moreover, in most
cases simplified mathematical models were used therein and
in addition (as a rule) separately for particular issues and
without mutual interactions among them.

In this paper, an attempt of strict mathematical descrip-
tion of the mentioned individual issues has been presented.
Namely, (i) the considered friction clutch has been treated
as a friction connection of elastic bodies taking into account
flexibility of the material of friction linings in axial direction;
(ii) a general nonlinear differential wearmodel, where wear is
modeled via the power-type function of contact pressure and
relative sliding velocity with rates dependent on the model
of wear, the step of lubricating, and spreading on contacting
surfaces, and an integral wear model taking into considera-
tion hereditary and memory processes (the gradual decrease
of speed of wear of friction linings as a result of abrasive
adapting to each other in the process of the exploitation) have
been used in numerical simulations; (iii) nonuniform contact
pressure distributions on the contact surface of clutch friction
linings have been determined for any instant of time; (iv)
for any instant of time nonuniform distributions of wear of
frictional linings of contacting bodies have been calculated;
(v) changes of friction torque transmitted by the clutch
resulting from the change of contact pressure distribution
have been computed. The above presented attempt at joining
the mentioned issues into one complex tribological system
is not an easy task; however the results obtained in this way
should enable better projection of the behavior of this type of
actual systems.

3. Literature Review

Wear is a dynamical process [2] related to changes in the
surfaces of bodiesmoving relative to one another as a result of
mechanical interaction between them. This process depends
on many factors and parameters (geometry of contacting
surfaces, normal applied force, relative velocity, material
hardness, etc. [3]). Wear of mechanical parts in most cases
is considered to be the main cause of the deterioration
of the quality of operation and performance of a device.
Studies on the wear process and its modeling have been
carried out for many years [4]. One of the first scientists
investigating wear processes was Archard, who proposed
a linear model of wear for metals [5]. In his model wear
was measured by volume divided by the distance of acting
friction force and was defined as a wear coefficient, which
depended on both loading force and hardness of thematerial.

This model was used for metals by the authors of works
[6–9] and others. In turn, one of the first researchers who
proposed a nonlinear wear model for friction material of
brakes was Rhee [10, 11]. His groundbreaking work inspired
other researchers to conduct further studies of these systems
[12, 13]. Since then, many mathematical models describing
wear processes in friction joints of different type, in different
external conditions and for various materials, have come into
being yet. In the literature related to tribology about three
hundred various models of wear may be found, from simple
empirical equations to complex mathematical relations [3].
However, a general mathematical model which adequately
describes any issue related to the wear processes has not been
proposed so far. Various proposed simple and more complex
wear models describe different wear processes with sufficient
accuracy only for a selected pair of friction materials, the
geometry of the system, or the external process conditions
[14]. Numerical calculations of wear processes in various
types of friction connections can be found in numerous
works, for instance [3, 6–9, 15–22] and many others.

Friction phenomena occurring at working surfaces of the
clutch accompany wear processes of materials of frictional
linings. A dominant character of wear of clutch linings is an
abrasive tribological wear process, while other types of wear
processes can be neglected. In general, it is assumed that the
wear of friction working surfaces of the clutch is proportional
to the work of friction force. In a simplified way, strength 𝐿 of
the clutch friction surfaces can be estimated via the relation

𝐿 =
𝑉V

𝑞V𝐿 𝑡𝑚𝑤
, (1)

where𝑉V is the volume wear, 𝑞V is the specific wear parameter
characterizing the material of lining, and 𝐿

𝑡
is the work

of friction force during a single association of the clutch,
while 𝑚

𝑤
is the number of starts of the clutch per hour.

Maximumvolumewear𝑉Vmay be determined if it is assumed
to be acceptable to reduce the thickness of friction linings 𝑠

𝑠
,

usually from 0.8 to 0.9 thickness of the lining; thus

𝑉V = 𝐴 𝑠𝑠𝑠, (2)

where 𝐴
𝑠
is the working friction surface of the clutch.

There exist a few wear models depending on the applied
friction description. According to Archard [5], the model of
wear written in the differential form takes the following form:

𝑑𝑤 (𝑡)

𝑑𝑡
= 𝐾
(𝑤) 𝑉𝑟 (𝑡)

 𝑃 (𝑡) ,
(3)

where 𝑡 denotes time, 𝑤(𝑡) is the wear, 𝐾(𝑤) is the material
wear coefficient, and 𝑉

𝑟
(𝑡) is the relative velocity of rubbing

surfaces, while 𝑃(𝑡) is the contact pressure between them. It
is the linear model of wear which considers contact pressure
and relative velocity of rubbing surfaces. This model of wear
was used in [15] to calculate wear in the mechanical ther-
moelastic contact of a solid isotropic circular shaft (cylinder)
with a cylindrical tube-like rigid bush (rigid ring). In other
types of friction connections this model was also used in
[18, 19, 23, 24].
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In this paper, in modeling wear processes of clutch
friction linings the general nonlinear differential model of
wear has been used, governed by [21]

𝑑𝑤 (𝑡)

𝑑𝑡
= 𝐾
(𝑤)
(𝑇

(𝑡))
𝑉𝑟 (𝑡)



𝛽

𝑃
𝛼
(𝑡) , (4)

where wear coefficient 𝐾(𝑤)(𝑇(𝑡)) is the function of temper-
ature 𝑇(𝑡) on the contact surface and 𝛼 and 𝛽 coefficients
are the quantities dependent on the model of wear, grade of
machining, and lubrication of rubbing surfaces.Thus, it is the
nonlinear model of wear, wherein the speed of wear is the
nonlinear (power) function of contact pressure and relative
velocity of rubbing surfaces. The presented nonlinear model
of wear (4) was used earlier in works [21, 25] and others.

For the above presented wear models in stationary
conditions (constant normal force, constant relative sliding
velocity, constant contact pressure, and wear coefficient
independent of temperature) the speed of wear is constant
(𝑑𝑤(𝑡)/𝑑𝑡 = constant). At variable conditions of external
load the so-called delay effects may be observed [21, 22, 26].
For some frictional materials, in spite of stable conditions of
wear processes, the wear coefficient changes with time as a
result of ageing or wearing of friction linings. Then, there is
a necessity to use other wear models than these presented
above. An adequate mathematical description of such a wear
process is the integral model of wear in the form of [17, 21]

𝑤 (𝑡) = ∫

𝑡

0

𝐾
(𝑤)
(𝑇

(𝑡

))

𝑉
𝑟
(𝑡

)

𝐾

(𝑡, 𝑡

) 𝑃 (𝑡

) 𝑑𝑡

, (5)

where 𝐾(𝑡, 𝑡) = 𝐾
1
(𝑡

)𝐾


2
(𝑡 − 𝑡


), wherein 𝐾

1
(𝑡

) = 1 +

𝑐 exp(−𝛾𝑡) and 𝐾
2
(𝑡 − 𝑡


) = 1 − exp[−𝛾(𝑡 − 𝑡)] are

the so-called hereditary and memory kernels. Exponential
functions in the presented wear model with parameters 𝑐, 𝛾,
and 𝛾 are responsible for decreasing the speed of wear
process also in stationary conditions. Model of wear (5) for
𝐾


1
(𝑡

) = 1 and 𝐾

2
(𝑡 − 𝑡

) = 1 − exp[−𝛾(𝑡 − 𝑡)] was used

in [22, 27]. For a model of contact of a thermoelastic layer
with a thermally insulated plate the solution was obtained
taking into account both wear and heat processes. In [28],
integral wear model (5) was used in the system of elliptical
friction contact taking into consideration wear process for
constant wear coefficient, constant relative sliding velocity,
and constant contact pressure. In [16] this model was used
to determine the wear of an elastic and heat transferring
cylinder inserted into the bush (rigid ring) for a constant
wear coefficient. In [20] the integral wear model was used
in the system of two contacting elastic and heat conducting
layers, wherein nonconstant (depending on the temperature
of contact surfaces calculated in the same mathematical
model) wear coefficient was taken.

As mentioned in Section 2, the considered problems
should enable better projection of the behavior of type of the
considered actual systems. From practical point of view, to
minimize the maximal contact pressure between contacting
bodies usually the appropriate contact shape is determined.
Moreover, minimization of wear volume rate, minimization
of friction dissipation power, or minimization of the wear

dissipation power belongs to other classes of optimization
problems. In [29] the variational formulation of contact shape
evolution associated with the wear process was discussed.
Friction contact of two bodieswas considered and analysed in
the case of constant relative sliding velocity between them, as
well as in the case when one of the bodies rotates with respect
to another body. In the mentioned paper it is demonstrated
that the wear dissipation power at the contact surface is mini-
mal in the steady state of wear process. In [30], as an example
of steady wear state, the analysis of disk and drum brakes is
presented, whereas in [31] of the same authors wear analysis
of a punch translating on an elastic strip and wear induced
by a rotating punch on a toroidal surface is considered as an
example of the analysis of coupled thermoelastic steady wear
regimes. The two mentioned above papers present that the
temperature field generated by frictional andwear dissipation
on the contact surface is assumed to reach a steady state.
The steady state is assumed to correspond to minimum of
the wear dissipation power. Some information on the contact
optimization problems was presented in [29]. An extensive
literature review of contact pressure optimization problems
can be found in [32].

4. Mathematical Models

In this section the considered mechanical friction clutch and
mathematical models (both differential and integral wear
model) describing wear processes are presented.

4.1. Model of the Considered Mechanical Friction Clutch. We
are focused on the mechanical friction clutch shown in
Figure 1. This figure presents a model of mechanical friction
clutch and a cross section of friction linings of this clutch
with a computational grid (plotted on the cross section of
the linings divided into 𝑚 equal segments (sections) along
radius 𝑅), in nodes whose appropriate pressures and wears
of individual linings are being calculated.The friction linings
are fixed to both shields of the clutch. The friction contact
between linings occurs in the ring area 𝑅 ∈ [𝑅

1
, 𝑅
2
]. The

mentioned shields are being pressed by axial force 𝑄(𝑡) and
their relative angular velocity is equal to Ω

𝑟
(𝑡), while contact

pressure at any contact point and time is equal to 𝑃(𝑅, 𝑡).
Material wear coefficients for the upper and lower lining,
dependent on temperature 𝑇(𝑅, 𝑡) in a given contact point
and time, are denoted by 𝐾(𝑤)

1
(𝑇

(𝑅, 𝑡)) and 𝐾(𝑤)

2
(𝑇

(𝑅, 𝑡)),

respectively. In turn, stiffness coefficients of frictionmaterials
of these linings in axial direction are 𝑘

1
and 𝑘
2
, respectively.

4.2. Mathematical Modeling of Wear Processes. We assume
the elastic contact interaction between pressed friction lin-
ings to satisfyWinkler relations. According to the mentioned
relations, at each point of the contact surface the elastic
boundary displacements 𝑈(1)(𝑅, 𝑡) for the upper friction
linings and 𝑈(2)(𝑅, 𝑡) for the lower one, along the axis
perpendicular to the contact surface, have the form [33, 34]

𝑈
(1)
(𝑅, 𝑡) = 𝑘

1
𝑃 (𝑅, 𝑡) , 𝑈

(2)
(𝑅, 𝑡) = 𝑘

2
𝑃 (𝑅, 𝑡) . (6)
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Friction contact ring area

Ωr(t)Ωr(t)
R1

R2

Q(t)Q(t)

(a)

Upper friction lining

Lower friction lining

0 1 2 3

Friction contact surface

· · · m − 1 m

(b)

Figure 1: Model of the considered mechanical friction clutch (a) and the cross section of friction linings with a plotted computational grid
(b).

To obtain analytical results similar approach was also used,
for instance, in [31], where the numerical analysis of steady
wear regimes induced by relative sliding of two contacting
bodies has been presented.

The equations describing wears 𝑈(𝑤)
1
(𝑅, 𝑡) of the upper

friction lining and 𝑈(𝑤)
2
(𝑅, 𝑡) of the lower one at each point

of contact for any time instant and for 𝑉
𝑟
(𝑅, 𝑡) = Ω

𝑟
(𝑡)𝑅 in

the case of differential wear model (4) have the form [21, 25]

𝜕𝑈
(𝑤)

1
(𝑅, 𝑡)

𝜕𝑡
= 𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡))

Ω𝑟 (𝑡)


𝛽
1

𝑅
𝛽
1𝑃
𝛼
1
(𝑅, 𝑡) ,

𝜕𝑈
(𝑤)

2
(𝑅, 𝑡)

𝜕𝑡
= 𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡))

Ω𝑟 (𝑡)


𝛽
2

𝑅
𝛽
2𝑃
𝛼
2
(𝑅, 𝑡) ;

(7)

and in the case of integral wear model (5) have the following
form [17, 21]:

𝑈
(𝑤)

1
(𝑅, 𝑡) = ∫

𝑡

0

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)

𝑅𝐾


1
(𝑡, 𝑡

)

⋅ 𝑃 (𝑅, 𝑡

) 𝑑𝑡

,

𝑈
(𝑤)

2
(𝑅, 𝑡) = ∫

𝑡

0

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)

𝑅𝐾


2
(𝑡, 𝑡

)

⋅ 𝑃 (𝑅, 𝑡

) 𝑑𝑡

.

(8)

Conditions of the contact of linings in the clutch (at each
point of the surface) are as follows [33, 34]:

𝑈
(1)
(𝑅, 𝑡) + 𝑈

(2)
(𝑅, 𝑡) + 𝑈

(𝑤)

1
(𝑅, 𝑡) + 𝑈

(𝑤)

2
(𝑅, 𝑡) = 𝐸 (𝑡) ,

⇒
𝜕𝑈
(1)
(𝑅, 𝑡)

𝜕𝑡
+
𝜕𝑈
(2)
(𝑅, 𝑡)

𝜕𝑡
+
𝜕𝑈
(𝑤)

1
(𝑅, 𝑡)

𝜕𝑡

+
𝜕𝑈
(𝑤)

2
(𝑅, 𝑡)

𝜕𝑡
=
𝑑𝐸 (𝑡)

𝑑𝑡
,

(9)

where 𝐸(𝑡) is the function describing the decrease of distance
between clutch shields. Taking into account relations (6)–(8)
in (9) and 𝑘

1
+ 𝑘
2
= 𝑘, we obtain

𝑘
𝜕𝑃 (𝑅, 𝑡)

𝜕𝑡
+ 𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡))

Ω𝑟 (𝑡)


𝛽
1

𝑅
𝛽
1𝑃
𝛼
1
(𝑅, 𝑡)

+ 𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡))

Ω𝑟 (𝑡)


𝛽
2

𝑅
𝛽
2𝑃
𝛼
2
(𝑅, 𝑡) =

𝑑𝐸 (𝑡)

𝑑𝑡

(10)

for the differential wear model and

𝑘𝑃 (𝑅, 𝑡) + ∫

𝑡

0

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)

𝑅𝐾


1
(𝑡, 𝑡

)

⋅ 𝑃 (𝑅, 𝑡

) 𝑑𝑡


+ ∫

𝑡

0

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)

𝑅𝐾


2
(𝑡, 𝑡

) 𝑃 (𝑅, 𝑡


) 𝑑𝑡


= 𝐸 (𝑡)

(11)

for the integral wear model. Multiplying (10) and (11) by 𝑅𝑑𝑅
and next integrating in the area 𝑅 ∈ [𝑅

1
, 𝑅
2
], we get the

following relationship for the differential wear model:

∫

𝑅
2

𝑅
1

𝑘
𝜕𝑃 (𝑅, 𝑡)

𝜕𝑡
𝑅𝑑𝑅 + ∫

𝑅
2

𝑅
1

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡))

Ω𝑟 (𝑡)


𝛽
1

𝑅
𝛽
1

⋅ 𝑃
𝛼
1
(𝑅, 𝑡) 𝑅𝑑𝑅

+ ∫

𝑅
2

𝑅
1

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡))

Ω𝑟 (𝑡)


𝛽
2

𝑅
𝛽
2𝑃
𝛼
2
(𝑅, 𝑡) 𝑅𝑑𝑅

= ∫

𝑅
2

𝑅
1

𝑑𝐸 (𝑡)

𝑑𝑡
𝑅𝑑𝑅;

(12)
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and the appropriate relationship for the integral wear model

∫

𝑅
2

𝑅
1

𝑘𝑃 (𝑅, 𝑡) 𝑅𝑑𝑅

+ ∫

𝑅
2

𝑅
1

(∫

𝑡

0

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)


⋅ 𝑅𝐾


1
(𝑡, 𝑡

) 𝑃 (𝑅, 𝑡


) 𝑑𝑡

)𝑅𝑑𝑅

+ ∫

𝑅
2

𝑅
1

(∫

𝑡

0

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)


⋅ 𝑅𝐾


2
(𝑡, 𝑡

) 𝑃 (𝑅, 𝑡


) 𝑑𝑡

)𝑅𝑑𝑅

= ∫

𝑅
2

𝑅
1

𝐸 (𝑡) 𝑅𝑑𝑅.

(13)

A condition to be satisfied in the considered system is as
follows:

𝑄 (𝑡) = 2𝜋∫

𝑅
2

𝑅
1

𝑅𝑃 (𝑅, 𝑡) 𝑑𝑅,

⇒
𝑑𝑄 (𝑡)

𝑑𝑡
= 2𝜋∫

𝑅
2

𝑅
1

𝑅
𝜕𝑃 (𝑅, 𝑡)

𝜕𝑡
𝑑𝑅.

(14)

Taking (14) in (12), after appropriate transformations we get
(in the case of differential wear model)

𝑘

𝜋 (𝑅
2

2
− 𝑅
2

1
)

𝑑𝑄 (𝑡)

𝑑𝑡
+

2

𝑅
2

2
− 𝑅
2

1

Ω𝑟 (𝑡)


𝛽
1

⋅ ∫

𝑅
2

𝑅
1

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡)) 𝑅

1+𝛽
1𝑃
𝛼
1
(𝑅, 𝑡) 𝑑𝑅

+
2

𝑅
2

2
− 𝑅
2

1

Ω𝑟 (𝑡)


𝛽
2

⋅ ∫

𝑅
2

𝑅
1

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡)) 𝑅

1+𝛽
2𝑃
𝛼
2
(𝑅, 𝑡) 𝑑𝑅 =

𝑑𝐸 (𝑡)

𝑑𝑡
.

(15)

Taking (14) in (13), after appropriate transformations in the
case of integral wear model we get

𝑘𝑄 (𝑡)

𝜋 (𝑅
2

2
− 𝑅
2

1
)
+

2

𝑅
2

2
− 𝑅
2

1

⋅ ∫

𝑅
2

𝑅
1

(∫

𝑡

0

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)

𝐾


1
(𝑡, 𝑡

)

⋅ 𝑃 (𝑅, 𝑡

) 𝑑𝑡

)𝑅
2
𝑑𝑅

+
2

𝑅
2

2
− 𝑅
2

1

∫

𝑅
2

𝑅
1

(∫

𝑡

0

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)


⋅ 𝐾


2
(𝑡, 𝑡

) 𝑃 (𝑅, 𝑡


) 𝑑𝑡

)𝑅
2
𝑑𝑅 = 𝐸 (𝑡) .

(16)

Comparing relations (10) and (15) one gets

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡))

Ω𝑟 (𝑡)


𝛽
1

𝑅
𝛽
1𝑃
𝛼
1
(𝑅, 𝑡)

+ 𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡))

Ω𝑟 (𝑡)


𝛽
2

𝑅
𝛽
2𝑃
𝛼
2
(𝑅, 𝑡) + 𝑘

𝜕𝑃 (𝑅, 𝑡)

𝜕𝑡

=
2

𝑅
2

2
− 𝑅
2

1

Ω𝑟 (𝑡)


𝛽
1

⋅ ∫

𝑅
2

𝑅
1

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡)) 𝑅

1+𝛽
1𝑃
𝛼
1
(𝑅, 𝑡) 𝑑𝑅

+
2

𝑅
2

2
− 𝑅
2

1

Ω𝑟 (𝑡)


𝛽
2

⋅ ∫

𝑅
2

𝑅
1

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡)) 𝑅

1+𝛽
2𝑃
𝛼
2
(𝑅, 𝑡) 𝑑𝑅

+
𝑘

𝜋 (𝑅
2

2
− 𝑅
2

1
)

𝑑𝑄 (𝑡)

𝑑𝑡
.

(17)

In turn, comparison of relations (11) and (16) yields

∫

𝑡

0

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)

𝑅𝐾


1
(𝑡, 𝑡

) 𝑃 (𝑅, 𝑡


) 𝑑𝑡


+ ∫

𝑡

0

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)

𝑅𝐾


2
(𝑡, 𝑡

) 𝑃 (𝑅, 𝑡


) 𝑑𝑡


+ 𝑘𝑃 (𝑅, 𝑡)

=
2

𝑅
2

2
− 𝑅
2

1

∫

𝑅
2

𝑅
1

(∫

𝑡

0

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)

𝐾


1
(𝑡, 𝑡

)

⋅ 𝑃 (𝑅, 𝑡

) 𝑑𝑡

)𝑅
2
𝑑𝑅

+
2

𝑅
2

2
− 𝑅
2

1

∫

𝑅
2

𝑅
1

(∫

𝑡

0

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)


⋅ 𝐾


2
(𝑡, 𝑡

) 𝑃 (𝑅, 𝑡


) 𝑑𝑡

)𝑅
2
𝑑𝑅

+
𝑘𝑄 (𝑡)

𝜋 (𝑅
2

2
− 𝑅
2

1
)
.

(18)

Changing the order of integration in (18) gives

∫

𝑡

0

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)

𝑅𝐾


1
(𝑡, 𝑡

) 𝑃 (𝑅, 𝑡


) 𝑑𝑡


+ ∫

𝑡

0

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡

))

Ω
𝑟
(𝑡

)

𝑅𝐾


2
(𝑡, 𝑡

) 𝑃 (𝑅, 𝑡


) 𝑑𝑡


+ 𝑘𝑃 (𝑅, 𝑡)

=
2

𝑅
2

2
− 𝑅
2

1

∫

𝑡

0

𝐾


1
(𝑡, 𝑡

)

Ω
𝑟
(𝑡

)
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⋅ (∫

𝑅
2

𝑅
1

𝐾
(𝑤)

1
(𝑇

(𝑅, 𝑡

)) 𝑃 (𝑅, 𝑡


) 𝑅
2
𝑑𝑅)𝑑𝑡



+
2

𝑅
2

2
− 𝑅
2

1

∫

𝑡

0

𝐾


2
(𝑡, 𝑡

)

Ω
𝑟
(𝑡

)


⋅ (∫

𝑅
2

𝑅
1

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡

)) 𝑃 (𝑅, 𝑡


) 𝑅
2
𝑑𝑅)𝑑𝑡



+
𝑘𝑄 (𝑡)

𝜋 (𝑅
2

2
− 𝑅
2

1
)
.

(19)

The friction torque transmitted by the clutch with friction
coefficient 𝜇(Ω

𝑟
(𝑡), 𝑅, 𝑇


(𝑅, 𝑡)) between friction linings is

computed as a sum of basic torques integrating all over the
entire contact surface of linings, and it reads

𝑀fr (𝑡) = 2𝜋∫
𝑅
2

𝑅
1

𝜇 (Ω
𝑟
(𝑡) , 𝑅, 𝑇


(𝑅, 𝑡)) 𝑅

2
𝑃 (𝑅, 𝑡) 𝑑𝑅. (20)

4.3. Analytical Investigations. Suppose that in the initial time
instant 𝑡 = 0we take𝑈(𝑤)

1
(𝑅, 0) = 0 and𝑈(𝑤)

2
(𝑅, 0) = 0. Then,

according to (9)

𝐸 (0) = 𝑈
(1)
(𝑅, 0) + 𝑈

(2)
(𝑅, 0) = 𝑘𝑃 (𝑅, 0) (21)

does not depend on 𝑅, and in consequence 𝑃(𝑅, 0) does not
depend on 𝑅 either. Taking into account this observation and
(14) one obtains

𝑄 (0) = 2𝜋∫

𝑅
2

𝑅
1

𝑅𝑃 (𝑅, 0) 𝑑𝑅,

⇒ 𝑄 (0) = 2𝜋𝑃 (𝑅, 0)
𝑅
2

2
− 𝑅
2

1

2
.

(22)

On the basis of (21) and (22), we have

𝑃 (𝑅, 0) =
𝑄 (0)

𝜋 (𝑅
2

2
− 𝑅
2

1
)
, 𝐸 (0) =

𝑘𝑄 (0)

𝜋 (𝑅
2

2
− 𝑅
2

1
)
. (23)

According to relation (20) for 𝜇(Ω
𝑟
(0), 𝑅, 𝑇


(𝑅, 0)) = 𝜇 =

constant the friction torque transmitted by the clutch in the
initial moment 𝑡 = 0 is as follows:

𝑀fr (0) =
2

3
𝜇𝑄 (0)

𝑅
3

2
− 𝑅
3

1

𝑅
2

2
− 𝑅
2

1

. (24)

Further analysis of both differential and integral wear
models requires the following simplifications: 𝑄(𝑡) = 𝑄 =
constant, Ω

𝑟
(𝑡) = Ω

𝑟
= constant, 𝛼

1
= 𝛼
2
= 1, 𝛽

1
= 𝛽
2
= 1,

𝐾


1
(𝑡, 𝑡

) = 1, 𝐾

2
(𝑡, 𝑡

) = 1, 𝐾(𝑤)

1
(𝑇

(𝑅, 𝑡)) = 𝐾

(𝑤)

1
= constant,

𝐾
(𝑤)

2
(𝑇

(𝑅, 𝑡)) = 𝐾

(𝑤)

2
= constant, and 𝐾(𝑤)

1
+ 𝐾
(𝑤)

2
=

𝐾
(𝑤). Taking into account assumptions 𝐾

1
(𝑡, 𝑡

) = 1 and

𝐾


2
(𝑡, 𝑡

) = 1, the equations describing wear with respect to

the integral wear model can be written in a differential form
which agrees with the differential wear model for 𝛼

1
= 𝛼
2
= 1

and 𝛽
1
= 𝛽
2
= 1. Thus, we obtain an analogous relation

presented below, similar to the special case for the differential
wear model. The introduced assumptions imply linear wear
models, first written in the differential form and second in
the integral form.

Owing to (7), wears in the initial time instant are
governed by the following relations:

𝜕𝑈
(𝑤)

1
(𝑅, 0)

𝜕𝑡
=
𝐾
(𝑤)

1
𝑄
Ω𝑟


𝜋 (𝑅
2

2
− 𝑅
2

1
)
𝑅,

𝜕𝑈
(𝑤)

2
(𝑅, 0)

𝜕𝑡
=
𝐾
(𝑤)

2
𝑄
Ω𝑟


𝜋 (𝑅
2

2
− 𝑅
2

1
)
𝑅.

(25)

Observe that speeds of wearing of friction linings 𝜕𝑈(𝑤)
1
(𝑅,

0)/𝜕𝑡 and 𝜕𝑈(𝑤)
2
(𝑅, 0)/𝜕𝑡 are proportional to radius 𝑅 in the

initial moment at each point of contact. The total speed of
wearing of friction linings 𝜕𝑈(𝑤)(𝑅, 0)/𝜕𝑡 = 𝜕𝑈(𝑤)

1
(𝑅, 0)/𝜕𝑡 +

𝜕𝑈
(𝑤)

2
(𝑅, 0)/𝜕𝑡 has the form

𝜕𝑈
(𝑤)
(𝑅, 0)

𝜕𝑡
=
𝐾
(𝑤)
𝑄
Ω𝑟


𝜋 (𝑅
2

2
− 𝑅
2

1
)
𝑅. (26)

Equation (15) yields the speed of decrease of the distance
between clutch shields in the initial time instant

𝑑𝐸 (0)

𝑑𝑡
=

2𝐾
(𝑤)
𝑄
Ω𝑟
 (𝑅
3

2
− 𝑅
3

1
)

3𝜋 (𝑅
2

2
− 𝑅
2

1
)
2

. (27)

Below, we show the way of solving equations governing
contact pressures. Taking the above assumptions into (17) we
obtain

𝐾
(𝑤) Ω𝑟

 𝑅𝑃 (𝑅, 𝑡) + 𝑘
𝜕𝑃 (𝑅, 𝑡)

𝜕𝑡

=
2𝐾
(𝑤) Ω𝑟



𝑅
2

2
− 𝑅
2

1

∫

𝑅
2

𝑅
1

𝑅
2
𝑃 (𝑅, 𝑡) 𝑑𝑅.

(28)

Applying the Laplace transformation to (28), we get

𝐾
(𝑤) Ω𝑟

 𝑅𝑃 (𝑅, 𝑠) + 𝑘𝑠𝑃 (𝑅, 𝑠) − 𝑘𝑃 (𝑅, 0)

=
2𝐾
(𝑤) Ω𝑟



𝑅
2

2
− 𝑅
2

1

∫

𝑅
2

𝑅
1

𝑅
2
𝑃 (𝑅, 𝑠) 𝑑𝑅.

(29)

Direct application of (23) governing the contact pressure
𝑃(𝑅, 0) for a constant force 𝑄(𝑡) = 𝑄 yields equation

𝑃 (𝑅, 𝑠) = (𝐾
(𝑤) Ω𝑟

 𝑅 + 𝑘𝑠)
−1

⋅ (
2𝐾
(𝑤) Ω𝑟



𝑅
2

2
− 𝑅
2

1

∫

𝑅
2

𝑅
1

𝑅
2
𝑃 (𝑅, 𝑠) 𝑑𝑅 +

𝑘𝑄

𝜋 (𝑅
2

2
− 𝑅
2

1
)
) ,

(30)

since

𝑃 (𝑅,∞) = lim
𝑠→0

𝑠𝑃 (𝑅, 𝑠) , (31)
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and after next transformations of (30), the following relation-
ship is derived:

𝑃 (𝑅,∞) =
1

𝑅
(

2

𝑅
2

2
− 𝑅
2

1

∫

𝑅
2

𝑅
1

𝑅
2
𝑃 (𝑅,∞) 𝑑𝑅) . (32)

In what follows, we are going to show that integral equation
(32) has the following form:

𝑃 (𝑅,∞) =
𝐴

𝑅
. (33)

In the beginning we prove that (33) is a solution to (32):

1

𝑅
(

2

𝑅
2

2
− 𝑅
2

1

∫

𝑅
2

𝑅
1

𝑅
2𝐴

𝑅
𝑑𝑅) =

1

𝑅
(

2

𝑅
2

2
− 𝑅
2

1

𝐴∫

𝑅
2

𝑅
1

𝑅𝑑𝑅)

=
𝐴

𝑅
.

(34)

Nowour aim is to determine constant𝐴. Substituting relation
(33) into (14) and taking into account 𝑡 → ∞, the following
constant 𝐴 is obtained

𝐴 =
𝑄

2𝜋 (𝑅
2
− 𝑅
1
)
. (35)

Finally, in a steady state, we get contact pressure distribution
𝑃(𝑅,∞) in the form

𝑃 (𝑅,∞) =
𝑄

2𝜋 (𝑅
2
− 𝑅
1
)

1

𝑅
. (36)

The obtained contact pressure distributions in the steady state
in the form of (36) allow us to determine the remaining
relations. The speed of wearing of frictional clutch linings
𝜕𝑈
(𝑤)

1
(𝑅,∞)/𝜕𝑡 and 𝜕𝑈(𝑤)

2
(𝑅,∞)/𝜕𝑡 in the steady state is as

follows:

𝜕𝑈
(𝑤)

1
(𝑅,∞)

𝜕𝑡
=
𝐾
(𝑤)

1
𝑄
Ω𝑟


2𝜋 (𝑅
2
− 𝑅
1
)
,

𝜕𝑈
(𝑤)

2
(𝑅,∞)

𝜕𝑡
=
𝐾
(𝑤)

2
𝑄
Ω𝑟


2𝜋 (𝑅
2
− 𝑅
1
)
.

(37)

It is constant on the entire contact surface (it does not
depend on radius 𝑅). For this reason wears of linings
𝑈
(𝑤)

1
(𝑅,∞) and 𝑈(𝑤)

2
(𝑅,∞) in each point of contact surface

theoretically increase to infinity with constant speed of wear.
The total speed of wear 𝜕𝑈(𝑤)(𝑅,∞)/𝜕𝑡 (𝜕𝑈(𝑤)

1
(𝑅,∞)/𝜕𝑡 +

𝜕𝑈
(𝑤)

2
(𝑅,∞)/𝜕𝑡) takes the form

𝜕𝑈
(𝑤)
(𝑅,∞)

𝜕𝑡
=
𝐾
(𝑤)
𝑄
Ω𝑟


2𝜋 (𝑅
2
− 𝑅
1
)
. (38)

In turn, the speed of decrease of the distance between clutch
shields in the steady state is

𝑑𝐸 (∞)

𝑑𝑡
=
𝐾
(𝑤)

1
𝑄
Ω𝑟


2𝜋 (𝑅
2
− 𝑅
1
)
+
𝐾
(𝑤)

2
𝑄
Ω𝑟


2𝜋 (𝑅
2
− 𝑅
1
)
=
𝐾
(𝑤)
𝑄
Ω𝑟


2𝜋 (𝑅
2
− 𝑅
1
)

(39)

and is equal to the total speed of wear 𝜕𝑈(𝑤)(𝑅,∞)/𝜕𝑡, and
for this reason theoretically 𝐸(∞) → ∞. Friction torque
transmitted by the clutch for 𝜇 = constant in the steady state
(𝑡 = ∞) is as follows:

𝑀fr (∞) = 𝜇𝑄
𝑅
1
+ 𝑅
2

2
. (40)

The above theoretical analysis allows us to appoint con-
tact pressure distribution 𝑃(𝑅, 0), distance between clutch
shields 𝐸(0), and friction torque 𝑀fr(0) transmitted by the
clutch in the initial moment (𝑡 = 0). Initial values of wear
at each point of the contact of friction linings are equal to
zero. Besides, we obtain the speed of decrease of the distance
between clutch shields 𝑑𝐸(0)/𝑑𝑡 in the initial moment (𝑡 =
0). After accepting additional simplifications, for the linear
wear model we also estimated contact pressure distribution
𝑃(𝑅,∞), the speed of decrease of the distance between clutch
shields 𝑑𝐸(∞)/𝑑𝑡, and friction torque transmitted by the
clutch𝑀fr(∞) in the steady state (𝑡 → ∞).

4.4. Nondimensional Form. The obtained relations were also
written in a nondimensional form. We introduce the simi-
larity coefficients 𝑡

∗
, 𝑈
∗
, 𝑇
∗
, Ω
∗
, 𝑃
∗
, 𝑄
∗
, 𝑀
∗
, nondimen-

sional times 𝜏 = 𝑡/𝑡
∗
and 𝜉 = 𝑡/𝑡

∗
, nondimensional radius

𝑟 = (𝑅 − 𝑅
1
)/(𝑅
2
− 𝑅
1
), nondimensional geometrical param-

eter 𝜌 = 𝑅
1
/(𝑅
2
− 𝑅
1
), other nondimensional parameters

𝑈
∗
/𝑘𝑃
∗
= 𝑙
1
, 𝑄
∗
(1+𝜌)

2
/𝜋𝑃
∗
𝑅
2

2
(1+2𝜌) = 𝑙

2
, 2𝜋𝑃
∗
𝑅
3

2
/𝑀
∗
(1+

𝜌)
3
= 𝑘fr, the nondimensional functions

𝑈
(𝑤)

1
((𝑅
2
− 𝑅
1
) (𝑟 + 𝜌) , 𝑡

∗
𝜏)

𝑈
∗

= 𝑢
(𝑤)

1
(𝑟, 𝜏) ,

𝑈
(𝑤)

2
((𝑅
2
− 𝑅
1
) (𝑟 + 𝜌) , 𝑡

∗
𝜏)

𝑈
∗

= 𝑢
(𝑤)

2
(𝑟, 𝜏) ,

𝑇

((𝑅
2
− 𝑅
1
) (𝑟 + 𝜌) , 𝑡

∗
𝜏)

𝑇
∗

= 𝑇 (𝑟, 𝜏) ,

Ω
𝑟
(𝑡
∗
𝜏)

Ω
∗

= 𝜔
𝑟
(𝜏) ,

𝑄 (𝑡
∗
𝜏)

𝑄
∗

= 𝑞 (𝜏) ,

𝑃 ((𝑅
2
− 𝑅
1
) (𝑟 + 𝜌) , 𝑡

∗
𝜏)

𝑃
∗

= 𝑝 (𝑟, 𝜏) ,

𝐸 (𝑡
∗
𝜏)

𝑈
∗

= 𝜂 (𝜏) ,
𝑀fr (𝑡∗𝜏)

𝑀
∗

= 𝐹fr (𝜏) ,

𝜇 (Ω
∗

Ω
𝑟
(𝑡
∗
𝜏)

Ω
∗

, (𝑅
2
− 𝑅
1
) (𝑟 + 𝜌) ,

𝑇
∗

𝑇

((𝑅
2
− 𝑅
1
) (𝑟 + 𝜌) , 𝑡

∗
𝜏)

𝑇
∗

)

= 𝑓 (𝜔
𝑟
(𝜏) , 𝑟, 𝑇 (𝑟, 𝜏)) ,

𝐾


1
(𝑡
∗
𝜏, 𝑡
∗
𝜉) = 𝐾

1
(𝜏, 𝜉) , 𝐾



2
(𝑡
∗
𝜏, 𝑡
∗
𝜉) = 𝐾

2
(𝜏, 𝜉) ,

(41)
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the nondimensional wear coefficients for the differential wear
model

𝑡
∗
Ω
𝛽
1

∗
𝑃
𝛼
1

∗
𝑅
𝛽
1

2

𝑈
∗
(1 + 𝜌)

𝛽
1

𝐾
(𝑤)

1
(𝑇
∗

𝑇

((𝑅
2
− 𝑅
1
) (𝑟 + 𝜌) , 𝑡

∗
𝜏)

𝑇
∗

)

= 𝑘
(𝑤)

1
(𝑇 (𝑟, 𝜏)) ,

𝑡
∗
Ω
𝛽
2

∗
𝑃
𝛼
2

∗
𝑅
𝛽
2

2

𝑈
∗
(1 + 𝜌)

𝛽
2

𝐾
(𝑤)

2
(𝑇
∗

𝑇

((𝑅
2
− 𝑅
1
) (𝑟 + 𝜌) , 𝑡

∗
𝜏)

𝑇
∗

)

= 𝑘
(𝑤)

2
(𝑇 (𝑟, 𝜏)) ,

(42)

and the nondimensional wear coefficients for the integral
wear model

𝑡
∗
Ω
∗
𝑃
∗
𝑅
2

𝑈
∗
(1 + 𝜌)

𝐾
(𝑤)

1
(𝑇
∗

𝑇

((𝑅
2
− 𝑅
1
) (𝑟 + 𝜌) , 𝑡

∗
𝜏)

𝑇
∗

)

= 𝑘
(𝑤)

1
(𝑇 (𝑟, 𝜏)) ,

𝑡
∗
Ω
∗
𝑃
∗
𝑅
2

𝑈
∗
(1 + 𝜌)

𝐾
(𝑤)

2
(𝑇
∗

𝑇

((𝑅
2
− 𝑅
1
) (𝑟 + 𝜌) , 𝑡

∗
𝜏)

𝑇
∗

)

= 𝑘
(𝑤)

2
(𝑇 (𝑟, 𝜏)) .

(43)

Then, owing to (7), the wear of individual friction linings
has the following nondimensional form (differential wear
model):

𝜕𝑢
(𝑤)

1
(𝑟, 𝜏)

𝜕𝜏
= 𝑘
(𝑤)

1
(𝑇 (𝑟, 𝜏))

𝜔𝑟 (𝜏)


𝛽
1

(𝑟 + 𝜌)
𝛽
1

𝑝
𝛼
1
(𝑟, 𝜏) ,

𝜕𝑢
(𝑤)

2
(𝑟, 𝜏)

𝜕𝜏
= 𝑘
(𝑤)

2
(𝑇 (𝑟, 𝜏))

𝜔𝑟 (𝜏)


𝛽
2

(𝑟 + 𝜌)
𝛽
2

𝑝
𝛼
2
(𝑟, 𝜏) ,

(44)

whereas on the basis of (8) the wear of individual friction
linings has the following nondimensional form (integral wear
model):

𝑢
(𝑤)

1
(𝑟, 𝜏)

= (𝑟 + 𝜌)∫

𝜏

0

𝑘
(𝑤)

1
(𝑇 (𝑟, 𝜉))

𝜔𝑟 (𝜉)
 𝐾1 (𝜏, 𝜉) 𝑝 (𝑟, 𝜉) 𝑑𝜉,

𝑢
(𝑤)

2
(𝑟, 𝜏)

= (𝑟 + 𝜌)∫

𝜏

0

𝑘
(𝑤)

2
(𝑇 (𝑟, 𝜉))

𝜔𝑟 (𝜉)
 𝐾2 (𝜏, 𝜉) 𝑝 (𝑟, 𝜉) 𝑑𝜉.

(45)

Nondimensional equations (15) and (16) describing a
decrease of the distance between clutch shields are (for the
differential and integral wear model, resp.)

𝑑𝜂 (𝜏)

𝑑𝜏
=

2

1 + 2𝜌

𝜔𝑟 (𝜏)


𝛽
1

⋅ ∫

1

0

𝑘
(𝑤)

1
(𝑇 (𝑟, 𝜏)) (𝑟 + 𝜌)

1+𝛽
1

𝑝
𝛼
1
(𝑟, 𝜏) 𝑑𝑟

+
2

1 + 2𝜌

𝜔𝑟 (𝜏)


𝛽
2

⋅ ∫

1

0

𝑘
(𝑤)

2
(𝑇 (𝑟, 𝜏)) (𝑟 + 𝜌)

1+𝛽
2

𝑝
𝛼
2
(𝑟, 𝜏) 𝑑𝑟

+
𝑙
2

𝑙
1

𝑑𝑞 (𝜏)

𝑑𝜏
,

(46)

𝜂 (𝜏)

=
2

1 + 2𝜌
∫

𝜏

0

𝐾
1
(𝜏, 𝜉)

𝜔𝑟 (𝜉)


⋅ (∫

1

0

𝑘
(𝑤)

1
(𝑇 (𝑟, 𝜉)) 𝑝 (𝑟, 𝜉)

⋅ (𝑟 + 𝜌)
2

𝑑𝑟) 𝑑𝜉

+
2

1 + 2𝜌
∫

𝜏

0

𝐾
2
(𝜏, 𝜉)

𝜔𝑟 (𝜉)


⋅ (∫

1

0

𝑘
(𝑤)

2
(𝑇 (𝑟, 𝜉)) 𝑝 (𝑟, 𝜉)

⋅ (𝑟 + 𝜌)
2

𝑑𝑟) 𝑑𝜉

+
𝑙
2

𝑙
1

𝑞 (𝜏) .

(47)

Equations (17) and (19) yield the following nondimensional
relationship (differential wear model):

𝑙
1
𝑘
(𝑤)

1
(𝑇 (𝑟, 𝜏))

𝜔𝑟 (𝜏)


𝛽
1

(𝑟 + 𝜌)
𝛽
1

𝑝
𝛼
1
(𝑟, 𝜏)

+ 𝑙
1
𝑘
(𝑤)

2
(𝑇 (𝑟, 𝜏))

𝜔𝑟 (𝜏)


𝛽
2

⋅ (𝑟 + 𝜌)
𝛽
2

𝑝
𝛼
2
(𝑟, 𝜏) +

𝜕𝑝 (𝑟, 𝜏)

𝜕𝜏

=
2𝑙
1

1 + 2𝜌
|𝜔
𝑟
(𝜏) |
𝛽
1

⋅ ∫

1

0

𝑘
(𝑤)

1
(𝑇 (𝑟, 𝜏)) (𝑟 + 𝜌)

1+𝛽
1

𝑝
𝛼
1
(𝑟, 𝜏) 𝑑𝑟
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+
2𝑙
1

1 + 2𝜌

𝜔𝑟 (𝜏)


𝛽
2

⋅ ∫

1

0

𝑘
(𝑤)

2
(𝑇 (𝑟, 𝜏)) (𝑟 + 𝜌)

1+𝛽
2

𝑝
𝛼
2
(𝑟, 𝜏) 𝑑𝑟 + 𝑙

2

𝑑𝑞 (𝜏)

𝑑𝜏
,

(48)

𝑙
1
(𝑟 + 𝜌)∫

𝜏

0

𝑘
(𝑤)

1
(𝑇 (𝑟, 𝜉))

𝜔𝑟 (𝜉)
 𝐾1 (𝜏, 𝜉) 𝑝 (𝑟, 𝜉) 𝑑𝜉

+ 𝑙
1
(𝑟 + 𝜌)∫

𝜏

0

𝑘
(𝑤)

2
(𝑇 (𝑟, 𝜉))

𝜔𝑟 (𝜉)
 𝐾2 (𝜏, 𝜉)

⋅ 𝑝 (𝑟, 𝜉) 𝑑𝜉 + 𝑝 (𝑟, 𝜏)

=
2𝑙
1

1 + 2𝜌
∫

𝜏

0

𝐾
1
(𝜏, 𝜉)

𝜔𝑟 (𝜉)


⋅ (∫

1

0

𝑘
(𝑤)

1
(𝑇 (𝑟, 𝜉)) 𝑝 (𝑟, 𝜉) (𝑟 + 𝜌)

2

𝑑𝑟) 𝑑𝜉

+
2𝑙
1

1 + 2𝜌
∫

𝜏

0

𝐾
2
(𝜏, 𝜉)

𝜔𝑟 (𝜉)


⋅ (∫

1

0

𝑘
(𝑤)

2
(𝑇 (𝑟, 𝜉)) 𝑝 (𝑟, 𝜉) (𝑟 + 𝜌)

2

𝑑𝑟) 𝑑𝜉

+ 𝑙
2
𝑞 (𝜏)

(49)

for the integral wear model. On the basis of (20), we get
the associated nondimensional relation describing friction
torque transmitted by the clutch

𝐹fr (𝜏) = 𝑘fr ∫
1

0

𝑓 (𝜔
𝑟
(𝜏) , 𝑟, 𝑇 (𝑟, 𝜏)) (𝑟 + 𝜌)

2

𝑝 (𝑟, 𝜏) 𝑑𝑟.

(50)

For further analysis we assume that Ω
∗
= Ω
𝑟
, 𝑡
∗
=

1/Ω
∗
, 𝑈
∗
= 𝐸(0), 𝑃

∗
= 𝑃(𝑅, 0), 𝑄

∗
= 𝑄, 𝑀

∗
= 𝑀fr(0).

Hence, we obtain 𝑙
1
= 1 and 𝑙

2
= 1. Since the friction

torque transmitted by the clutch is normalized (referring to
the initial value), the value of coefficient 𝑘fr is irrelevant (it
should be positive only). The above presented assumption
yields the following functions: 𝜔

𝑟
= 1, 𝑞 = 1, 𝑝(𝑟, 0) =

1, 𝜂(0) = 1, and 𝐹fr(0) = 1. The initial wear of frictional
linings in nondimensional form is also equal to zero, namely,
𝑢
(𝑤)

1
(𝑟, 0) = 0 and 𝑢(𝑤)

2
(𝑟, 0) = 0. In addition, we take

the following assumptions: 𝛼
1
= 𝛼
2
= 1, 𝛽

1
= 𝛽
2
=

1, 𝐾
1
(𝜏, 𝜉) = 1, 𝐾

2
(𝜏, 𝜉) = 1, 𝑘

(𝑤)

1
(𝑇(𝑟, 𝜏)) = 𝑘

(𝑤)

1
=

constant, 𝑘(𝑤)
2
(𝑇(𝑟, 𝜏)) = 𝑘

(𝑤)

2
= constant, and 𝑘(𝑤)

1
+ 𝑘
(𝑤)

2
=

𝑘
(𝑤). Then, initial speeds of wearing of linings have the

following nondimensional form,

𝜕𝑢
(𝑤)

1
(𝑟, 0)

𝜕𝜏
= 𝑘
(𝑤)

1

𝜔𝑟
 (𝑟 + 𝜌) 𝑝 (𝑟, 0) = 𝑘

(𝑤)

1
(𝑟 + 𝜌) ,

𝜕𝑢
(𝑤)

2
(𝑟, 0)

𝜕𝜏
= 𝑘
(𝑤)

2

𝜔𝑟
 (𝑟 + 𝜌) 𝑝 (𝑟, 0) = 𝑘

(𝑤)

2
(𝑟 + 𝜌) ,

(51)

and are the linear functions of the nondimensional radius 𝑟.
The nondimensional total speed of wearing of linings in the
initial moment is

𝜕𝑢
(𝑤)
(𝑟, 0)

𝜕𝜏
= 𝑘
(𝑤) 𝜔𝑟

 (𝑟 + 𝜌) 𝑝 (𝑟, 0) = 𝑘
(𝑤)
(𝑟 + 𝜌) , (52)

and it is proportional to the nondimensional radius 𝑟. The
speed of decrease of the distance between clutch shields
(in the initial time moment) is simplified to the following
nondimensional form:

𝑑𝜂 (0)

𝑑𝜏
= 𝑘
(𝑤) 2

3

(1 + 𝜌)
2

+ 𝜌 (1 + 𝜌) + 𝜌
2

1 + 2𝜌
. (53)

Contact pressure distribution in the steady state is

𝑝 (𝑟,∞) = (
1

2
+ 𝜌)

1

𝑟 + 𝜌
, (54)

whereas nondimensional speeds of wearing of clutch linings
in the steady state are

𝜕𝑢
(𝑤)

1
(𝑟,∞)

𝜕𝜏
= (
1

2
+ 𝜌) 𝑘

(𝑤)

1
,

𝜕𝑢
(𝑤)

2
(𝑟,∞)

𝜕𝜏
= (
1

2
+ 𝜌) 𝑘

(𝑤)

2
,

(55)

and the total speed of wearing of clutch linings in the steady
state is simplified to the following nondimensional form:

𝜕𝑢
(𝑤)
(𝑟,∞)

𝜕𝜏
= (
1

2
+ 𝜌) 𝑘

(𝑤)
. (56)

Nondimensional speed of decrease of the distance between
clutch shields in the steady state is as follows:

𝑑𝜂 (∞)

𝑑𝜏
= (
1

2
+ 𝜌) 𝑘

(𝑤)

1
+ (
1

2
+ 𝜌) 𝑘

(𝑤)

2
= (
1

2
+ 𝜌) 𝑘

(𝑤)
,

(57)

and it is equal to the total speed of wearing of clutch linings.
For this reason for 𝜏 → ∞ theoretically also 𝜂(𝜏) → ∞.
Moreover, nondimensional friction torque transmitted by the
clutch in the steady state is described by the relation

𝐹fr (∞) =
3

4

(1 + 2𝜌)
2

(1 + 𝜌)
2

+ 𝜌 (1 + 𝜌) + 𝜌2
. (58)

4.5. Numerical Computational Methods. Integrals occurring
in nondimensional differential, integral, and integrodifferen-
tial equations are written using the trapezia method. ODEs
obtained in this way were solved using the fourth-order
Runge-Kutta method. In order to solve (44)–(50), we divided
nondimensional radius 𝑟 on 𝑚 even segments taking Δ

𝑟
=

1/𝑚, 𝑟
𝑖
= Δ
𝑟
𝑖, 𝑟
𝑗
= Δ
𝑟
𝑗. Radius-dependent integrals in

(46)–(50) are replaced with the sum using the method of
trapezia (rates of the method are 𝑎

0
= 𝑎
𝑚
= 1/2, 𝑎

𝑗
= 1,

𝑗 = 1, 2, . . . , 𝑚 − 1). Time-dependent integrals in (45), (47),
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and (49) are also replaced with the sum using the method
of trapezia (rates of the method are 𝑏

0
= 𝑏
𝑛
= 1/2, 𝑏

𝑗
=

1, 𝑗 = 1, 2, . . . , 𝑛 − 1). In addition, we adopted the following
indications: 𝑝(𝑟

𝑖
, 𝜏) = 𝑝

𝑖
(𝜏), 𝑇(𝑟

𝑖
, 𝜏) = 𝑇

𝑖
(𝜏), 𝑢

(𝑤)

1
(𝑟
𝑖
, 𝜏) =

𝑢
(𝑤)

1,𝑖
(𝜏), and 𝑢(𝑤)

2
(𝑟
𝑖
, 𝜏) = 𝑢

(𝑤)

2,𝑖
(𝜏). For time 𝜏 on the basis of

(44), wears of individual friction linings are

𝑑𝑢
(𝑤)

1,𝑖
(𝜏)

𝑑𝜏
= 𝑘
(𝑤)

1
(𝑇
𝑖
(𝜏))
𝜔𝑟 (𝜏)



𝛽
1

(𝑟
𝑖
+ 𝜌)
𝛽
1

𝑝
𝛼
1

𝑖
(𝜏) ,

𝑑𝑢
(𝑤)

2,𝑖
(𝜏)

𝑑𝜏
= 𝑘
(𝑤)

2
(𝑇
𝑖
(𝜏))
𝜔𝑟 (𝜏)



𝛽
2

(𝑟
𝑖
+ 𝜌)
𝛽
2

𝑝
𝛼
2

𝑖
(𝜏) ,

(59)

for the differential wear model, and for the integral wear
model we have

𝑢
(𝑤)

1,𝑖
(𝜏
𝑛
) = (𝑟

𝑖
+ 𝜌)Δ

𝜏

⋅

𝑛

∑

𝑗=0

𝑏
𝑗
𝑘
(𝑤)

1
(𝑇
𝑖
(𝜏
𝑗
))

𝜔
𝑟
(𝜏
𝑗
)

𝐾
1
(𝜏
𝑛
, 𝜏
𝑗
) 𝑝
𝑖
(𝜏
𝑗
) ,

𝑢
(𝑤)

2,𝑖
(𝜏
𝑛
) = (𝑟

𝑖
+ 𝜌)Δ

𝜏

⋅

𝑛

∑

𝑗=0

𝑏
𝑗
𝑘
(𝑤)

2
(𝑇
𝑖
(𝜏
𝑗
))

𝜔
𝑟
(𝜏
𝑗
)

𝐾
2
(𝜏
𝑛
, 𝜏
𝑗
) 𝑝
𝑖
(𝜏
𝑗
) .

(60)

On the basis of (46) we get (for the differential wear model)

𝑑𝜂 (𝜏)

𝑑𝜏
=

2

1 + 2𝜌

𝜔𝑟 (𝜏)


𝛽
1

Δ
𝑟

⋅

𝑚

∑

𝑖=0

𝑎
𝑖
𝑘
(𝑤)

1
(𝑇
𝑖
(𝜏)) (𝑟

𝑖
+ 𝜌)
1+𝛽
1

𝑝
𝛼
1

𝑖
(𝜏)

+
2

1 + 2𝜌

𝜔𝑟 (𝜏)


𝛽
2

Δ
𝑟

⋅

𝑚

∑

𝑖=0

𝑎
𝑖
𝑘
(𝑤)

2
(𝑇
𝑖
(𝜏)) (𝑟

𝑖
+ 𝜌)
1+𝛽
2

𝑝
𝛼
2

𝑖
(𝜏) +

𝑙
2

𝑙
1

𝑑𝑞 (𝜏)

𝑑𝜏
,

(61)

whereas (47) yielded (for the integral wear model)

𝜂 (𝜏
𝑛
) =

2

1 + 2𝜌
Δ
𝜏

𝑛

∑

𝑗=0

𝑏
𝑗
𝐾
1
(𝜏
𝑛
, 𝜏
𝑗
)

𝜔
𝑟
(𝜏
𝑗
)


⋅ (Δ
𝑟

𝑚

∑

𝑖=0

𝑎
𝑖
𝑘
(𝑤)

1
(𝑇
𝑖
(𝜏
𝑗
)) 𝑝
𝑖
(𝜏
𝑗
) (𝑟
𝑖
+ 𝜌)
2

)

+
2

1 + 2𝜌
Δ
𝜏

𝑛

∑

𝑗=0

𝑏
𝑗
𝐾
2
(𝜏
𝑛
, 𝜏
𝑗
)

𝜔
𝑟
(𝜏
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Using (48), the contact pressure is governed by (the differen-
tial wear model)

𝑑𝑝
𝑖
(𝜏)

𝑑𝜏
= −𝑙
1
𝑘
(𝑤)

1
(𝑇
𝑖
(𝜏))
𝜔𝑟 (𝜏)



𝛽
1

(𝑟
𝑖
+ 𝜌)
𝛽
1

𝑝
𝛼
1

𝑖
(𝜏)

− 𝑙
1
𝑘
(𝑤)

2
(𝑇
𝑖
(𝜏))
𝜔𝑟 (𝜏)



𝛽
2

(𝑟
𝑖
+ 𝜌)
𝛽
2

𝑝
𝛼
2

𝑖
(𝜏)

+
2𝑙
1

1 + 2𝜌

𝜔𝑟 (𝜏)


𝛽
1

Δ
𝑟

⋅

𝑚

∑

𝑗=0

𝑎
𝑗
𝑘
(𝑤)

1
(𝑇
𝑗
(𝜏)) (𝑟

𝑗
+ 𝜌)
1+𝛽
1

𝑝
𝛼
1

𝑗
(𝜏)

+
2𝑙
1

1 + 2𝜌

𝜔𝑟 (𝜏)


𝛽
2

Δ
𝑟

⋅

𝑚

∑

𝑗=0

𝑎
𝑗
𝑘
(𝑤)

2
(𝑇
𝑗
(𝜏)) (𝑟

𝑗
+ 𝜌)
1+𝛽
2

𝑝
𝛼
2

𝑗
(𝜏) + 𝑙

2

𝑑𝑞 (𝜏)

𝑑𝜏
.

(63)

On the other hand, (49) yielded the contact pressure equa-
tions (the integral wear model)
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Moreover, on the basis of (50) friction torque transmitted by
the clutch is as follows:
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(65)

Assuming again coefficients Ω
∗
= Ω
𝑟
, 𝑡
∗
= 1/Ω

∗
, 𝑈
∗
=

𝐸(0), 𝑃
∗
= 𝑃(𝑅, 0), 𝑄

∗
= 𝑄 and 𝑀

∗
= 𝑀fr(0), we have

𝑙
1
= 1, 𝑙

2
= 1, 𝜔

𝑟
= 1, 𝑞 = 1, 𝑝(𝑟, 0) = 1, 𝜂(0) = 1, and

𝐹fr(0) = 1.
In the above, the system of first-order ODEs is obtained,

including 2(𝑚+1) equations which describe the distributions
of wear of individual clutch linings, one equation governing
a decrease of the distance between clutch shields, and 𝑚 + 1
equations regarding the contact pressure distribution. In the
case of integral wear model algebraic equations are obtained,
including 2(𝑚+1) equations for wear distributions,𝑚+1 het-
erogeneous equations for contact pressure distribution, and
one equation describing a decrease of the distance between
clutch shields. Moreover, for both cases of wear models we
obtain the equation describing friction torque transmitted
by the clutch. The appropriate numerical algorithms were
prepared in C++ for numerical analysis for various values of
systemandnumerical parameters. For numerical calculations
presented in this paper we take𝑚 = 100; however satisfactory
results can be obtained also for 𝑚 = 10. The appropriate
first-order ODEs are derived using the fourth-order Runge-
Kutta method with constant time step Δ

𝜏
= 0.01, and the

appropriate algebraic equations are obtained also by taking
Δ
𝜏
= 0.01.

5. Experimental Verification

In this sectionwe present the designed and built experimental
stand, that is, a mechatronic system with friction clutch. It is
used to verify and validate the applied mathematical models
describing wear processes in the mechanical friction clutch.

5.1. Experimental Stand: A Mechatronic System with Fric-
tion Clutch. The presented experimental stand comprises
a typical mechanical system with a friction clutch operat-
ing in a mechatronic system. Moreover, the experimental
stand is equipped with an external power supply, measuring
equipment, and a computer with appropriate software. Main
parts of the considered experimental stand are presented in
Figure 2. The stand consists of a driving part, driven part,
and friction clutch which connects the driving and driven
parts. The driving part (Figure 2(a)) includes asynchronous
motor 1 controlled by a single-phase AC inverter 2. The
applied inverter is connected with a computer via the con-
trol/measurement module and USB port, which allows for
control of the engine rotational speed through the applied
computer program. To determine angular position of the
active part of the clutch (motor) optical incremental encoder

3 is used. The differentiation of angular position with respect
to time provides information on the motor angular velocity.
The driven part (Figure 2(b)) includes DC motor 4 working
as an electric generator which generates an appropriate
antitorque depending on a connected load. Moreover, in
the driven part of the system there is friction brake 5 and
optical incremental encoder 6 (the same as in the driven part
and playing a similar role). The friction torque transmitted
by the clutch is measured by dynamic torque sensor 7. A
member coupling both devices is the mechanical friction
clutch (Figure 2(c)) consisting of clutch shields 8, friction
linings 9, and spring 10 pressing the shields and controlled
by an electronic system (not visible in the figure). A member
coupling the mechanical system with computer software is a
USB-4711A controller andmeasuringmodule 11 (Figure 2(d))
with analogue and digital inputs and outputs, connected with
a computer via USB port 12.

5.2. Research Methodology. To carry out experimental stud-
ies of wear processes occurring in the friction clutch the
mechatronic system with friction clutch shown in Figure 2
was used. The sensor technology existing in the system
(appropriate sensors coupled to a computer via a USB
control and measurement module) provides a convenient
way to read and then to process and archive the results. In
order to conduct experiments regarding the wear of friction
linings of the clutch shields a suitable construction of such
a coupling to measure appropriate parameters describing
these issues has been designed and built. Figure 2(c) shows
the built clutch structure. This construction of coupling (as
shown in Figure 2(c)) consists of three parts: active, passive,
and connecting. The active and passive parts of the clutch,
aluminum shields included, may be covered by linings using
relevant friction materials. Clutch shields (and consequently
also the friction linings) are pressed by a compression spring
in the axial direction of the coupling force produced by
the linear actuator located in the bottom (invisible part of
the stand). Experimental investigations were compared with
analytical solutions and numerical calculations.

Frictional linings used in the investigations are made of
agglomerated cork which is a natural friction material used
in friction clutches and brakes. This material was chosen
for the following reasons: (a) it has a relatively high friction
coefficient, so there is no need to apply large forces to press
the shields in order to transfer large friction torque; (b)
wear coefficient is relatively high and investigations of wear
processes are possible in a relatively short period of time.

5.3. Investigations of Wear Processes. The experimental veri-
fication of wear processes of the clutch friction linings was
carried out in the system shown in Figure 2. The measuring
system consisted of two identical (attached to various parts of
the clutch) shields with glued friction linings. Clutch shields
were pressed by axial force 𝑄 = constant via a spring which
was compressed by the linear actuator located in the bottom
part of the experimental stand. Passive part of the clutch was
fixed to the stand, while the active one moved at a constant
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Figure 2: Main parts of the experimental stand: (a) driving part; (b) driven part; (c) regulated friction clutch; (d) control and measuring
USB-4711 module.
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Figure 3: Torque sensor with the appropriate LabView software for processing electrical signal from the sensor.

angular velocity Ω
𝑟
= constant; therefore the relative sliding

velocity of shields was alsoΩ
𝑟
.

The experimental investigation of wear processes was
carried out in stationary conditions (at constant force 𝑄
pressing the shields and constant angular sliding velocity
Ω
𝑟
). Measurements were taken at regular time intervals Δ𝑇

after stopping the system. We measured a decrease of the
distance between clutch shields, maximum static friction
torque transmitted by the clutch and contact pressures in
selected points of the contact surface of linings. A decrease
of the distance between clutch shields 𝐸(𝑡) was measured
using electronic precision calipers as the arithmetic mean of
four measurements for various relative angular positions of

the shields (after each measurement the shields were rotated
relatively to each other by an angle equal to 𝜋/2). Friction
torque 𝑀fr transmitted by the clutch was measured using a
torque sensor located on the passive part of the clutch. The
electrical signal including information about the values of
the friction torque was processed by the control-measuring
module and transmitted to the computer. Figure 3 shows the
applied torque sensor connected with the USB-4711Amodule
and diagram with connection of LabView elements, which
converts the electrical signal from the sensor to the value of
friction torque. Also in this case we assumed as the value
of the transmitted friction torque the arithmetic average of
four measurements for respective (differing by 𝜋/2) relative
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Figure 4: Contact pressure sensors with a corresponding trans-
ducer.
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Figure 5: Decrease of distance between clutch shields during wear
processes.

angular positions of the clutch shields. For the initial time
and after completion of the test, contact pressures𝑃(𝑅, 𝑡)were
also measured at the contact surface using a film pressure
sensor located between the pressed clutch shields. Figure 4
shows the contact pressure sensors with a corresponding
transducer. As before, the measurements were carried out for
four various relative angular positions of the clutch shields,
and a pressure value at a given point of contact surface was
assumed as the arithmetic mean of the obtained values. The
contact pressure sensor had the shape of a thin strip about
0.2 cm thick and approximately 1 cm wide. This sensor was
placed along the diameter of the shields which were pressed
with the same force as in thewear processes.Whilemeasuring
power 𝑄 of clamping, the sensor is sandwiched among the
foil cladding. Therefore, the pressure value measured by
the sensor was shown to be greater than the actual value
occurring in the same conditions during the wear process.
However, due to the proper placement of the contact pressure
sensor along a diameter and a cladding of constant thickness
over the entire length of the sensor, the valuesmeasured at the
time of the contact pressure along the radius of the lining are
proportional to the value observed during the wear process.
Since the values measured at the time of contact pressure
do not correspond to the values reported during the wear
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Figure 6: Changes of friction torque transmitted by the clutch in
time.
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Figure 9: Visualization of contact pressure distributions in the steady state for different parameter 𝜌.

lining process, the pressure values obtained are presented in a
standard form (they are referred to the average value obtained
for the contact pressure at the initial moment). Moreover,
because the working surface of the sensor had the shape of
a circle approximately 1 cm in diameter, it was impossible to
measure the contact pressure at the borders of the contact
pads (only the neighboring part located approximately 0.5 cm
from them was applied). The obtained experimental values
of 𝐸(𝑡), friction torque𝑀fr(𝑡) transmitted by the clutch, and
contact pressures 𝑃(𝑅, 𝑡) were compared with analytical and
numerical calculations obtained for the linear wear model.

Experimental studies of wear processes were carried out
in a system consisting of two identical friction linings made
of a suitable kind of natural cork. The use of this material
due to its low abrasion resistance allowed us to carry out
the experiment in a relatively short time. Inner radius 𝑅

1
of

the contact surface was 11mm, while the outer radius of the
contact surface was 𝑅

2
= 59mm. Clutch shields with fixed

friction linings were pressed with axial force 𝑄 = 20N and
relative sliding angular velocity Ω

𝑟
= 70 rad/s. Appropriate

measurementswere carried out at regular time intervalsΔ𝑇 =
60 s after stopping the system.

Figure 5 shows a decrease of the distance between clutch
shields in time obtained experimentally. On the basis of
the results obtained it can be assumed that wear of the
clutch friction linings is approximately proportional to time
𝑡 (it is also proportional to the work of the friction force).

Approximating the obtained experimental results it can be
assumed that the slope of the experimental relation is equal to
the speed of decrease of the distance between clutch shields
in the steady state. Then, on the basis of (39) the total wear
coefficient can be estimated as follows:

𝑑𝐸 (∞)

𝑑𝑡
=
𝐾
(𝑤)
𝑄
Ω𝑟


2𝜋 (𝑅
2
− 𝑅
1
)
,

⇒ 𝐾
(𝑤)
=
2𝜋 (𝑅

2
− 𝑅
1
)

𝑄
Ω𝑟


𝑑𝐸 (∞)

𝑑𝑡
.

(66)

Taking the appropriate values of 𝑄, Ω
𝑟
, 𝑅
1
, and 𝑅

2
, as well

as the value of 𝑑𝐸(∞)/𝑑𝑡 = 4.9167 ⋅ 10−7m/s estimated
from Figure 5, in our case the total wear coefficient is equal
to 𝐾(𝑤) = 1.059 ⋅ 10−10m2/N.

Figure 6 shows the maximum friction torque transmitted
by the clutch in a normalized form (the values of relevant
friction torques were referred to the values of friction
torque for the initial moment). Moreover, the numerically
obtained relation describing changes in time of friction
torque transmitted by the clutch is shown in accordance with
the respective equations provided in Section 3 and adopting
the above obtained values which describe the system. Using
the dashed line we illustrate also the value calculated from
(58), to which decreases the friction torque transmitted
by the clutch after settling contact pressure distribution
on the surface of the friction linings of the clutch. This
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Figure 10: Changes of contact pressures at the contact surface borders.

does not diminish generality and facilitates comparison with
other numerical simulations that will be presented in a
similar way. The relationships show that the actual value of
torque transmitted by the clutch (in accordance with the
numerical simulations) decreases during wear processes of
the clutch friction linings. The carried out numerical results
allow estimating the steady state for this system. It is equal
approximately to 30min of wear duration. Experimental
results show, however, that the steady state had been achieved
previously. It is also seen that the experimental results do
not agree precisely with the numerical solution. However,
similarly to the numerically obtained simulation, the results
show a characteristic decrease of the real value of friction
torque transmitted by the friction clutch.

Figure 7 shows contact pressures on the contact surface
of friction clutch linings along radius 𝑅. The experimental
results are presented only for the initial time and steady
state, whereby it is assumed that the steady state occurred
after time equal to 30min from starting of the wear process.
Although the presented experimental results do not agree
with a relatively high accuracy with the results obtained
analytically, it may be important to note qualitative changes
of the contact pressure distribution in accordance with

the analytical predictions. Namely, at the initial moment
of time the contact pressure distribution is approximately
uniform over the entire contact surface. Moreover, during
wear processes of the friction linings, the contact pressure
distribution changes, but it is important that at the inner
border of the contact surface pressures increase, while at the
outer contact surface they decrease.

5.4. Summary of Experimental Results. The presented exper-
imental investigations confirm and validate the proposed
mathematical models describing wear processes that occur
in a mechanical friction clutch. The mathematical models
describing wear processes of friction linings were verified
experimentally, although the results were compared onlywith
the analytical and numerical calculations obtained for the
linear wear model. However, it was shown that reduction of
the friction torque transmitted by the clutch for a constant
force pressing the shields or changing the contact pres-
sure distributions agreed with the proposed mathematical
model. The relatively simple experiments revealed that the
proposed mathematical models are good enough to describe
the phenomena occurring in the real objects. Therefore, the
proposed models can be used for numerical simulations in a
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Figure 11: Time evolutions of the contact pressure distributions.

wider range of parameters which are presented in the next
section. These two applied types of modern experiments
(the experiment and computer simulation) complement each
other. The experiment allows us to verify the proposed
mathematical models, whereas computer simulations enable
researches in a wider range of parameters describing the
actual object of study.

6. Numerical Results

In this section a numerical analysis of the proposed mathe-
matical models is carried out in a wider range of parameters.
The analysis of wear processes of the friction clutch linings
using both differential and integral wear model in this
clutch is given. We introduced the following assumptions:
𝑘
(𝑤)

1
(𝑇(𝑟, 𝜏)) = 𝑘

(𝑤)

1
= constant, 𝑘(𝑤)

2
(𝑇(𝑟, 𝜏)) = 𝑘

(𝑤)

2
=

constant, and 𝑓(𝜔(𝜏), 𝑟, 𝑇(𝑟, 𝜏)) = 𝑓 = constant (see also our
previous works [33, 34]).

6.1. Differential Wear Model. First we analyze wear processes
of friction clutch linings using the differential wear model.
We focus on a symmetrical system consisting of two iden-
tical clutch friction linings, and therefore in the numerical

simulations we take the following assumptions: 𝛼
1
= 𝛼
2
=

𝛼, 𝛽
1
= 𝛽
2
= 𝛽, 𝑘

(𝑤)

1
= 𝑘
(𝑤)

2
, and 𝑘(𝑤)

1
+ 𝑘
(𝑤)

2
= 𝑘
(𝑤). The

obtained results are also valid for the case when one of the
clutch shields is not covered by the friction lining, while the
other one is covered by a lining with wear coefficient equal to
𝑘
(𝑤). For𝛼 = 1 and𝛽 = 1wehave linearArchard’s wearmodel

[5]. For further numerical calculations we take 𝑘(𝑤) = 0.5.
Figure 8 presents contact pressure distributions in the

steady state for various geometric parameters 𝜌 obtained
analytically on the basis of (54). Moreover, the contact
pressure distribution in initial time (𝑝(𝑟, 0) = 1) is plotted in
Figure 8.The reported relation shows that these distributions
depend on parameter 𝜌 which determines the considered
system geometry. At the initial time instant contact pressure
distributions are uniform over the entire contact surface,
while they change during time evolution. In the steady
state, contact pressure takes the specific distributions versus
parameter 𝜌. For large values of 𝜌 the contact pressure
distribution does not change significantly in comparison to
the initial distribution, whereas the differences are significant
for smaller values of this parameter.

Contact pressure distributions determined analytically in
(54) are also shown in Figure 9 as visualizations in polar
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Figure 12: Wear distributions in transient states.
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Figure 13: Time evolutions of total wear at the contact surface borders.

coordinates, where the domain is the surface corresponding
to the contact surfaces of friction linings for appropriate
geometric parameter 𝜌.

Contact pressures at the contact surface borders (𝑟 =
0 and 𝑟 = 1) for different 𝜌 are shown in Figure 10. For

comparison also the results obtained for wear coefficient
𝑘
(𝑤)
= 1.0 are presented. During wear processes, with an

increase of time, contact pressures 𝑝(0, 𝜏) increase to reach
finally a steady state value depending on 𝜌. Contact pressures
𝑝(1, 𝜏) decrease also reaching a steady state value which
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Figure 14: Time evolutions of total wear distributions of friction linings.
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Figure 16: Changes of friction torque transmitted by the clutch.
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Figure 19: Total wear distributions in transient states for various times 𝜏.
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Figure 20: Time evolutions of total wear at the contact surface borders (𝑟 = 0 and 𝑟 = 1).

depends on 𝜌. Moreover, the steady state is reached faster for
larger values of the wear coefficient 𝑘(𝑤).

Time evolutions of the contact pressure distributions as
a function of radius 𝑟 and time 𝜏 are shown in Figure 11.
Also here the results obtained for wear coefficient 𝑘(𝑤) = 1.0
are presented. For all presented cases the contact pressure
distributions at the initial time instant are uniform over the
entire surface of contact and they change during wear pro-
cesses.They reach the steady state depending on parameter 𝜌.
The speed of setting of these distributions is larger for higher
values of wear coefficient 𝑘(𝑤).

Figure 12 shows the distributions of total wear of friction
linings in transient states for different values of the nondi-
mensional time 𝜏. It can be seen that the wear distributions
are different for different values of geometric parameter 𝜌.
These distributions also change over time. Furthermore, it is
worth noting that in any case (irrespective of 𝜌 and 𝜏) wear of
the friction lining is always the largest at the outer border of
the contact surface (for 𝑟 = 1). Figure 13 presents changes of
the total wear at the contact surface borders (𝑟 = 0 and 𝑟 = 1).

For comparison, also the results obtained for wear coefficient
𝑘
(𝑤)
= 1.0 are presented.
Time evolutions of total wear distributions of friction

linings are shown in Figure 14. At the initial time wears at
each point of the contact surface are zero which means that
thewears increase.The speed of wear 𝑑𝑢(0, 𝜏)/𝑑𝜏 at the initial
time instant is slightly less than the value determined later. In
turn, the speed ofwear𝑑𝑢(1, 𝜏)/𝑑𝜏 at the initial time instant is
slightly greater than the value determined later. On the other
hand, the speed ofwear is larger for larger values of𝜌 and 𝑘(𝑤).

Time evolutions governing the decrease of the distance
between clutch shields (for various values of coefficient
𝑘
(𝑤)) are shown in Figure 15. The decrease of the distance

between clutch shields increases faster for larger values of
the geometry parameter 𝜌 and for larger values of parameter
𝑘
(𝑤). Furthermore, in the steady state the mentioned process

increases linearly, like in the case of total wear.
Changes in the friction torque transmitted by the clutch

are presented in Figure 16 for 𝑘(𝑤) = 0.5 and 𝑘(𝑤) = 1.0.
One may see that during wear processes the friction torque
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Figure 21: Decrease of the distance between clutch shields for various 𝛽.
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Figure 22: Changes of friction torque transmitted by the clutch for
various 𝛽.

transmitted by the clutch decreases as a result of changes
in the contact pressure distributions. For a fixed contact
pressure distribution and in the steady state the friction
torque transmitted by the clutch reaches a constant value. For
smaller values of geometric parameter 𝜌 a relative change of
the friction torque is larger.

In this paper the case of nonlinear differential wearmodel
is also considered. In further calculations we take 𝜌 = 0.5 and
𝑘
(𝑤)
= 0.2. First, we consider the case of 𝛼 = 1 and 𝛽 ̸= 1.

Contact pressure distributions, wear distributions, decrease
of the distance between clutch shields, and the friction torque
transmitted by the clutch for various values of 𝛽 parameter
are presented: contact pressure distributions in the steady
state (Figure 17), time evolutions of contact pressures at the
contact surface borders 𝑟 = 0 and 𝑟 = 1 (Figure 18),
total wear distributions in transient states for various times
𝜏 (Figure 19), time evolutions of total wear at the contact
surface borders 𝑟 = 0 and 𝑟 = 1 (Figure 20), decrease of the
distance between clutch shields (Figure 21), and changes of
the friction torque transmitted by the clutch (Figure 22).
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Figure 23: Contact pressure distributions (steady state) for different
values of 𝛼.

For the differential wear model appropriate results illus-
trating contact pressures, wears, decrease of the distance
between clutch shields, and friction torque transmitted by
the clutch are also presented for different values of parameter
𝛼: contact pressures in the steady state (Figure 23), time
evolutions of contact pressures at the contact surface borders
𝑟 = 0 and 𝑟 = 1 (Figure 24), total wear distributions in
transient states (Figure 25), time evolutions of wear at the
contact surface borders 𝑟 = 0 and 𝑟 = 1 (Figure 26),
decrease of the distance between clutch shields (Figure 27),
and changes of friction torque transmitted by the clutch
(Figure 28).

The presented model allows us to study wear processes
of clutch friction linings for arbitrary values of parameters 𝛼
and 𝛽. In addition, the proposed model can also be used to
analyze these processes in a nonsymmetric case, namely, for
𝑘
(𝑤)

1
̸= 𝑘
(𝑤)

2
, 𝛼
1
̸= 𝛼
2
, and 𝛽

1
̸= 𝛽
2
.

6.2. Integral Wear Model. Below, we consider a numerical
analysis of wear processes of the friction clutch linings
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Figure 24: Time evolutions of contact pressures at the contact surface borders (𝑟 = 0 and 𝑟 = 1).
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Figure 25: Total wear distributions in transient states.

using the integral wear model. We focus on a symmetrical
system consisting of two identical clutch friction linings. For
this reason, in numerical simulations we take the following
assumptions: 𝐾

1
(𝜏, 𝜉) = 𝐾

2
(𝜏, 𝜉) = 𝐾(𝜏, 𝜉), 𝑘

(𝑤)

1
= 𝑘
(𝑤)

2
, and

𝑘
(𝑤)

1
+ 𝑘
(𝑤)

2
= 𝑘
(𝑤). The obtained results are also valid for the

case when one of the clutch shields is not covered with the
friction lining, while the other one is covered with a lining
with wear coefficient equal to 𝑘(𝑤). For 𝐾(𝜏, 𝜉) = 1 we have
a linear wear model (according to Archard [5]) written in
the integral form. The obtained results are identical to those
obtained earlier in the case of the differential wear model
for 𝛼
1
= 𝛼
2
= 1 and 𝛽

1
= 𝛽
2
= 1. For this reason

below we present results obtained for the nonlinear integral
wear model, and for further numerical calculations we take
𝐾(𝜏, 𝜉) = exp[−𝛾(𝜏 − 𝜉)], 𝜌 = 0.5, and 𝑘(𝑤) = 0.2.

Figure 29 shows contact pressure distributions in the
steady state for various values of parameter 𝛾. The contact
pressure distributions are also shown in Figure 30 in polar
coordinates. Observe that these distributions depend on
parameter 𝛾. At the initial time instant the contact pressure
distribution is uniform over the entire contact surface, while

with time it changes. Contact pressure takes the specific
distributions in the steady state depending on parameter 𝛾.
It does not change significantly for large values of parameter
𝛾 in comparison to the initial distribution, while differences
are significant for smaller values of this parameter.

Changes of contact pressure distributions for various
values of parameter𝛾 are shown in Figure 31, whereas changes
of the total wear distributions for various values of parameter
𝛾 are shown in Figure 32. For all of the presented cases,
the contact pressure distributions at the initial time instant
are uniform over the entire surface of contact and wears
are equal to zero. During time and wear processes both
contact pressure distributions and wear distributions change
depending on parameter 𝛾. For larger values of parameter 𝛾
the wears are smaller.

Figures 33 and 34 show contact pressures 𝑝(0, 𝜏), 𝑝(1, 𝜏)
and wears 𝑢(0, 𝜏), 𝑢(1, 𝜏) on the contact surface borders
(𝑟 = 0 and 𝑟 = 1) as functions of nondimensional
time 𝜏. With time (during wear processes) contact pressure
𝑝(0, 𝜏) increases reaching a steady state value depending
on parameter 𝛾. In turn, contact pressure 𝑝(1, 𝜏) decreases
reaching also a steady state value that depends on parameter
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Figure 26: Time evolutions of wear at the contact surface borders.
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Figure 27: Decrease of the distance between clutch shields for various 𝛼.

𝛾. For 𝛾 = 0 in the steady state, the wears linearly increase
(this is a linear wearmodel according toArchard [5]). In turn,
for 𝛾 > 0 in time the speeds of wear decrease asymptotically
reaching a constant value which depends on parameter 𝛾.

Figures 35 and 36 show, respectively, a decrease of the
distance between clutch shields and changes of friction torque
transmitted by the clutch for various values of parameter 𝛾 as
a function of 𝜏. During wear processes the distance between
clutch shields and friction torque transmitted by the clutch
decreases. For 𝛾 = 0 (linearwearmodel) the distance between
clutch shields increases linearly, whereas for 𝛾 > 0 the speed
of distance decrease between clutch shields approaches zero.
As a result of changes in contact pressure distributions also
the friction torque transmitted by the clutch decreases. In the
steady state friction torque transmitted by the clutch achieves
a constant value depending on 𝛾.

The presented model allows us to study wear processes of
clutch friction linings for arbitrary values of parameter 𝛾. In
addition, the proposed model also enables analysis of these
processes in the case of a nonsymmetric system, namely, in
general for 𝑘(𝑤)

1
̸= 𝑘
(𝑤)

2
and𝐾

1
(𝜏, 𝜉) ̸= 𝐾

2
(𝜏, 𝜉).

7. Summary and Final Conclusions

The paper is devoted to the mathematical modeling, theoret-
ical and numerical analysis, and experimental verification of
wear processes occurring on the contact surface of friction
linings in a mechanical friction clutch. A detailed mathemat-
ical description, theoretical analysis, nondimensional form,
numerical algorithms and simulations, and experimental
verifications are shown.

The proposedmodels describing wear processes take into
account a general nonlinear model of wear, where the wear is
modeled via a nonlinear- (power-) type function of contact
pressure and relative sliding velocity with rates depending on
the wear model and the step of lubricating and spreading on
contacting surfaces. Besides, the wear model in the integral
formwhich takes into account a gradual decrease of the speed
of wear of friction linings is developed and applied.

The obtained experimental data confirm and validate
the presented mathematical models of wear processes in
the considered system. Although the proposed models were
verified and compared only with calculations obtained for
the linear wear model and experimental results do not agree
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Figure 28: Changes of friction torque transmitted by the clutch for various 𝛼.
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Figure 30: Contact pressure distributions as visualizations in polar coordinates.
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Figure 31: Changes of contact pressure distributions for various values of parameter 𝛾.
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Figure 32: Changes of total wear distributions for various values of parameter 𝛾.

with a relatively high accuracy with the analytically obtained
results, we showed a few regularities; namely, the wear of
clutch friction linings was approximately proportional to
time (also to the work of friction force), the actual value
of torque transmitted by the clutch decreased during the
wear processes, changes of contact pressure distributions
agreed with the proposed mathematical model (pressures
increased at the inner border of the contact surface, while
they decreased at the outer contact surface). As can be seen,
the proposed models describe well enough the considered
phenomena; therefore the proposed models have been used
in numerical simulations in a wider range of parameters of
the considered system, using our own computer programs
written in C++. In numerical calculations we focused on
a symmetrical system consisting of two identical clutch
friction linings and different values of the system parameters;
however the presented models enable analysis of a general
nonsymmetric system of clutch friction linings.

The obtained results are a basis for formulating final
conclusions of our studies. The proposed mathematical
description of the clutch takes into account elasticity of the
friction lining materials. Thus, it is possible to consider more
thoroughly the wear processes of clutch lining materials,
calculating wear distributions on the entire contact surface.
During numerical analysis in a wider range of parameter
changes it was possible to determine nonuniform contact
pressure and wear distributions at the contact surface of
the friction linings. The obtained results help us better
understand the mechanisms of wear processes of clutch

friction linings and can be used, for instance, in the strength
analysis of these systems. In addition, taking into account
changes of contact pressure distributions we can estimate
more accurately the friction torque transmitted by the clutch.

In our model we assumed simplification that there is
no torsional vibration when the two linings are brought
into contact. However, in practice relative slippage between
them often is unavoidable. Although studies discussed in this
paper were carried out in stationary conditions, the proposed
mathematical models can also be used for the analysis
in nonstationary conditions (for nonconstant force pressed
clutch or nonconstant relative sliding velocity). Finally, it
can be noted that we combine these issues in a complex
tribological system, although the analytical, numerical, and
experimental studies presented in the paper were carried out
separately. For these reasons a better forecast of the behavior
of real systems of this type is possible. Moreover, the results
can be extended and used in other disciplines of science.

In comparison to our previous papers, in this paper
mathematical models have been extended and generalized.
Research methodology and interpretation of experimentally
obtained data have been presented accurately. Moreover, a
more exact theoretical analysis and new numerical simula-
tions have been illustrated and discussed.
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Figure 33: Contact pressures on the surface borders.

0

5

10

15

0 20 40 60 80
𝜏

u
(0
,𝜏
)

𝛾 = 0

𝛾 = 0.01

𝛾 = 0.1

𝜏

𝛾 = 0

𝛾 = 0.01

𝛾 = 0.1

0

5

10

15

0 20 40 60 80

u
(1
,𝜏
)

Figure 34: Wears on the contact surface borders.

0

5

10

15

20

0 20 40 60 80
τ

𝜂
(𝜏
)

𝛾 = 0

𝛾 = 0.01

𝛾 = 0.1

Figure 35: Decrease of the distance between clutch shields.



Mathematical Problems in Engineering 27

0,90

0,92

0,94

0,96

0,98

1,00

0 20 40 60 80
τ

𝛾 = 0

𝛾 = 0.01

𝛾 = 0.1

F
fr
(𝜏
)

Figure 36: Changes of friction torque transmitted by the clutch.
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