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Community detection is of great value for complex networks in understanding their inherent law and predicting their behavior.
Spectral clustering algorithms have been successfully applied in community detection. This kind of methods has two inadequacies:
one is that the input matrixes they used cannot provide sufficient structural information for community detection and the other is
that they cannot necessarily derive the proper community number from the ladder distribution of eigenvector elements. In order
to solve these problems, this paper puts forward a novel community detection algorithm based on topology potential and spectral
clustering. The new algorithm constructs the normalized Laplacian matrix with nodes” topology potential, which contains rich
structural information of the network. In addition, the new algorithm can automatically get the optimal community number from
the local maximum potential nodes. Experiments results showed that the new algorithm gave excellent performance on artificial

networks and real world networks and outperforms other community detection methods.

1. Introduction

Most networks show community structure [1]. The results
of community detection are meaningful for forecasting the
behavior and evolution trend of complex networks [2]. For
example, in World Wide Web, community detection can be
used to improve the performance of search engine, in social
networks, community detection can be used to forecast
the information propagation among users [3], in electronic
commerce area, community detection can be used to select
potential user for advertising; and in bioengineering area,
community detection can be used to recognize functions of
protein [4].

In recent years, many methods inspired by different
paradigms are put forward for community detection [5].
Among these efforts, spectral clustering has shown to be
successful [6], for it is very simple to implement and can be
solved by standard linear algebra methods.

The traditional spectral clustering methods are based
on kinds of input matrixes, such as the adjacency matrix,
the standard Laplacian matrix, and the normalized Lapla-
cian matrix. The standard Laplacian matrix is defined as

L = D—- A, and the normalized Laplacian matrix is defined as
L = D' A, where A is adjacency matrix and D is a diagonal
matrix with elements D;; being the degree of the ith node.

Almost all above matrixes are constructed with the adja-
cency matrix and diagonal matrix of networks. These
matrixes can only reflect the local relationship between a
node and its direct neighbors, as [6] pointed out, “the
eigenvalues and eigenvectors of traditional input matrixes
cannot provide sufficient structural information for com-
munity detection” As a result, the accuracy of community
detection may decrease.

What is more, the community number k must be set
in advance for the spectral clustering method based on
standard Laplacian matrix. The normalized Laplacian matrix
can solve this problem to some extent, which has k nontrivial
eigenvalues close to the biggest eigenvalue 1. The eigenvector
elements corresponding to these eigenvalues present ladder
distribution. The proper community number of communities
can be estimated by the ladders. However, when the commu-
nity structure of network is not clear, the eigenvector elements
cannot show obvious ladder distribution but an approxi-
mately continuous curve [7]. In this case, we cannot get



the proper community number from the ladder distribution
of eigenvector elements.

In order to solve these problems, this paper puts forward
a novel community detection algorithm based on topology
potential and spectral clustering. The algorithm constructs
the normalized Laplacian matrix with topology potential of
network nodes. The topology potential of a node is the sum of
potential components produced by neighbors at the position
of this node. The topology potential describes the compli-
cated interaction among nodes and contains rich structural
information of the network. This structural information is
meaningful for community detection. In addition, the new
algorithm can automatically get the optimal community
number from the local maximum potential nodes, whether
the community structure of network is obvious or not. Exper-
iments results showed that the new algorithm can improve
the accuracy of community detection and has significant
adaptability.

This paper is organized as follows. Section 2 describes
related works. Section 3 introduces the concept of topology
potential. Section 4 shows the new community detection
algorithm based on topology potential and spectral cluster-
ing. Section 5 is simulation experiment and results. Section 6
comes to the conclusion of this paper.

2. Related Works

Spectral clustering algorithms have been successfully applied
to community detection. From the perspective of input
matrix, spectral clustering methods can be divided into the
adjacency matrix [8], the standard Laplacian matrix [9], the
normalized Laplacian matrix [10], the modularity matrix [11],
and the correlation matrix [12]. Reference [13] found that
the normalized Laplacian matrix significantly outperforms
the other matrixes in identifying the community structure of
networks.

In order to improve the performance of spectral clus-
tering, many nontraditional spectral clustering algorithms
have been proposed [6], such as complement based spectral
clustering [14], complex eigenvector based spectral clustering
[15], semisupervised spectral clustering [16], and eigenspace-
based spectral clustering [17]. Zarei and Samani [14] gave out
a spectral method based on the network complement and
anticommunity concept, declaring “the spectrum of matrixes
corresponding to a network complement reveals the commu-
nities more accurately than that of a matrix corresponding
to the network itself” Zarei et al. [15] also put forward a
spectrum method based on complex eigenvectors and found
that the complex eigenvectors of network matrixes showed
better performance in community detection. Mavroeidis [16]
proposed a semisupervised spectral clustering, and its results
showed that the partial supervision cannot only improve
the quality of spectral clustering but also accelerate the
spectral clustering. Ma et al. [17] presented an eigenspace-
based spectral method for community detection, which can
identify both the overlapping and hierarchical community
without increasing the time complexity. All these methods try
to integrate some additional topology structure information
into input matrixes.
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Except for methods mentioned above, there are some
other newly developed spectral methods for community
detection. Gong et al. [18] proposed a spectral algorithm
utilizing multiple eigenvectors to identify the communities
in networks, which performed better for more spectral infor-
mation is used. Newman [19] found that, within the spectral
approximations, community detection by modularity maxi-
mization, community detection by statistical inference, and
normalized-cut graph partitioning are identical. With the
large-deviation theory, Bo et al. [20] established a relationship
between the hierarchical community structure of a network
and the local mixing properties.

Recently, a novel theory-topology potential theory was
introduced to complex network for community detection
[21]. Because of its inherent advantage in time complexity
and performance, this theory has attracted plenty of atten-
tion. Gan et al. [21] put forward a topology-potential-based
community detection algorithm. With the algorithm, the
community structure can be uncovered by “detecting all local
high potential areas margined by low potential nodes” Han
et al. [22] proposed an overlapping community detection
algorithm, which divides networks into separate communi-
ties by “spreading outward from each local maximum poten-
tial node” Zhang et al. [23] proposed a variable scale net-
work overlapping community identification method based on
topology potential. In order to identify overlapping nodes,
this method defined an identity uncertainty measure related
to topology potential. These above topology-potential-based
methods show better performance in community detection;
however, there is a weakness for almost all these methods; that
is, they definitely need additional strategies or parameters to
determine the community attachment of nodes, such as the
benefit function in [21] and the parameter & in [23].

Different from above works, this paper puts forward
a novel community detection algorithm, which combines
spectral clustering and topology potential, making best use of
their advantages and bypassing their disadvantages. The new
algorithm constructs the normalized Laplacian matrix with
topology potential of network nodes. The topology potential
contains rich structural information of the network, which is
meaningful for community detection. Whats more, the new
algorithm can automatically judge the optimal community
number from the local maximum potential nodes, whether
the community structure of complex network is obvious or
not.

3. Topology Potential

The topology potential field theory is an important branch
of the field theory. People abstracted the classical field as
a mathematical model to describe noncontact interaction
between objects [24]. Any complex network has its relatively
stable topology structure; nodes in the network are not
isolated, and there exist relationships between nodes linked
by edges. Therefore, the topology potential field theory was
introduced into complex network to describe the interaction
and association among network nodes [22].
Given a network G = (V,E), where V = {v; | i = 1,...,
n} is a set of nodes, n is the total number of nodes,
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E = {(v; vj) | v;, v; € V1 is a set of edges. According to the
topology potential field theory, the topology potential of any
node is defined as follows:

k

¢ (v) = Ym(v)x e, 1)

=1

where ¢(v;) is the topology potential of node v;, 1 < i <
the node v; is a node within the influence scope of node v;,
and k is the total number of nodes within the influence scope,
1 <k<n-1,1<1 < k;d; is the hops between s v; and v;;
m(v;) is the mass of node v}; generally speaking, it is set to
1, and the mass difference between nodes is ignored; o is an
impact factor used to control the influence scope of node, the
maximum scope is |30/ V2] hops.

The impact factor o will affect topology potential field and
the influence scope of node. If ¢ is small, the interaction and
association among nodes is weak. And when o — 0, there is
even no interaction and association. Conversely, if o is big, the
interaction and association become strong, and in extreme
conditions, all nodes associate with each. Therefore, we need
to select suitable value, so as to make the distribution of
topology potential value reflect the structure characteristics
of network. Potential entropy has been introduced to evaluate
the rationality of topology potential value distribution [21].

Suppose the topology potential of nodes v;, v,, ...
(P(Ul)a (P(Uz)) cen

is defined as
Hz_Z(P(ZUi)'log(go(Zvi))’ @)

i=1

, U, are
,9(v,), respectively; the potential entropy H

where 7 is the total number of nodes; Z = Y, ¢(v;) is a
normalization factor. When topology potential field achieves
the smallest potential entropy, the impact factor value is
optimal [25].

As can be seen from the formula (1), the topology poten-
tial of a node totally depends on the topology structure of its
surroundings, which reflects the influence ability of another
node over it. Obviously, the topology potential contains
rich structural information of the network, which offers a
desirable solution to the insufficient structural information
in the traditional Laplacian matrix. If we construct the
Laplacian matrix by using topology potential of network
nodes, the additional structural information can be provided
for community detection. So, this paper puts forward a novel
algorithm based on topology potential and spectral clustering
to improve the performance of community detection, and
Section 4 will describe the new algorithm in detail.

4. Community Detection Algorithm

In this section, we will give out a novel community detection
algorithm based on topology potential and spectral cluster-
ing. The new algorithm is described as follows.

Input: complex network G = (V, E), the corresponding
nodeset V ={v; |i=1,...,n}, edge set E = {(v;, vj) | [URIFES
Vi

Output: a community partition of G.
Algorithm Description:

(1) calculate the topology potential of node with formula
(s

(2) search all local maximum potential nodes of G. Sup-
pose we find k local maximum potential nodes;

(3) construct the potential component matrix P and
topology potential matrix T of G;

(4) compute the normalized Laplacian matrix L = T~'P
of G;

(5) compute the first k eigenvectors u,,...,u; of L, k is
the total number of local maximum potential nodes;

(6) map all nodes in V to R¥ corresponding to eigenvec-
tors uy, ..., U;

(7) cluster the nodes in R* with the k-means algorithm
into communities Cy, ..., C.

Compared with the traditional spectral clustering
method, the new algorithm constructs the normalized
Laplacian matrix with the topology potential of nodes and
can automatically get the optimal community number from
the local maximum potential node.

The following part of the section will focus on the nor-
malized Laplacian matrix construction and local maximum
potential node search of the new community detection
algorithm.

4.1. Normalized Laplacian Matrix Construction. In order to
add additional structural information of networks, the nor-
malized Laplacian matrix L is redefined as follows:

L=T"'P, (3)

where the adjacency matrix A used in the conventional nor-
malized Laplacian matrix is replaced by the potential com-
ponent matrix P and the degree matrix D by the topology
potential matrix T

The topology potential matrix T is an n-dimensional
diagonal matrix, and the diagonal element t;; = ¢(v;), that
is, the topology potential of node v;.

The potential component matrix P is #xn matrix, and the
matrix elements p; ; are the potential component produced by
node v; at the position node v;, which is defined as follows:

pij=m (v]-) X e_(d"f/a)z, 1<i,j<n, (4)
where m(v]-) is the mass of node; d;; is the hops between node
v; and node v;; ¢ is an impact f;ctor used to control the

j
influence scope of node. If i = j, then p; ; = 0;if node v, is out

of the influence scope (|30/V2]) of node v;, then p; ; = 0.

Figure 1 shows a simple network model, which contains
only six nodes. Here, we take the figure as an example to show
the construction of the potential component matrix P and
topology potential matrix T. For this network, the selected
optimal impact factor o = 1.39; thus, the influence scope of
node |30/v2] = 2. We can use formula (1) to get the topology
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FIGURE 1: A simple network model.

potential of all the six nodes. The topology potential of node
1is 1.3181, and the topology potentials of the other five nodes
are 1.3181, 2.0402, 2.0402, 0.8413, and 0.8413, respectively.
Thus, we can get the topology potential matrix T of Figure 1:

T

1.3181
1.3181
2.0402
2.0402
0.8413
0.8413
©)

The topology potential of node 1 is the summation of
potential component produced by node 2 (0.5960), node
3 (0.5950), and node 4 (0.1261). Similarly, the topology
potential of node 3 is the summation of potential component
produced by node 1 (0.5960), node 2 (0.5960), node 4
(0.5950), node 5 (0.1261), and node 6 (0.1261). Thus, we can
get the potential component matrix P:

0 0.5960 0.5960 0.1261 0 0
0.5960 0 0.5960 0.1261 0 0
P 0.5960 0.5960 0 0.5960 0.1261 0.1261
B 0.1261 0.1261 0.5960 0 0.5960 0.5960
0 0 0.1261 0.5960 0 0.1261
0 0 0.1261 0.5960 0.1261 0
(6)
Based on formula (2), the normalized Laplacian matrix L
is
L
=T'P
0 0.4521 0.4521 0.0957 0 0
0.4521 0 0.4521 0.0957 0 0
3 0.2921 0.2921 0 0.2921 0.0618 0.0618
B 0.0618 0.0618 0.2921 0 0 0.2921
0 0 0.1487 0.7026 0 0.1487
0 0 0.1487 0.7026 0.1487 0

7)
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4.2. Local Maximum Potential Node Search. The hill-climb-
ing method is a traditional algorithm for local maximum
point search, which may leave out some local maximum
points, and search performance is greatly influenced by initial
point selection. We give out a new local maximum potential
node search algorithm with review to local maximum poten-
tial nodes’ characteristics.

The key steps of the new search algorithm are shown as
follows.

(1) All network nodes are initialized to "unvisited.”

(2) Randomly choose an "unvisited” node v; and compare
the topology potential of v; with its neighbors. If the
topology potential of v; is higher than all neighbors,
then jump to step (3); otherwise, jump to step (4).

(3) Addv; to thelocal maximum potential node set K and
mark v; as well as its all neighbors “visited.”

(4) Mark v; “visited,” and mark neighbors with lower
topology potential than v;’s “visited”

(5) Repeat steps (2), (3), and (4), until all nodes in
network are marked “visited””

(6) If there are two local maximum potential nodes
whose distance, that is, hops, is smaller than [ 30/ V2],
then we delete the smaller one from K.

(7) Output the final local maximum potential node set K.

More details about local maximum potential node search
can be referred to [24].

5. Simulation Experiments

In this section, a series of experiments will be carried
out to empirically evaluate the performance of the new
algorithm. Simulation program was implemented with MAT-
LAB. The experiment data include two kinds of complex
networks: artificial networks and real world networks. The
artificial networks were generated by ad hoc model [26]
and LFR Benchmark generator [27]. LFR Benchmark is a
network generator, which produces networks with power-
law degree distribution and with implanted communities
within the network [27]. The real world networks come
from http://www-personal.umich.edu/~mejn/netdata/. The
normalized mutual information (NMI) [28], a widely used
measure, is calculated for the community partition by each
algorithm.

5.1. Ad Hoc Network. The generated ad hoc network, with 128
nodes, is split into 4 communities containing 32 nodes each.
The parameter z,,, is the average edge that links one node
with other nodes of different communities. As z,,, increases,
the community structure of the ad hoc network becomes
ambiguous gradually. In the experiment, we changed z,,,
from 0 to 8 and observed the corresponding NMI produced
by six methods: our algorithm, traditional spectral method,
the k-means based on diffusion distance (DD k-means) [26],
the k-means based on dissimilarity index (DI k-means) [26],
Fast Newman algorithm [29], and Extremal Optimization
method [30].
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FIGURE 2: The NMI of the six methods with the change of z,.

The experiment results are shown in Figure 2, where y-
axis represents the value of NMI, and each point represents an
average 30 simulation experiments. Compared with the other
five methods, our algorithm is only slightly worse than the
Extremal Optimization method for 6.4 < z,, < 7.1. Our
algorithm has a good performance for the ad hoc network,

and the accurate rate is more than 98% for z ,, < 5.5.

5.2. LFR Network. In generated LFR networks, the node
degree and community size distribute according to power
law. A mixing parameter y is defined as the ratio between
the external degree of a node with respect to its community
and the total degree of the node [26], 0 < u < 1. As
p increases, the community structure of the LFR network
becomes ambiguous gradually. There are many other param-
eters used to control the generated LFR networks: the number
of nodes N, the average node degree k, the maximum node
degree max,, the minimum community size min,, and the
maximum community size max, [26].

In our experiments, we changed p from 0 to 0.8 and
observed the corresponding NMI produced by seven meth-
ods: our algorithm, traditional spectral method, Danon
algorithm, Louvain algorithm, Infomap algorithm, Clique
Percolation algorithm [28], and Fast Newman algorithm [29].
We used the default parameter configuration where N =
1000, k = 15, max; = 50, min, = 20, and max, = 50.

The experiment results are shown in Figure 3, where
y-axis represents the value of NMI. Compared with other
six algorithms, our algorithm performs quite well, and its
accuracy is only slightly worse than that of the Clique
Percolation, Louvan, and Informap in the case of 0.25 <
p < 0.45. Because of the complexity of topology potential
distribution in the topology potential field, local maximum
potential nodes may not necessarily the real central nodes of
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FIGURE 3: The NMI of the seven methods with the change of .

communities in some cases, resulting in the split or merger of
some actual communities and the fluctuation of NMI value.

5.3. American College Football Network. The American Col-
lege Football network [18] contains 115 teams, among which
616 games were carried out. In the network, nodes represent
teams and edges games. All teams are organized into 12
conferences, and each of which contains about 8-12 teams.
These 12 conferences are Atlantic Coast, Big East, Big Ten,
Big Twelve, Conference USA, Independents, Mid American,
Mountain West, Pacific Ten, Southeastern, Sun Belt, and
Western Athletic.

We compared our algorithm with other three algorithms,
including the traditional spectral algorithm, the spectral algo-
rithm based on modularity Q [18], and CMITP (community
members identification based on topology potential) [22].

Firstly, we compared our algorithm with the traditional
spectral algorithm. The latter cannot obtain the football
network community number from the ladder distribution
of eigenvector elements; therefore, we set its community
number the same as our method. Figures 4 and 5 show the
community detection results by our algorithm and traditional
spectral algorithm, respectively. Each node represents a
competing team, using its name as label. The teams in same
community are marked the same color. For this network, the
traditional spectral algorithm gets six correct communities:
Mountain West, Atlantic Coast, Southeastern, Pacific Ten, Big
Ten, and Conference USA. Compared with the traditional
spectral algorithm, our algorithm gets three new correct
communities: Big Twelve, Big East, and Mid American. For
the conference Western Atlantic, our algorithm gets 9 correct
teams, with only 1 team missing. Both algorithms split the
conference Sun Belt and Independents.
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FIGURE 4: The community detection results by our algorithm.

Secondly, we compared our algorithm with the spectral
algorithm based on modularity. Tables 1 and 2 show the
results of our algorithm and the spectral algorithm based
on modularity, respectively. The conference names are listed
in the leftmost column, and columns a~k represent the
communities found by the two algorithms. Each found
community consists of teams from one or more conferences
as indicated by the numbers in the corresponding column
[18]. The spectral algorithm based on modularity divided
this network into 10 communities, and six communities are
correctly detected: Atlantic Coast, Big East, Big Ten, Big
Twelve, Mid American, and Pacific Ten. Compared with the
spectral algorithm based on modularity, our algorithm found
11 communities and got a new correct communities Mountain
West.

The CMITP method divided this network into 17 com-
munities, and there are many overlapping nodes between
communities, such as nodes “Hawaii” and “Nevada.” Table 3
shows the community number, Q and NMI of four differ-
ent algorithms. Compared with other three methods, our
algorithm got the highest NMI 0.9292. In addition, our

TaBLE 1: The community detection results of our algorithm.

a b ¢ d e f g h i jk

Atlantic Coast

Big East 8 8
Big Ten 1 11
Big Twelve 12 12
Conference USA 9 1 10
Independents 1 2 1 1 5
Mid American 13 13
Mountain West 8§ 8
Pac Ten 10 10
Southeastern 12 12
Sun Belt 3 4 7
Western Atlantic 9 1 10

9 20 12 14 9 10 5 10 12 6 8 115

algorithm found 11 communities, which is the closest to the
real community number 12.



The Scientific World Journal 7
"-&E
4 ,- \ |1| ®
.ﬁﬁ? 'ur
Tﬁial's D Igl(ahomaState i ]
s Ty .- CenralF] nd
B LoutsnnaLafayeﬂe i oy
FIGURE 5: The community detection results by the traditional spectral algorithm.
TABLE 2: The community detection results of the spectral algorithm TABLE 3: The community number, Q and NMI of four algorithms.
based on modularity.
Community
NMI

a b ¢ d e f g h i j number Q
Atlantic Coast 9 The real community 12 0.5540  1.0000
Big East 8 8 Our algorithm 1 0.5879  0.9292
Big Ten 1 1 Traditional spectral 1 0.5792  0.8879
Big Twelve 12 12 Spectral based on modularity 10 0.5870  0.8800
Conference USA 1 9 10 CMITP 17 0.5538 o
Independents 2 2 1 5
Mid American 13 13
Mo%mtain West 8 8 detecting results. We take a real world network, the Zachary
Pacific Ten 10 10 karate club network, to analyze the influence of impact factor
Southeastern 12 12 o on algorithm performance. Figure 6 shows the NMI of our
Sunbelt 3 4 7 algorithm with different impact factor o.
Western Atlantic 1 8 1 10 Figure 6 shows that if 0 < 0.4716, the NMI is 0; if

10 11 12 10 16 9 9 15 9 14 115 0.4716 < 0 < 1.66, the NMI is 1; if 1.66 < o < 1.90, the

5.4. The Influence of Impact Factor o on Algorithm Perfor-
mance. The impact factor o will affect topology potential
field and the influence scope of node. With different impact
factor o, the distribution of topology potential value will be
different. These changes may bring out different community

NMI is 0.8372; if 1.90 < o < 1.934, the NMI is 0.6459; if
0 > 1.934, the NMI is 0.1701. The analysis is as follows. The
maximum influence scope of node is | 30/+/2] hops. When
0 < 0.4716, the influence scope of node |30/ V2] = 0; it means
that all nodes are isolated and have same topology potential
value. For Zachary network, the optimal ¢ is 1.02 according to
formula (2). When 0.4716 < o < 1.66, we can detect accurate
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community structure, and the NMI is 1. But as ¢ further
increases, one node can associate with almost all the other
nodes. In this case, the distribution of topology potential
value cannot truly reflect the structure characteristics of
network; therefore, the community detecting results are bad.
In a word, as long as the impact factor o is set near the optimal
value, our algorithm can get good outcomes.

6. Conclusion

Identifying community structure is crucial for understanding
complex networks. Recently, spectral clustering algorithms
have been successfully applied in community detection.
The traditional spectral clustering methods cannot provide
sufficient structural information for community detection
and cannot always get the community number from the
ladder distribution of eigenvector elements. Aiming at these
inadequacies, this paper puts forward a novel community
detection algorithm based on topology potential and spectral
clustering. The new algorithm constructs the normalized
Laplacian matrix with network nodes” topology potential,
which contains rich structural information of the network. In
addition, the new algorithm can automatically judge the opti-
mal community number from the local maximum potential
nodes. Experiments on ad hoc network, LFR network, and
the American college football network showed that the new
algorithm can improve the accuracy of community detection
and has significant adaptability.
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