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We study the boundedness and persistence, existence, and uniqueness of positive equilibrium, local and global behavior of positive
equilibrium point, and rate of convergence of positive solutions of the following system of rational difference equations: 𝑥

𝑛+1
=

(𝛼
1
+𝛽
1
𝑥
𝑛−1

)/(𝑎
1
+ 𝑏
1
𝑦
𝑛
), 𝑦
𝑛+1

= (𝛼
2
+𝛽
2
𝑦
𝑛−1

)/(𝑎
2
+ 𝑏
2
𝑥
𝑛
), where the parameters 𝛼

𝑖
, 𝛽
𝑖
, 𝑎
𝑖
, and 𝑏

𝑖
for 𝑖 ∈ {1, 2} and initial conditions

𝑥
0
, 𝑥
−1
, 𝑦
0
, and 𝑦

−1
are positive real numbers. Some numerical examples are given to verify our theoretical results.

1. Introduction

Systems of nonlinear difference equations of higher order
are of paramount importance in applications. Such equations
also appear naturally as discrete analogues and as numerical
solutions of systems differential and delay differential equa-
tions which model diverse phenomena in biology, ecology,
physiology, physics, engineering, and economics. For appli-
cations and basic theory of rational difference equations, we
refer to [1–3]. In [4–10], applications of difference equations
in mathematical biology are given. Nonlinear difference
equations can be used in population models [11–17]. It is very
interesting to investigate the behavior of solutions of a system
of nonlinear difference equations and to discuss the local
asymptotic stability of their equilibrium points.

Gibbons et al. [18] investigated the qualitative behavior of
the following second-order rational difference equation:

𝑥
𝑛+1

=

𝛼 + 𝛽𝑥
𝑛−1

𝛾 + 𝑥
𝑛

. (1)

Motivated by the above study, our aim in this paper is
to investigate the qualitative behavior of positive solutions

of the following second-order system of rational difference
equations:

𝑥
𝑛+1

=

𝛼
1
+ 𝛽
1
𝑥
𝑛−1

𝑎
1
+ 𝑏
1
𝑦
𝑛

, 𝑦
𝑛+1

=

𝛼
2
+ 𝛽
2
𝑦
𝑛−1

𝑎
2
+ 𝑏
2
𝑥
𝑛

, (2)

where the parameters 𝛼
𝑖
, 𝛽
𝑖
, 𝑎
𝑖
, and 𝑏

𝑖
for 𝑖 ∈ {1, 2} and initial

conditions 𝑥
0
, 𝑥
−1
, 𝑦
0
, and 𝑦

−1
are positive real numbers.

More precisely, we investigate the boundedness character,
persistence, existence, and uniqueness of positive steady state,
local asymptotic stability, and global behavior of unique
positive equilibrium point and rate of convergence of positive
solutions of system (2) which converge to its unique positive
equilibrium point.

2. Boundedness and Persistence

The following theorem shows the boundedness and persis-
tence of every positive solution of system (2).

Theorem 1. Assume that 𝛽
1
< 𝑎
1
and 𝛽

2
< 𝑎
2
; then every

positive solution {(𝑥
𝑛
, 𝑦
𝑛
)} of system (2) is bounded and

persists.
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Proof. For any positive solution {(𝑥
𝑛
, 𝑦
𝑛
)} of system (2), one

has

𝑥
𝑛+1

≤ 𝐴
1
+ 𝐵
1
𝑥
𝑛−1

, 𝑦
𝑛+1

≤ 𝐴
2
+ 𝐵
2
𝑦
𝑛−1

,

𝑛 = 0, 1, 2, . . . ,

(3)

where 𝐴
𝑖
= 𝛼
𝑖
/𝑎
𝑖
and 𝐵

𝑖
= 𝛽
𝑖
/𝑎
𝑖
for 𝑖 ∈ {1, 2}. Consider the

following linear difference equations:

𝑢
𝑛+1

= 𝐴
1
+ 𝐵
1
𝑢
𝑛−1

, 𝑛 = 0, 1, 2, . . . ,

V
𝑛+1

= 𝐴
2
+ 𝐵
2
V
𝑛−1

, 𝑛 = 0, 1, 2, . . . .

(4)

Obviously, solutions of these second-order nonhomogeneous
difference equations are given by

𝑢
𝑛
=

𝐴
1

1 − 𝐵
1

+ 𝑐
1
𝐵
𝑛/2

1
+ 𝑐
2
(−√𝐵

1
)

𝑛

, 𝑛 = 1, 2, . . . ,

V
𝑛
=

𝐴
2

1 − 𝐵
2

+ 𝑐
3
𝐵
𝑛/2

2
+ 𝑐
4
(−√𝐵

2
)

𝑛

, 𝑛 = 1, 2, . . . ,

(5)

where 𝑐
𝑖
for 𝑖 ∈ {1, 2, 3, 4} depend upon initial conditions 𝑢

−1
,

𝑢
0
, V
−1
, and V

0
. Assume that 𝛽

1
< 𝑎
1
and 𝛽

2
< 𝑎
2
; then the

sequences {𝑢
𝑛
} and {V

𝑛
} are bounded. Suppose that 𝑢

−1
= 𝑥
−1
,

𝑢
0
= 𝑥
0
, V
−1

= 𝑦
−1
, and V

0
= 𝑦
0
; then by comparison we have

𝑥
𝑛
≤

𝛼
1

𝑎
1
− 𝛽
1

= 𝑈
1
, 𝑦

𝑛
≤

𝛼
2

𝑎
2
− 𝛽
2

= 𝑈
2
,

𝑛 = 1, 2, . . . .

(6)

Furthermore, from system (2) and (6) we obtain that

𝑥
𝑛+1

≥

𝛼
1

𝑎
1
+ 𝑏
1
𝑦
𝑛

≥

𝛼
1
(𝑎
2
− 𝛽
2
)

𝑎
1
(𝑎
2
− 𝛽
2
) + 𝑏
1
𝛼
2

= 𝐿
1
,

𝑦
𝑛+1

≥

𝛼
2

𝑎
2
+ 𝑏
2
𝑥
𝑛

≥

𝛼
2
(𝑎
1
− 𝛽
1
)

𝑎
2
(𝑎
1
− 𝛽
1
) + 𝑏
2
𝛼
1

= 𝐿
2
.

(7)

From (6) and (7), it follows that

𝐿
1
≤ 𝑥
𝑛
≤ 𝑈
1
, 𝐿

2
≤ 𝑦
𝑛
≤ 𝑈
2
, 𝑛 = 1, 2, . . . . (8)

Hence, theorem is proved.

Lemma 2. Let {(𝑥
𝑛
, 𝑦
𝑛
)} be a positive solution of system (2).

Then, [𝐿
1
, 𝑈
1
] × [𝐿

2
, 𝑈
2
] is invariant set for system (2).

Proof. The proof follows by induction.

3. Stability Analysis

Let us consider fourth-dimensional discrete dynamical sys-
tem of the following form:

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
, 𝑥
𝑛−1

, 𝑦
𝑛
, 𝑦
𝑛−1

) ,

𝑦
𝑛+1

= 𝑔 (𝑥
𝑛
, 𝑥
𝑛−1

, 𝑦
𝑛
, 𝑦
𝑛−1

) ,

𝑛 = 0, 1, . . . ,

(9)

where 𝑓 : 𝐼
2

× 𝐽
2

→ 𝐼 and 𝑔 : 𝐼
2

× 𝐽
2

→ 𝐽 are continuously
differentiable functions and 𝐼, 𝐽 are some intervals of real
numbers. Furthermore, a solution {(𝑥

𝑛
, 𝑦
𝑛
)}
∞

𝑛=−1
of system (9)

is uniquely determined by initial conditions (𝑥
𝑖
, 𝑦
𝑖
) ∈ 𝐼 × 𝐽

for 𝑖 ∈ {−1, 0}. Along with system (9), we consider the
corresponding vector map 𝐹 = (𝑓, 𝑥

𝑛
, 𝑔, 𝑦
𝑛
). An equilibrium

point of (9) is a point (𝑥, 𝑦) that satisfies

𝑥 = 𝑓 (𝑥, 𝑥, 𝑦, 𝑦) ,

𝑦 = 𝑔 (𝑥, 𝑥, 𝑦, 𝑦) .

(10)

The point (𝑥, 𝑦) is also called a fixed point of the vector
map 𝐹.

Definition 3. Let (𝑥, 𝑦) be an equilibrium point of the system
(9).

(i) An equilibrium point (𝑥, 𝑦) is said to be stable if for
every 𝜀 > 0 there exists 𝛿 > 0 such that, for every
initial condition (𝑥

𝑖
, 𝑦
𝑖
), 𝑖 ∈ {−1, 0} if ‖∑0

𝑖=−1
(𝑥
𝑖
, 𝑦
𝑖
) −

(𝑥, 𝑦)‖ < 𝛿 implies that ‖(𝑥
𝑛
, 𝑦
𝑛
) − (𝑥, 𝑦)‖ < 𝜀 for all

𝑛 > 0, where ‖ ⋅ ‖ is usual Euclidian norm in R2.
(ii) An equilibrium point (𝑥, 𝑦) is said to be unstable if it

is not stable.
(iii) An equilibrium point (𝑥, 𝑦) is said to be asymptoti-

cally stable if there exists 𝜂 > 0 such that












0

∑

𝑖=−1

(𝑥
𝑖
, 𝑦
𝑖
) − (𝑥, 𝑦)












< 𝜂,

(𝑥
𝑛
, 𝑦
𝑛
) → (𝑥, 𝑦) as 𝑛 → ∞.

(11)

(iv) An equilibrium point (𝑥, 𝑦) is called global attractor
if (𝑥
𝑛
, 𝑦
𝑛
) → (𝑥, 𝑦) as 𝑛 → ∞.

(v) An equilibrium point (𝑥, 𝑦) is called asymptotic
global attractor if it is a global attractor and stable.

Definition 4. Let (𝑥, 𝑦) be an equilibrium point of a map 𝐹 =

(𝑓, 𝑥
𝑛
, 𝑔, 𝑦
𝑛
), where 𝑓 and 𝑔 are continuously differentiable

functions at (𝑥, 𝑦). The linearized system of (9) about the
equilibrium point (𝑥, 𝑦) is

𝑋
𝑛+1

= 𝐹 (𝑋
𝑛
) = 𝐹
𝐽
𝑋
𝑛
, (12)

where 𝑋
𝑛
= (

𝑥
𝑛

𝑦
𝑛

𝑥
𝑛−1

𝑦
𝑛−1

) and 𝐹
𝐽
is Jacobian matrix of system (9)

about the equilibrium point (𝑥, 𝑦).

To construct the corresponding linearized form of system
(2) we consider the following transformation:

(𝑥
𝑛
, 𝑦
𝑛
, 𝑥
𝑛−1

, 𝑦
𝑛−1

) → (𝑓, 𝑔, 𝑓
1
, 𝑔
1
) , (13)

where 𝑓 = 𝑥
𝑛+1

, 𝑔 = 𝑦
𝑛+1

, 𝑓
1
= 𝑥
𝑛
, and 𝑔

1
= 𝑦
𝑛
. The

linearized system of (2) about (𝑥, 𝑦) is given by

𝑍
𝑛+1

= 𝐹
𝐽
(𝑥, 𝑦)𝑍

𝑛
, (14)
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where 𝑍
𝑛
= (

𝑥
𝑛

𝑦
𝑛

𝑥
𝑛−1

𝑦
𝑛−1

) and the Jacobian matrix about the fixed

point (𝑥, 𝑦) under the transformation (13) is given by

𝐹
𝐽
(𝑥, 𝑦)

=
(

(

0 −

𝑏
1
𝑥

𝑎
1
+ 𝑏
1
𝑦

𝛽
1

𝑎
1
+ 𝑏
1
𝑦

0

−

𝑏
2
𝑦

𝑎
2
+ 𝑏
2
𝑥

0 0

𝛽
2

𝑎
2
+ 𝑏
2
𝑥

1 0 0 0

0 1 0 0

)

)

.

(15)

Lemma 5. Assume that 𝑋
𝑛+1

= 𝐹(𝑋
𝑛
), 𝑛 = 0, 1, . . ., is a

system of difference equations such that𝑋 is a fixed point of 𝐹.
If all eigenvalues of the Jacobianmatrix 𝐽

𝐹
about𝑋 lie inside the

open unit disk |𝜆| < 1, then𝑋 is locally asymptotically stable. If
one of them has amodulus greater than one, then𝑋 is unstable.

The following theorem shows the existence and unique-
ness of positive equilibrium point of system (2).

Theorem 6. Assume that 𝛽
1

< 𝑎
1
and 𝛽

2
< 𝑎
2
; then

there exists unique positive equilibrium point of system (2) in
[𝐿
1
, 𝑈
1
] × [𝐿

2
, 𝑈
2
], if the following condition is satisfied:

𝛼
1
𝛼
2
𝑏
1
𝑏
2

< (𝑎
1
𝑎
2
+ 𝑏
2
(𝑎
1
− 𝛽
1
)𝐿
1
− 𝑎
1
𝛽
2
− 𝑎
2
𝛽
1
+ 𝛼
2
𝑏
1
+ 𝛽
1
𝛽
2
)
2

.

(16)

Proof. Consider the following system of equations:

𝑥 =

𝛼
1
+ 𝛽
1
𝑥

𝑎
1
+ 𝑏
1
𝑦

, 𝑦 =

𝛼
2
+ 𝛽
2
𝑦

𝑎
2
+ 𝑏
2
𝑥

. (17)

Assume that (𝑥, 𝑦) ∈ [𝐿
1
, 𝑈
1
] × [𝐿

2
, 𝑈
2
]; then it follows from

(17) that

𝑥 =

𝛼
1

𝑎
1
− 𝛽
1
+ 𝑏
1
𝑦

, 𝑦 =

𝛼
2

𝑎
2
− 𝛽
2
+ 𝑏
2
𝑥

. (18)

Take

𝐹 (𝑥) =

𝛼
1

𝑎
1
− 𝛽
1
+ 𝑏
1
𝑓 (𝑥)

− 𝑥, (19)

where 𝑓(𝑥) = 𝛼
2
/(𝑎
2
− 𝛽
2
+ 𝑏
2
𝑥) and 𝑥 ∈ [𝐿

1
, 𝑈
1
]. Then, we

obtain that

𝑓 (𝐿
1
) =

𝛼
2

𝑎
2
− 𝛽
2

(

𝑎
1
(𝑎
2
− 𝛽
2
) + 𝑏
1
𝛼
2

𝑎
1
(𝑎
2
− 𝛽
2
) + 𝑏
1
𝛼
2
+ 𝑏
2
𝛼
1

) <

𝛼
2

𝑎
2
− 𝛽
2

.

(20)

Hence, it follows that

𝐹 (𝐿
1
) =

𝛼
1

𝑎
1
− 𝛽
1
+ 𝑏
1
𝑓 (𝐿
1
)

− 𝐿
1

>

𝛼
1
(𝑎
2
− 𝛽
2
)

(𝑎
1
− 𝛽
1
) (𝑎
2
− 𝛽
2
) + 𝑏
1
𝛼
2

− 𝐿
1

=

𝛼
1
(𝑎
2
− 𝛽
2
)

(𝑎
1
− 𝛽
1
) (𝑎
2
− 𝛽
2
) + 𝑏
1
𝛼
2

−

𝛼
1
(𝑎
2
− 𝛽
2
)

𝑎
1
(𝑎
2
− 𝛽
2
) + 𝑏
1
𝛼
2

> 0.

(21)

Furthermore,

𝐹 (𝑈
1
) =

𝛼
1

𝑎
1
− 𝛽
1
+ 𝑏
1
𝑓 (𝑈
1
)

− 𝑈
1

=

𝛼
1

𝑎
1
− 𝛽
1

(

(𝑎
2
− 𝛽
2
) (𝑎
1
− 𝛽
1
) + 𝛼
1
𝑏
2

(𝑎
2
− 𝛽
2
) (𝑎
1
− 𝛽
1
) + 𝛼
1
𝑏
2
+ 𝑏
1
𝛼
2

− 1)

< 0.

(22)

Hence, 𝐹(𝑥) = 0 has at least one positive solution in [𝐿
1
, 𝑈
1
].

Furthermore, assume that condition (16) is satisfied; then
one has

𝐹


(𝑥)

= (𝛼
1
𝛼
2
𝑏
1
𝑏
2
( (𝑎
1
𝑎
2
+ 𝑎
1
𝑏
2
𝑥 − 𝑎
1
𝛽
2
− 𝑎
2
𝛽
1

+ 𝛼
2
𝑏
1
+ 𝛽
1
𝛽
2
− 𝛽
1
𝑏
2
𝑥)
2

)

−1

) − 1

≤ (𝛼
1
𝛼
2
𝑏
1
𝑏
2
( (𝑎
1
𝑎
2
+ 𝑏
2
(𝑎
1
− 𝛽
1
) 𝐿
1
− 𝑎
1
𝛽
2

−𝑎
2
𝛽
1
+ 𝛼
2
𝑏
1
+ 𝛽
1
𝛽
2
)
2

)

−1

) − 1

< 0.

(23)

Hence, 𝐹(𝑥) = 0 has a unique positive solution in [𝐿
1
, 𝑈
1
].

The proof is therefore completed.

Theorem 7. The unique positive equilibrium point (𝑥, 𝑦) of
system (2) is locally asymptotically stable if 𝑏

1
𝑏
2
𝑈
1
𝑈
2
+ 𝛽
1
𝛽
2
+

𝛽
1
(𝑎
2
+ 𝑏
2
𝐿
1
) + 𝛽
2
(𝑎
1
+ 𝑏
1
𝐿
2
) < (𝑎

1
+ 𝑏
1
𝐿
2
)(𝑎
2
+ 𝑏
2
𝐿
1
).

Proof. The characteristic polynomial of Jacobian matrix
𝐹
𝐽
(𝑥, 𝑦) about (𝑥, 𝑦) is given by

𝑃 (𝜆)

= 𝜆
4

− (

𝑏
1
𝑏
2
𝑥𝑦

(𝑎
1
+ 𝑏
1
𝑦) (𝑎
2
+ 𝑏
2
𝑥)

+

𝛽
1

𝑎
1
+ 𝑏
1
𝑦

+

𝛽
2

𝑎
2
+ 𝑏
2
𝑥

)𝜆
2

+

𝛽
1
𝛽
2

(𝑎
1
+ 𝑏
1
𝑦) (𝑎
2
+ 𝑏
2
𝑥)

.

(24)
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Let Φ(𝜆) = 𝜆
4 and Ψ(𝜆) = ((𝑏

1
𝑏
2
𝑥𝑦/(𝑎

1
+ 𝑏
1
𝑦)(𝑎
2
+ 𝑏
2
𝑥)) +

(𝛽
1
/(𝑎
1
+𝑏
1
𝑦))+(𝛽

2
/(𝑎
2
+𝑏
2
𝑥)))𝜆
2

−(𝛽
1
𝛽
2
/(𝑎
1
+𝑏
1
𝑦)(𝑎
2
+𝑏
2
𝑥)).

Assume that 𝑏
1
𝑏
2
𝑈
1
𝑈
2
+𝛽
1
𝛽
2
+𝛽
1
(𝑎
2
+𝑏
2
𝐿
1
)+𝛽
2
(𝑎
1
+𝑏
1
𝐿
2
) <

(𝑎
1
+ 𝑏
1
𝐿
2
)(𝑎
2
+ 𝑏
2
𝐿
1
) and |𝜆| = 1; then one has

|Ψ (𝜆)|

< (

𝑏
1
𝑏
2
𝑥𝑦

(𝑎
1
+ 𝑏
1
𝑦) (𝑎
2
+ 𝑏
2
𝑥)

+

𝛽
1

𝑎
1
+ 𝑏
1
𝑦

+

𝛽
2

𝑎
2
+ 𝑏
2
𝑥

)

+

𝛽
1
𝛽
2

(𝑎
1
+ 𝑏
1
𝑦) (𝑎
2
+ 𝑏
2
𝑥)

<

𝑏
1
𝑏
2
𝑈
1
𝑈
2

(𝑎
1
+ 𝑏
1
𝐿
2
) (𝑎
2
+ 𝑏
2
𝐿
1
)

+

𝛽
1

𝑎
1
+ 𝑏
1
𝐿
2

+

𝛽
2

𝑎
2
+ 𝑏
2
𝐿
1

+

𝛽
1
𝛽
2

(𝑎
1
+ 𝑏
1
𝐿
2
) (𝑎
2
+ 𝑏
2
𝐿
1
)

=

𝑏
1
𝑏
2
𝑈
1
𝑈
2
+ 𝛽
1
𝛽
2
+ 𝛽
1
(𝑎
2
+ 𝑏
2
𝐿
1
) + 𝛽
2
(𝑎
1
+ 𝑏
1
𝐿
2
)

(𝑎
1
+ 𝑏
1
𝐿
2
) (𝑎
2
+ 𝑏
2
𝐿
1
)

< 1.

(25)

Then, by Rouche’s Theorem, Φ(𝜆) and Φ(𝜆) − Ψ(𝜆) have the
same number of zeroes in an open unit disk |𝜆| < 1. Hence, all
the roots of (24) satisfy |𝜆| < 1, and it follows from Lemma 5
that the unique positive equilibriumpoint (𝑥, 𝑦) of the system
(2) is locally asymptotically stable.

Arguing as in [2], we have following result for global
behavior of (2).

Lemma8. Assume that𝑓 : (0,∞)×(0,∞) → (0,∞) and 𝑔 :

(0,∞) × (0,∞) → (0,∞) are continuous functions and 𝑎, 𝑏,
𝑐, and 𝑑 are positive real numbers with 𝑎 < 𝑏, 𝑐 < 𝑑. Moreover,
suppose that 𝑓 : [𝑎, 𝑏] × [𝑐, 𝑑] → [𝑎, 𝑏] and 𝑔 : [𝑎, 𝑏] ×

[𝑐, 𝑑] → [𝑐, 𝑑] such that following conditions are satisfied:

(i) 𝑓(𝑥, 𝑦) is increasing in 𝑥 and decreasing in 𝑦, and
𝑔(𝑥, 𝑦) is decreasing in 𝑥 and increasing in 𝑦;

(ii) let 𝑚
1
, 𝑀
1
, 𝑚
2
, and𝑀

2
be real numbers such that

𝑚
1
= 𝑓(𝑚

1
,𝑀
2
),𝑀
1
= 𝑓(𝑀

1
, 𝑚
2
), 𝑚
2
= 𝑔(𝑀

1
, 𝑚
2
),

and𝑀
2
= 𝑔(𝑚

1
,𝑀
2
); then𝑚

1
= 𝑀
1
and𝑚

2
= 𝑀
2
.

Then, the system of difference equations 𝑥
𝑛+1

=

𝑓(𝑥
𝑛−1

, 𝑦
𝑛
), 𝑦
𝑛+1

= 𝑔(𝑥
𝑛
, 𝑦
𝑛−1

) has a unique positive
equilibrium point (𝑥, 𝑦) such that lim

𝑛→∞
(𝑥
𝑛
, 𝑦
𝑛
) = (𝑥, 𝑦).

Theorem 9. The unique positive equilibrium point of system
(2) is global attractor if (𝑎

1
− 𝛽
1
+ 𝑏
1
𝐿
2
)
2

(𝑎
2
− 𝛽
2
+ 𝑏
1
𝐿
1
)
2

>

𝛼
1
𝛼
2
𝑏
1
𝑏
2
.

Proof. Let𝑓(𝑥, 𝑦) = (𝛼
1
+𝛽
1
𝑥)/(𝑎
1
+𝑏
1
𝑦) and 𝑔(𝑥, 𝑦) = (𝛼

2
+

𝛽
2
𝑦)/(𝑎
2
+𝑏
2
𝑥).Then, it is easy to see that𝑓(𝑥, 𝑦) is increasing

in 𝑥 and decreasing in 𝑦. Moreover, 𝑔(𝑥, 𝑦) is decreasing in 𝑥

and increasing in 𝑦. Let (𝑚
1
,𝑀
1
, 𝑚
2
,𝑀
2
) be a solution of

the system

𝑚
1
= 𝑓 (𝑚

1
,𝑀
2
) , 𝑀

1
= 𝑓 (𝑀

1
, 𝑚
2
) ,

𝑚
2
= 𝑔 (𝑀

1
, 𝑚
2
) , 𝑀

2
= 𝑔 (𝑚

1
,𝑀
2
) .

(26)

Then, one has

𝑚
1
=

𝛼
1
+ 𝛽
1
𝑚
1

𝑎
1
+ 𝑏
1
𝑀
2

, 𝑀
1
=

𝛼
1
+ 𝛽
1
𝑀
1

𝑎
1
+ 𝑏
1
𝑚
2

,

𝑚
2
=

𝛼
2
+ 𝛽
2
𝑚
2

𝑎
2
+ 𝑏
2
𝑀
1

, 𝑀
2
=

𝛼
2
+ 𝛽
2
𝑀
2

𝑎
2
+ 𝑏
2
𝑚
1

.

(27)

Furthermore, we have

𝐿
1
≤ 𝑚
1
, 𝑀

1
≤ 𝑈
1
,

𝐿
2
≤ 𝑚
2
, 𝑀

2
≤ 𝑈
2
.

(28)

From (27), it follows that

𝑚
1
=

𝛼
1

𝑎
1
− 𝛽
1
+ 𝑏
1
𝑀
2

, 𝑀
1
=

𝛼
1

𝑎
1
− 𝛽
1
+ 𝑏
1
𝑚
2

, (29)

𝑚
2
=

𝛼
2

𝑎
2
− 𝛽
2
+ 𝑏
2
𝑀
1

, 𝑀
2
=

𝛼
2

𝑎
2
− 𝛽
2
+ 𝑏
2
𝑚
1

. (30)

On subtracting (29), one has

𝑀
1
− 𝑚
1

= 𝛼
1
(

1

𝑎
1
− 𝛽
1
+ 𝑏
1
𝑚
2

−

1

𝑎
1
− 𝛽
1
+ 𝑏
1
𝑀
2

)

=

𝛼
1
𝑏
1
(𝑀
2
− 𝑚
2
)

(𝑎
1
− 𝛽
1
+ 𝑏
1
𝑚
2
) (𝑎
1
− 𝛽
1
+ 𝑏
1
𝑀
2
)

≤

𝛼
1
𝑏
1
(𝑀
2
− 𝑚
2
)

(𝑎
1
− 𝛽
1
+ 𝑏
1
𝐿
2
)
2
.

(31)

Similarly, from (30), we obtain

𝑀
2
− 𝑚
2
≤

𝛼
2
𝑏
2
(𝑀
1
− 𝑚
1
)

(𝑎
2
− 𝛽
2
+ 𝑏
1
𝐿
1
)
2
. (32)

Furthermore, from (31) and (32), we obtain

(𝐾 − 𝛼
1
𝛼
2
𝑏
1
𝑏
2
) (𝑀
1
− 𝑚
1
) ≤ 0, (33)

where 𝐾 = (𝑎
1
− 𝛽
1
+ 𝑏
1
𝐿
2
)
2

(𝑎
2
− 𝛽
2
+ 𝑏
1
𝐿
1
)
2. Finally, from

(33), it follows that 𝑚
1
= 𝑀
1
. Similarly, it is easy to see that

𝑚
2
= 𝑀
2
.

Lemma 10. Under the conditions of Theorems 7 and 9 the
unique positive equilibrium of (2) is globally asymptotically
stable.
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4. Rate of Convergence

In this section, we will determine the rate of convergence of
a solution that converges to the unique positive equilibrium
point of the system (2).

The following result gives the rate of convergence of
solutions of a system of difference equations:

𝑋
𝑛+1

= (𝐴 + 𝐵 (𝑛))𝑋
𝑛
, (34)

where𝑋
𝑛
is an𝑚-dimensional vector,𝐴 ∈ 𝐶

𝑚×𝑚 is a constant
matrix, and 𝐵 : Z+ → 𝐶

𝑚×𝑚 is a matrix function satisfying

‖𝐵 (𝑛)‖ → 0 (35)

as 𝑛 → ∞, where ‖ ⋅ ‖ denotes any matrix norm which is
associated with the vector norm





(𝑥, 𝑦)





= √𝑥
2
+ 𝑦
2
. (36)

Proposition 11 (Perron’s Theorem, [19]). Suppose that condi-
tion (35) holds. If 𝑋

𝑛
is a solution of (34), then either 𝑋

𝑛
= 0

for all large 𝑛 or

𝜌 = lim
𝑛→∞

(




𝑋
𝑛





)
1/𝑛 (37)

exists and is equal to the modulus of one of the eigenvalues of
matrix 𝐴.

Proposition 12 (see [19]). Suppose that condition (35) holds.
If𝑋
𝑛
is a solution of (34), then either𝑋

𝑛
= 0 for all large 𝑛 or

𝜌 = lim
𝑛→∞





𝑋
𝑛+1










𝑋
𝑛






(38)

exists and is equal to the modulus of one of the eigenvalues of
matrix 𝐴.

Let {(𝑥
𝑛
, 𝑦
𝑛
)} be an arbitrary solution of the system (2)

such that lim
𝑛→∞

𝑥
𝑛
= 𝑥 and lim

𝑛→∞
𝑦
𝑛
= 𝑦, where 𝑥 ∈

[𝐿
1
, 𝑈
1
] and 𝑦 ∈ [𝐿

2
, 𝑈
2
]. To find the error terms, one has

from the system (2)

𝑥
𝑛+1

− 𝑥 =

𝛼
1
+ 𝛽
1
𝑥
𝑛−1

𝑎
1
+ 𝑏
1
𝑦
𝑛

−

𝛼
1
+ 𝛽
1
𝑥

𝑎
1
+ 𝑏
1
𝑦

=

𝛽
1
(𝑥
𝑛−1

− 𝑥)

𝑎
1
+ 𝑏
1
𝑦
𝑛

−

𝑏
1
𝑥 (𝑦
𝑛
− 𝑦)

𝑎
1
+ 𝑏
1
𝑦
𝑛

,

𝑦
𝑛+1

− 𝑦 =

𝛼
2
+ 𝛽
2
𝑦
𝑛−1

𝑎
2
+ 𝑏
2
𝑥
𝑛

−

𝛼
2
+ 𝛽
2
𝑦

𝑎
2
+ 𝑏
2
𝑥

= −

𝑏
2
𝑦 (𝑥
𝑛
− 𝑥)

𝑎
2
+ 𝑏
2
𝑥
𝑛

+

𝛽
2
(𝑦
𝑛−1

− 𝑦)

𝑎
2
+ 𝑏
2
𝑥
𝑛

.

(39)

Let 𝑒1
𝑛
= 𝑥
𝑛
− 𝑥 and 𝑒2

𝑛
= 𝑦
𝑛
− 𝑦; then one has

𝑒
1

𝑛+1
= 𝑎
𝑛
𝑒
1

𝑛−1
+ 𝑏
𝑛
𝑒
2

𝑛
,

𝑒
2

𝑛+1
= 𝑐
𝑛
𝑒
1

𝑛
+ 𝑑
𝑛
𝑒
2

𝑛−1
,

(40)

where

𝑎
𝑛
=

𝛽
1

𝑎
1
+ 𝑏
1
𝑦
𝑛

, 𝑏
𝑛
= −

𝑏
1
𝑥

𝑎
1
+ 𝑏
1
𝑦
𝑛

,

𝑐
𝑛
= −

𝑏
2
𝑦

𝑎
2
+ 𝑏
2
𝑥
𝑛

, 𝑑
𝑛
=

𝛽
2

𝑎
2
+ 𝑏
2
𝑥
𝑛

.

(41)

Moreover,

lim
𝑛→∞

𝑎
𝑛
=

𝛽
1

𝑎
1
+ 𝑏
1
𝑦

, lim
𝑛→∞

𝑏
𝑛
= −

𝑏
1
𝑥

𝑎
1
+ 𝑏
1
𝑦

,

lim
𝑛→∞

𝑐
𝑛
= −

𝑏
2
𝑦

𝑎
2
+ 𝑏
2
𝑥

, lim
𝑛→∞

𝑑
𝑛
=

𝛽
2

𝑎
2
+ 𝑏
2
𝑥

.

(42)

Now, the limiting system of error terms can be written as

[

[

[

[

[

[

[

[

[

[

𝑒
1

𝑛+1

𝑒
2

𝑛+1

𝑒
1

𝑛

𝑒
2

𝑛

]

]

]

]

]

]

]

]

]

]

=
(

(

0 −

𝑏
1
𝑥

𝑎
1
+ 𝑏
1
𝑦

𝛽
1

𝑎
1
+ 𝑏
1
𝑦

0

−

𝑏
2
𝑦

𝑎
2
+ 𝑏
2
𝑥

0 0

𝛽
2

𝑎
2
+ 𝑏
2
𝑥

1 0 0 0

0 1 0 0

)

)

×

[

[

[

[

[

[

[

[

[

[

𝑒
1

𝑛

𝑒
2

𝑛

𝑒
1

𝑛−1

𝑒
2

𝑛−1

]

]

]

]

]

]

]

]

]

]

,

(43)

which is similar to linearized system of (2) about the equi-
librium point (𝑥, 𝑦). Using Proposition 11, one has following
result.

Theorem 13. Assume that {(𝑥
𝑛
, 𝑦
𝑛
)} is a positive solution of

the system (2) such that lim
𝑛→∞

𝑥
𝑛
= 𝑥 and lim

𝑛→∞
𝑦
𝑛
= 𝑦,

where 𝑥 ∈ [𝐿
1
, 𝑈
1
] and 𝑦 ∈ [𝐿

2
, 𝑈
2
]. Then, the error vector

𝑒
𝑛

= (

𝑒
1

𝑛

𝑒
2

𝑛

𝑒
1

𝑛−1

𝑒
2

𝑛−1

) of every solution of (2) satisfies both of the

following asymptotic relations:

lim
𝑛→∞

(




𝑒
𝑛





)
1/𝑛

=




𝜆
1,2,3,4

𝐹
𝐽
(𝑥, 𝑦)





,

lim
𝑛→∞





𝑒
𝑛+1










𝑒
𝑛






=




𝜆
1,2,3,4

𝐹
𝐽
(𝑥, 𝑦)





,

(44)

where 𝜆
1,2,3,4

𝐹
𝐽
(𝑥, 𝑦) are the characteristic roots of Jacobian

matrix 𝐹
𝐽
(𝑥, 𝑦).
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5. Existence of Unbounded Solutions of (2)
In this section, we study the behavior of unbounded solutions
of system (2).

Theorem 14. Consider system (2). Then, for every positive
solution {(𝑥

𝑛
, 𝑦
𝑛
)} of (2) the following statements are true:

(i) let 𝛽
1
< 𝑎
1
and 𝛽

2
> 𝑎
2
+ 𝑏
2
𝑈
1
; then 𝑦

𝑛
→ ∞ as

𝑛 → ∞;
(ii) let 𝛽

2
< 𝑎
2
and 𝛽

1
> 𝑎
1
+ 𝑏
1
𝑈
2
; then 𝑥

𝑛
→ ∞ as

𝑛 → ∞.

Proof. (i) Suppose that 𝑎
1

< 𝛽
1
; then it follows from

Theorem 1 that 𝑥
𝑛

≤ 𝛼
1
/(𝑎
1
− 𝛽
1
) = 𝑈

1
, 𝑛 = 1, 2, . . ..

Furthermore, from system (2) it follows that

𝑦
𝑛+1

=

𝛼
2
+ 𝛽
2
𝑦
𝑛−1

𝑎
2
+ 𝑏
2
𝑥
𝑛

≥

𝛼
2
+ 𝛽
2
𝑦
𝑛−1

𝑎
2
+ 𝑏
2
𝑈
1

= 𝑐
2
+ 𝑑
2
𝑦
𝑛−1

,

(45)

where

𝑐
2
=

𝛼
2

𝑎
2
+ 𝑏
2
𝑈
1

, 𝑑
2
=

𝛽
2

𝑎
2
+ 𝑏
2
𝑈
1

. (46)

Consider the following second-order difference equation:

𝑤
𝑛+1

= 𝑐
2
+ 𝑑
2
𝑤
𝑛−1

, 𝑛 = 0, 1, . . . . (47)

The solution of (47) is given by

𝑤
𝑛
=

𝑐
2

1 − 𝑑
2

+ 𝑟
1
𝑑
𝑛/2

2
+ 𝑟
2
(−√𝑑

2
)

𝑛

, 𝑛 = 1, 2, . . . , (48)

where 𝑟
1
, 𝑟
2
depend on initial values 𝑤

−1
, 𝑤
0
. Moreover,

assume that 𝛽
2
> 𝑎
2
+ 𝑏
2
𝑈
1
; that is, 𝑑

2
= 𝛽
2
/(𝑎
2
+ 𝑏
2
𝑈
1
) > 1;

then we obtain that {𝑤
𝑛
} is divergent. Hence, by comparison,

we have 𝑦
𝑛
→ ∞ as 𝑛 → ∞.

(ii) Assume that 𝑎
2
< 𝛽
2
; then fromTheorem 1 we obtain

that 𝑦
𝑛
≤ 𝛼
2
/(𝑎
2
− 𝛽
2
) = 𝑈

2
, 𝑛 = 1, 2, . . .. Moreover, from

system (2) we have

𝑥
𝑛+1

=

𝛼
1
+ 𝛽
1
𝑥
𝑛−1

𝑎
1
+ 𝑏
1
𝑦
𝑛

≥

𝛼
1
+ 𝛽
1
𝑥
𝑛−1

𝑎
1
+ 𝑏
1
𝑈
2

= 𝑐
1
+ 𝑑
1
𝑥
𝑛−1

,

(49)

where

𝑐
1
=

𝛼
1

𝑎
1
+ 𝑏
1
𝑈
2

, 𝑑
1
=

𝛽
1

𝑎
1
+ 𝑏
1
𝑈
2

. (50)

Next, we consider the following second-order difference
equation:

𝑧
𝑛+1

= 𝑐
1
+ 𝑑
1
𝑧
𝑛−1

, 𝑛 = 0, 1, . . . . (51)

Then, it is easy to see that solution of (51) is given by

𝑧
𝑛
=

𝑐
1

1 − 𝑑
1

+ 𝑟
3
𝑑
𝑛/2

1
+ 𝑟
4
(−√𝑑

1
)

𝑛

, 𝑛 = 1, 2, . . . , (52)

where 𝑟
3
, 𝑟
4
depend on initial values 𝑧

−1
, 𝑧
0
. Furthermore,

suppose that 𝛽
1
> 𝑎
1
+ 𝑏
1
𝑈
2
; that is, 𝑑

1
= 𝛽
1
/(𝑎
1
+ 𝑏
1
𝑈
2
) > 1;

then one has {𝑧
𝑛
} that is divergent. Hence, by comparison we

have 𝑥
𝑛
→ ∞ as 𝑛 → ∞.

6. Periodicity Nature of Solutions of (2)
Theorem 15. Assume that 𝑎

1
> 𝛽
1
and 𝑎
2
> 𝛽
2
; then system

(2) has no prime period-two solutions.

Proof. On the contrary, suppose that the system (2) has a
distinctive prime period-two solutions

. . . , (𝑝
1
, 𝑞
1
) , (𝑝
2
, 𝑞
2
) , (𝑝
1
, 𝑞
1
) , . . . (53)

where 𝑝
1

̸= 𝑝
2
, 𝑞
1

̸= 𝑞
2
, and 𝑝

𝑖
, 𝑞
𝑖
are positive real numbers for

𝑖 ∈ {1, 2}. Then, from system (2), one has

𝑝
1
=

𝛼
1
+ 𝛽
1
𝑝
1

𝑎
1
+ 𝑏
1
𝑞
2

, 𝑝
2
=

𝛼
1
+ 𝛽
1
𝑝
2

𝑎
1
+ 𝑏
1
𝑞
1

,

𝑞
1
=

𝛼
2
+ 𝛽
2
𝑞
1

𝑎
2
+ 𝑏
2
𝑝
2

, 𝑞
2
=

𝛼
2
+ 𝛽
2
𝑞
2

𝑎
2
+ 𝑏
2
𝑝
1

.

(54)

After some tedious calculations from (54), we obtain

𝑝
1
+ 𝑝
2
=

𝜇 + √4𝑏
2
𝛼
1
(𝑎
1
− 𝛽
1
) (𝑎
2
− 𝛽
2
) + 𝜇
2

𝑏
2
(𝑎
1
− 𝛽
1
)

,

𝑝
1
𝑝
2
= (

𝜇 + √4𝑏
2
𝛼
1
(𝑎
1
− 𝛽
1
)(𝑎
2
− 𝛽
2
) + 𝜇
2

2𝑏
2
(𝑎
1
− 𝛽
1
)

)

2

,

(55)

𝑞
1
+ 𝑞
2
=

] + √4𝑏
2
𝛼
1
(𝑎
1
− 𝛽
1
) (𝑎
2
− 𝛽
2
) + ]2

𝑏
1
(𝑎
2
− 𝛽
2
)

,

𝑞
1
𝑞
2
= (

] + √4𝑏
2
𝛼
1
(𝑎
1
− 𝛽
1
)(𝑎
2
− 𝛽
2
) + ]2

2𝑏
1
(𝑎
2
− 𝛽
2
)

)

2

,

(56)

where 𝜇 = (𝑎
2
− 𝛽
2
)(𝛽
1
− 𝑎
1
) + 𝑏
2
𝛼
1
− 𝑏
1
𝛼
2
and ] = (𝑎

2
−

𝛽
2
)(𝛽
1
− 𝑎
1
) − 𝑏
2
𝛼
1
+ 𝑏
1
𝛼
2
. From (55), it follows that

(𝑝
1
+ 𝑝
2
)
2

− 4𝑝
1
𝑝
2
= 0. (57)

Similarly, from (56), we have

(𝑞
1
+ 𝑞
2
)
2

− 4𝑞
1
𝑞
2
= 0. (58)

Obviously, from (57) and (58), one has 𝑝
1
= 𝑝
2
and 𝑞

1
=

𝑞
2
, respectively, which is a contradiction. Hence, the proof is

completed.
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Figure 1: Plots for the system (59).

7. Examples

Example 1. Let 𝛼
1
= 0.5, 𝛽

1
= 12, 𝑎

1
= 13, 𝑏

1
= 0.2, 𝛼

2
= 0.1,

𝛽
2
= 17, 𝑎

2
= 17.5, and 𝑏

2
= 0.3. Then, system (2) can be

written as

𝑥
𝑛+1

=

0.5 + 12𝑥
𝑛−1

13 + 0.2𝑦
𝑛

, 𝑦
𝑛+1

=

0.1 + 17𝑦
𝑛−1

17.5 + 0.3𝑥
𝑛

, (59)

with initial conditions 𝑥
0
= 0.46, 𝑥

−1
= 0.5, 𝑦

−1
= 0.11, and

𝑦
0
= 0.14.
In this case, the unique positive equilibrium point of

the system (59) is given by (𝑥, 𝑦) = (0.484974, 0.154921).
Moreover, in Figure 1, the plot of 𝑥

𝑛
is shown in Figure 1(a),

the plot of 𝑦
𝑛
is shown in Figure 1(b), and an attractor of the

system (59) is shown in Figure 1(c).

Example 2. Let 𝛼
1
= 10, 𝛽

1
= 1.5, 𝑎

1
= 1.6, 𝑏

1
= 0.003, 𝛼

2
=

12, 𝛽
2
= 23, 𝑎

2
= 23.1, and 𝑏

2
= 0.02. Then, system (2) can

be written as

𝑥
𝑛+1

=

10 + 1.5𝑥
𝑛−1

1.6 + 0.003𝑦
𝑛

, 𝑦
𝑛+1

=

12 + 23𝑦
𝑛−1

23.1 + 0.02𝑥
𝑛

, (60)

with initial conditions 𝑥
−1

= 82, 𝑥
0

= 89, 𝑦
−1

= 5.9,
and 𝑦

0
= 6.

In this case, the unique positive equilibrium point of the
system (60) is given by (𝑥, 𝑦) = (83.0225, 6.81644).Moreover,

in Figure 2, the plot of 𝑥
𝑛
is shown in Figure 2(a), the plot of

𝑦
𝑛
is shown in Figure 2(b), and an attractor of the system (60)

is shown in Figure 2(c).

Example 3. Let 𝛼
1
= 3.2, 𝛽

1
= 8, 𝑎

1
= 8.1, 𝑏

1
= 5.5, 𝛼

2
=

4.2, 𝛽
2
= 16, 𝑎

2
= 16.1, and 𝑏

2
= 8.5. Then, system (2) can be

written as

𝑥
𝑛+1

=

3.2 + 8𝑥
𝑛−1

8.1 + 5.5𝑦
𝑛

, 𝑦
𝑛+1

=

4.2 + 16𝑦
𝑛−1

16.1 + 8.5𝑥
𝑛

, (61)

with initial conditions 𝑥
−1

= 3.9, 𝑥
0

= 3.5, 𝑦
−1

= 0.1,
and 𝑦

0
= 0.12.

In this case, the unique positive equilibrium point of the
system (61) is given by (𝑥, 𝑦) = (4.88876, 0.10083). Moreover,
in Figure 3, the plot of 𝑥

𝑛
is shown in Figure 3(a), the plot of

𝑦
𝑛
is shown in Figure 3(b), and an attractor of the system (61)

is shown in Figure 3(c).

8. Concluding Remarks

In literature, several articles are related to qualitative behavior
of competitive system of planar rational difference equations
[20]. It is very interesting mathematical problem to study the
dynamics of competitive systems in higher dimension. This
work is related to qualitative behavior of competitive sys-
tem of second-order rational difference equations. We have
investigated the existence and uniqueness of positive steady
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state of system (2). Under certain parametric conditions the
boundedness and persistence of positive solutions is proved.
Moreover, we have shown that unique positive equilibrium
point of system (2) is locally as well as globally asymptotically
stable. Furthermore, rate of convergence of positive solutions
of (2) which converge to its unique positive equilibriumpoint
is demonstrated. Finally, existence of unbounded solutions
and periodicity nature of positive solutions of this compet-
itive system are given.
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