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Previous studies have shown that composite fibre orientations can be optimised for specific load cases such as longitudinal or in-
plane loading. However, the methodologies utilised in these studies cannot be used for general analysis of such problems. In this
research, an extra term is added to the optimisation penalty function in order to consider the transverse shear effect. This modified
penalty function leads to a new methodology whereby the thickness of laminated composite plate is minimized by optimising
the fibre orientations for different load cases. Therefore, the effect of transverse shear forces is considered in this study. Simulated
annealing (SA) is used to search for the optimal design. This optimisation algorithm has been shown to be reliable as it is not
based on the starting point, and it can escape from the local optimum points. In this research, the Tsai-Wu failure and maximum
stress criteria for composite laminate are chosen. By applying two failure criteria at the same time the results are more reliable.
Experimentally generated results show a very good agreement with the numerical results, validating the simulated model used.
Finally, to validate the methodology the numerical results are compared to the results of previous research with specific loading.

1. Introduction

The demand for high strength, high modulus and low density
industrial materials has generated an increased number of
applications for fibre laminated composite structures in
many different fields such as in submarines, sport equip-
ment, medical instruments, civil engineering, enabling tech-
nologies, primary and secondary marine and aerospace
structures, astronavigation and many more industries [1].
Composite constructions are usually multilayer produced
structures, mostly made of flat and curved panels, built up
from several layers or laminae, which are bonded together
[2].

In the last half century, the use of composite materials
has grown rapidly. These materials are ideal for structural
applications that require high strength and low weight.
They have good fatigue characteristics and are resistant to
corrosion. They provide some flexibility in design through
the variation of the fibre orientation or stacking sequence of
fibre and matrix materials [3, 4]. Another advantage of fibre
laminate composites is the capability to design the physical

structure and mechanical properties prior to manufacture.
The mechanical behaviour of laminates strongly depends
on the orientation of fibres and thickness of lamina.
Accordingly, the lamina should be designed to satisfy the
specific requirements of each particular application in order
to obtain the maximum advantages from the directional
properties of materials. Accurate and efficient structural
analysis, design sensitivity analysis, and optimisation pro-
cedures for size and shape and the orientation of fibres
within the material are also required. This provides a good
opportunity to tailor the material properties to the specific
application [5, 6]. However, it increases the complexity of
the design problem. This complexity exists, not only because
of numerous design variables, but also because of having a
multimodal and variable-dimensional optimisation problem
with unattainable or costly derivatives [7].

Optimum strength designs of continuous fibre-rein-
forced composite laminates have been used since the early
days of these materials. The first research to investigate
the fibre orientation of a unidirectional lamina yielding
maximum strength under in-plane stress conditions has
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Figure 1: State of stress at a point of a continuum [36].

been carried out by Sandhu [8]. Brandmaier found that
the strength of a unidirectional lamina under in-plane
stresses could be maximised analytically with respect to
the fibre orientation [9]. The results based upon Tsai-Hill
failure criterion indicated that the optimum fibre orientation
depended upon the stress state and the relative value of the
transverse and in-plane shear strengths of the lamina. When
the strength of a multidirectional composite laminate is to
be maximised, more complicated and explicit optimisation
techniques are needed [10]. Chao et al. were the pioneers

that sought the optimum strength design of multidirectional
laminates using a search technique [11]. Latterly, many
studies have been devoted to the optimum strength design
of multidirectional laminate. Among these are the works
by Park [12], Fukunaga and Chou [13], Miravete [14],
Fukunaga and Vanderplaats [15], Gurdal et al. [16, 17],
Spallino et al. [18], Weaver [19], Chattopadhyay et al. [20],
Luersen and Riche. [21], and Ghiasi et al. [22].

Previous studies have shown that composite fibre ori-
entation angles can be optimised by different optmisation
methods for specific load cases such as longitudinal or in-
plane loading [23–35].

In this paper, the thickness of laminated composite plates
is minimised by optimising the fibre orientation angles for
different load cases. The novelty of the research presented
in this paper is that the effect of transverse shear forces, and
therefore, the induced twist angle are considered.

2. Governing Equation

2.1. Analysis of a Laminate Composite Plate. The state of
stress at a point in a general continuum can be represented
by nine stress components σi j (i, j = 1, 2, 3) acting on the
sides of an elemental cube with sides parallel to the axes of a
reference coordinate system (Figure 1).

In the most general case the stress and strain components
are related by the generalised Hook’s law as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ23

σ31

σ12

σ32

σ13

σ21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133 C1123 C1131 C1112 C1132 C1113 C1121

C2211 C2222 C2233 C2223 C2231 C2212 C2232 C2213 C2221

C3311 C3322 C3333 C3323 C3331 C3312 C3332 C3313 C3321

C2311 C2322 C2333 C2323 C2331 C2312 C2332 C2313 C2321

C3111 C3122 C3133 C3123 C3131 C3112 C3132 C3113 C3121

C1211 C1222 C1233 C1223 C1231 C1212 C1232 C1213 C1221

C3211 C3222 C3233 C3223 C3231 C3212 C3232 C3213 C3221

C1311 C1322 C1333 C1323 C1331 C1312 C1332 C1313 C1321

C2111 C2122 C2133 C2123 C2131 C2112 C2132 C2113 C2121

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

ε23

ε31

ε12

ε32

ε13

ε21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

or

σi j = Ci jklεkl
(
i, j, k, l = 1, 2, 3

)
, (2)

where Ci jkl is the stiffness components [30].
By considering the symmetry of the stress and strain

tensors and the energy relations, it is proven that the stiffness
matrices are symmetric. Thus, the state of stress (strain) at a
point can be described by six components of stress (strain),
and the stress-strain equations are expressed in terms of 21
independent stiffness constants [36].

2.2. In-Plane Stress. The simplest equivalent single-layer
(ESL) laminated plate theory, based on the displacement
field, is the classical laminated plate theory (CLPT) [37–43].
The two-dimensional classical theory of plates was initiated
by Kirchhoff [44] in the 19th century, and then was
continued by Love [45] and Timoshenko [46] during the

early 20th century. The principal assumption in CLPT is
that normal lines to the midplane before deformation remain
straight and normal to the plane after deformation. Although
this assumption leads to simple constitutive equations, it
is the main deficiency of the theory. The effect of the
transverse shear strains on the deformation of the elastic
two-dimensional structure are ignored and some of the
deformation mode constraints by reducing the model to a
single degree of freedom (DoF) results are neglected. This is
a consequence of the basic assumptions made. It is also worth
mentioning that neglecting shear stresses leads to a reduction
or removal of the three natural boundary conditions that
should be satisfied along the free edges. These boundary
conditions being the normal force, bending moment, and
twisting couple [47].

For solving in-plane stress normally the classical laminate
theory is used. It is assumed that plane stress components are
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Figure 2: A scheme of composite plate under in-plane stress [35].

taken as zero. With respect to the coordinate system shown in
(Figure 2) the in-plane stress components are related to the
strain components as

⎡
⎢⎢⎣
σxx

σyy

τxy

⎤
⎥⎥⎦
k

=

⎡
⎢⎢⎣
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66

⎤
⎥⎥⎦

⎡
⎢⎢⎣
εxx
εyy
γxy

⎤
⎥⎥⎦, (3)

where k is the lamina number, Qij are the off-axis stiffness
components, which can be explained in terms of principal
stiffness components, Qij , using the tensor transformation
rules [48] as

Q11 = Q11cos4θ + 2(Q12 + 2Q66)

× sin2θcos2θ + Q22sin4θ,

Q22 = Q11sin4θ + 2(Q12 + 2Q66)

× sin2θcos2θ + Q22cos4θ,

Q12 = (Q11 + Q22 − 4Q66)sin2θcos2θ

+ Q12

(
sin4θ+ cos4θ

)
,

Q16 = (Q11 −Q12 − 2Q66) sin θcos3θ

+ (Q12 −Q22 + 2Q66)sin3θ cos θ,

Q26 = (Q11 −Q12 − 2Q66)sin3θ cos θ

+ (Q12 −Q22 + 2Q66) sin θcos3θ,

Q66 = (Q11 + Q22 − 2Q12 − 2Q66)

× sin2θcos2θ + Q66

(
sin4θ+ cos4θ

)
.

(4)

The principal stiffness terms, Qij , are related to elastic
properties of the material along the principal directions, E1,
E2, G12, ϑ12, and ϑ21 [48]. The effect of transverse shear stress
is not considered by previous work [35] because in their work
the laminate is only subject to in-plane loads. Therefore,
strain components defined with respect to x-y-z coordinate
system are the same for each ply regardless of the fibre
orientation. For the same reason, the mechanical response of
the laminate is independent of the stacking sequence. Stress

resultants, or forces per unit length of the cross section, are
obtained as

⎡
⎢⎣
Nxx

Nyy

Nxy

⎤
⎥⎦ =

∫ h/2

−h/2

⎡
⎢⎣
σxx
σyy
τxy

⎤
⎥⎦dz = 2

m∑

k=1

nkt0

⎡
⎢⎣
σxx
σyy
τxy

⎤
⎥⎦
k

. (5)

Here, m is the number of distinct laminae, nk is the number
of plies in the kth lamina. Here, lamina is meant to be a
group of plies with the same orientation angle. Substituting
the stress-strain relation given by (3) into (5) we have

⎡
⎢⎣
Nxx

Nyy

Nxy

⎤
⎥⎦ =

⎡
⎢⎣
A11 A12 A16

A12 A22 A26

A16 A26 A66

⎤
⎥⎦

⎡
⎢⎣
εxx
εyy
εxy

⎤
⎥⎦, (6)

where Aij , components of extensional stiffness matrix, are
given by

Aij = 2
m∑

k=1

nkt0
(
Qij

)
k
. (7)

Principal stress components can be obtained using the
following transformation [35]:

⎡
⎢⎣
σ11

σ22

τ12

⎤
⎥⎦ =

⎡
⎢⎢⎣

cos2θk sin2θk 2 cos θk sin θk

sin2θk cos2θk −2 cos θk sin θk

− cos θk sin θk cos θk sin θk cos2θk − sin2θk

⎤
⎥⎥⎦
k

×
⎡
⎢⎣
σxx
σyy
τxy

⎤
⎥⎦.

(8)

Despite its limitations, CLPT is still a common approach
utilised to determine quick and simple predictions especially
for the behaviour of thinplated structures. The main sim-
plification is that three-dimensional thick structural plates
or shells are treated as two-dimensional plates or shells
located through midthickness, which results in a significant
reduction in the total number of variables and equations,
consequently saving a lot of computational time and effort.
The governing equations are easier to solve and present
in closed-form solutions, which normally provides more
physical or practical interpretation. This approach remains
popular as it is well-known and has become the foundation
for further composite plate analysis methods.

This method works relatively well for structures that
are made out of a symmetric and balanced laminate,
experiencing pure bending or pure tension. The error
induced/introduced by neglecting the effect of transverse
shear stresses becomes trivial on or close to the edges and
corners of thick-sectioned configurations. The induced error
increases for thick plates made of composite layers, for which
the ratio of longitudinal to transverse shear elastic modulii
is relatively large compared to isotropic materials [49]. It
neglects transverse shear strains, underpredicts deflections
and overestimates natural frequencies and buckling loads.
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2.3. Out-Plane Stress. As discussed in Section 2.2, in the clas-
sical lamination theory, it was assumed that the laminate is
thin compared to its lateral dimensions and that straight lines
normal to the middle surface remain straight and normal
to that surface after deformation. Therefore, the transverse
shear stress and strain are neglected. These assumptions
are not valid in the case of thicker laminates and lami-
nates with low stiffness central plies undergoing significant
transverse shear deformations. In order to overcome these
limitations several theories have been proposed to analyse
thicker laminated composite plates in order to consider the
transfer shear effect. Most of these theories are extensions
of the conventional theories developed by Reissner [47] and
Mindlin [50], which are known as the shear deformation
plate theories. These theories are based on the assumption
that the displacement w is constant through the thickness
while the displacements u and v vary linearly through the
thickness of each layer (constant cross-sectional rotations wx

and wy). Generally these theories are known as first-order
shear deformation theories (FSDT) [3]. According to this
theory, transverse straight lines before deformation will still
be straight after deformation but they are not normal to the
midplane after deformation. This theory assumes constant
transverse shear stress.

In the following, referred to as first-order shear deforma-
tion laminate plate theory, the assumption of normality of
straight lines is removed compared to CLPT. On the other
hand straight lines normal to the middle surface remain
straight but not normal to that surface after deformation
[43].

For out-plane stress, (4), (5), and (6) are described as (9),
(10), and (11) respectively.

Q11 = Q11cos4θ + 2(Q12 + 2Q66)

× sin2θcos2θ + Q22sin4θ,

Q22 = Q11sin4θ + 2(Q12 + 2Q66)

× sin2θcos2θ + Q22cos4θ,

Q12 = (Q11 + Q22 − 4Q66)sin2θcos2θ

+ Q12

(
sin4θ+ cos4θ

)
,

Q13 = (Q11 −Q12 − 2Q33) sin θcos3θ

+ (Q12 −Q22 + 2Q33)sin3θ cos θ,

Q23 = (Q11 −Q12 − 2Q33)sin3θ cos θ

+ (Q12 −Q22 + 2Q33) sin θcos3θ,

Q33 = (Q11 + Q22 − 2Q12 − 2Q33)

× sin2θcos2θ + Q33

(
sin4θ+ cos4θ

)
,

Q55 = Q55cos2θ −Q66sin2θ,

Q56 = Q55 sin θ cos θ −Q66 sin θ cos θ,

Q66 = Q55sin2θ −Q66cos2θ.

(9)
⎡
⎢⎣
Nxx

Nyy

Nxy

⎤
⎥⎦ =

∫ h/2

−h/2

⎡
⎢⎣
σxx
σyy
τxy

⎤
⎥⎦dz

⎡
⎢⎣
Mxx

Myy

Mxy

⎤
⎥⎦ =

∫ h/2

−h/2

⎡
⎢⎣
σxx
σyy
τxy

⎤
⎥⎦zdz,

[
Vq

Vr

]
=
∫ h/2

−h/2

[
τxz
τyz

]
dz,

(10)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Nxx

Nyy

Nxy

Mxx

Myy

Mxy

Vq

Vr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1

N2

N12

M1

M2

M12

V1

V2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 B11 B12 B13 0 0
A12 A22 A23 B12 B22 B23 0 0
A13 A23 A33 B13 B23 B33 0 0
B11 B12 B13 D11 D12 D13 0 0
B12 B22 B23 D12 D22 D23 0 0
B13 B23 B33 D13 D23 D33 0 0
0 0 0 0 0 0 E11 E12

0 0 0 0 0 0 E12 E22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

γ12

k1

k2

k12

γ13

γ23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

where the components of this section stiffness matrix are
given by

(
Aij ,Bij ,Dij

)
=
∫ h/2

−h/2
Q

m
ij

(
1, z, z2)dz (

i, j = 1, 2, 3
)

Ei j =
∫ h/2

−h/2
Q

m
αβkikjdz

× (i, j = 1, 2, α,β = i + 4, j + 4
)
.

(12)

2.4. Failure Criteria. As it is shown in previous research
[35] using one failure method is not reliable enough for
evaluating the results. Also in each fibre orientation the type
of the failure is switched between fibre, shear, and transverse
shear failure [43]. Therefore, it is logical that the results
would be checked by at least two failure criteria. In this
research maximum stress and Tsai-Wu criteria are chosen.

2.4.1. Maximum Stress Criterion. Maximum stress criterion
is one of the simplest failure methods to apply. According
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to this criterion, failure is predicted whenever one of
the principal stress components exceeds its corresponding
strength. It is expressed in the form of the following
subcriteria:

σ1 =
{
F1t when σ1 > 0,

−F1c when σ1 < 0,
(13a)

σ2 =
{
F2t when σ2 > 0,

−F2c when σ2 < 0,
(13b)

σ3 =
{
F3t when σ3 > 0,

−F3c when σ3 < 0,
(13c)

∣∣∣τ4

∣∣∣ = F4, (13d)

∣∣∣τ5

∣∣∣ = F5, (13e)

∣∣∣τ6

∣∣∣ = F6. (13f)

F1t and F1c are the longitudinal tensile and compressive
strengths, F2t and F2c are the transverse longitudinal tensile
and compressive strengths, and F6 is the in-plane shear
strength. Four additional lamina strength parameters, which
are relevant in three-dimensional analysis, are the out-plane
or interlaminar tensile, compressive, and shear strengths, F3t ,
F3c, F4, and F5.

2.4.2. Tsai-Wu Criterion. The Tsai-Wu failure criterion is one
of the most reliable static failure criteria as it provides a
simple analytical expression taking components. Reddy [43]
proposed a modified tensor polynomial theory by assuming
the existence of a failure in the stress space. In contracted
notation it takes the form:

fiσi + fi jσiσ j = 1, (14)

where fi and fi j are second- and fourth-order strength
tensors, and i, j = 1, 2, . . . , 6 [36].

By applying assumptions, some of fi and fi j are identi-
fied. Finally it is reduced to a failure envelope for constant
values of shear stress τ6 = kF6

f1σ1 + f2σ2 + f11σ
2
1 + f22σ

2
2 + 2 f12σ1σ2 = 1− k2 (15)

or equivalently

σ2
11

F1t|F1c| +
σ2

22

F2t|F2c| +
τ2

12

F6
− σ11σ22√

F1tF1cF2tF2c

+
(

1
F1t

− 1
|F1c|

)
σ11 +

(
1
F2t

− 1
|F2c|

)
σ22 < 1.

(16)

3. Optimisation

An optimised composite laminate requires finding the
minimum number of layers, and the best fibre orientation

and thickness for each layer. Several optimisation methods
have been introduced to solve this challenging problem,
which is often nonlinear, nonconvex, multimodal, and multi-
dimensional. Nowadays usually stochastic non-linear opt-
misation methods are utilised for this problem as they can
avoid the local minimums. One of the best algorithms in this
category is simulated annealing (SA) method which is used
in similar problems [7].

3.1. Simulated Annealing Algorithm. Kirkpatrick et al. [51]
proposed simulated annealing as a powerful stochastic search
technique in 1983. The method gets its name from the
physical process whereby the temperature of a solid is raised
to a melting point, where the atoms can move freely, and then
slowly cooled. The method attempts to model the behaviour
of the atoms in forming arrangements in solid material
during annealing. Although the atoms move randomly, as
their natural behaviour they tend to form lower-energy
configurations [52]. However, this is a time-driven process.
When a material is crystallised from its liquid phase, it must
be cooled slowly if it is to assume its highly ordered, lowest-
energy, perfect crystalline state. At each temperature level
during this annealing process, the material should reach
equilibrium. As the temperature decreases, the arrangement
of the atoms gets closer and closer to the lower energy state.
This process continues until the temperature finally reaches
freezing point [52]. The temperature is initially assigned
a higher value, which corresponds to more probability
of accepting a bad move and is gradually reduced by a
user-defined cooling schedule. Retaining the best solution
is recommended in order to preserve the good solution
[52].

At each iteration of the simulated annealing algorithm,
a new point is randomly generated. The distance of the new
point from the current point, or the extent of the search, is
based on a probability distribution with a scale proportional
to the temperature. The algorithm accepts all new points that
lower the objective, but also, with a certain probability, points
that raise the objective. The algorithm avoids being trapped
in local minima, by accepting points that raise the objective,
and is able to explore globally for more possible solutions. An
annealing schedule is selected to systematically decrease the
temperature as the algorithm proceeds. As the temperature
decreases, the algorithm reduces the extent of its search to
converge to a minimum.

If a set of configurations is considered, in each iteration
the speed convergency would be increased. In this paper
the SA proposed by Erdal and Sonmez [52] is applied. The
number of these configurations depends on the dimension
of the problem:

N = 7(n + 1), (17)

where n is the dimension of the problem, that is, the number
of design variables [52].
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3.2. Penalty Function and Optimisation Procedure. In this
step a penalty function is expressed, and then this function
has to be optimized:

F =
m∑

k=1

nk + w1PMS + w2PTW −w1SFMS

−w2SFTW +
w3i

k
cos(Δθ).

(18)

nk is the number of plies in the kth lamina, in which the
orientation angle is θk; m is the total number of distinct
lamina; the second and third terms represent the penalty
values introduced to increase the value of the objective
function for designs for which failure is predicted, and thus
to restrict the search to the feasible design space; PMS and
PTW are penalty values calculated based on the maximum
stress criterion and the Tsai-Wu criterion, respectively. SFMS

and SFTW are equal to the safety factors according to the
maximum stress, and Tsai-Wu criteria, respectively, if they
are greater than 1.0, otherwise these terms are equal to zero;
wi are suitable coefficients [35].

This penalty function is the same as the one defined
by Akbulut and Sonmez [35] in 2008 except the last term
of (18). In their work, the ply angles are optimised for in-
plane plate and the effect of shear stress and as a result
induced twist angle of the plate was neglected. However,
in this research the induced twist angles are considered.
Therefore the maximum acceptable twist angle is defined,
and by assuming this maximum twist angle, the appropriate
coefficient for w3i is obtained.

Implying several tests by finite element method (FEM)
software shows that maximum twist for each material
happens at the specific angles (θmax)i i = 1, 2, 3, . . .,i is the
number of possible θmax. The range of fibre orientations
[−90, 90] is divided into several areas, each θmax is the centre
of the area and in each iteration the program find the θk to
the range that it belongs to and then the program works with
the appropriate θmax and corresponding w3i. Except for the
related w3i, the other w3i are equal to zero. Δθ is defined as

Δθ = θmax − θk. (19)

So, when the ply angle in each layer (θk) would be close to
θmax, the amount of cos(Δθ) is bigger, and thus the last term
of penalty function and as a result penalty function would be
larger.

For a proper w3, the amount of induced twist (α) always
will be less than maximum acceptable twist (αmax). For
example, in a composite product, the final induced twist is
desired to be less than a certain amount of twist (which
here it is called αmax). When fibre orientation for layers
approach the θmax (where maximum twist happening), the
term Δθ or (θmax − θk) in (18) tends to zero. Then the
term cos(Δθ) and as a result penalty function in (18) are
increased. Increasing penalty function means that this fibre
orientation is not going to be selected in optimisation process
and therefore the induced twist in final product stays less
than αmax. This technique is what distinguished this model
from others as the induced twist is ignored in them.

The reason that the objective is reduced for safe designs
is that there may be many feasible designs with the same
minimum thickness. Of these designs, the optimum is
defined as the one with the largest failure load. Accordingly,
the objective function is linearly reduced in proportion to
the failure margin [53]. Similarly in another study [54],
the margins to initial failure were maximized with the
minimum feasible number of laminae. The safety factor of
the laminate according to the maximum stress criterion,
SFMS, is calculated as follows [35]:

SFk
MS = min of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SFk
X =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F1t

σ11
if σ11 > 0

F1c

σ11
if σ11 < 0

SFk
Y =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F2t

σ22
if σ22 > 0

F2c

σ22
if σ22 < 0

SFk
S =

S

| τ12 |

(20)

SFMS = min of SFk
MS for k = 1, 2, . . . ,m− 1,m. (21)

The safety factor for the kth lamina, SFk
TW , according to the

Tsai-Wu criterion is defined as the multiplier of the stress
components at lamina k, σki j , that makes the right hand side
of (16) equal to 1 then it turns into [35]

a
(
SFk

TW

)2
+ b
(
SFk

TW

)
= 1, (22)

where

a =
(
σk11

)2

F1t|F1c| +

(
σk22

)2

F2t|F2c| +

(
τk12

)2

F2
6

−
(
σk11

)(
σk22

)
√

(F1tF1cF2tF2c)

b =
(

1
F1t

− 1
|F1c|

)
σk11 +

(
1
F2t

− 1
|F2c|

)
σk22.

(23)

The root of the above equation gives the safety factor.
Because a negative safety factor is not physically meaningful,
the absolute value of the first root is considered as the actual
safety factor

SFk
TW =

∣∣∣∣−b ±
√
b2 + 4a

2a

∣∣∣∣. (24)

Then, the minimum of SFk
TW is chosen as the safety factor of

the laminate:

SFTW = min ofSFk
TW for k = 1, 2, . . . ,m− 1,m (25)

In (24), the |(−b +
√
b2 + 4a)/2a| can be considered, as b is

always positive, and the aim is to find the minimum of SFk
TW .



Advances in Materials Science and Engineering 7

Figure 3: Process of making laminated plate.

The penalty value due to the violation of the maximum
stress and Tsai-Wu criteria are calculated in (26) and (27),
respectively:

Pk
x =

⎧⎪⎨
⎪⎩

0 if SFk
x ≥ 1,

1

SFk
x

− 1 if SFk
x < 1,

Pk
y =

⎧⎪⎨
⎪⎩

0 if SFk
y ≥ 1,

1

SFk
y

− 1 if SFk
y < 1,

Pk
s =

⎧⎪⎨
⎪⎩

0 if SFk
s ≥ 1,

1

SFk
s

− 1 if SFk
s < 1,

(26)

Pk
TW =

⎧⎪⎨
⎪⎩

0 if SFk
TW ≥ 1,

1

SFk
TW

− 1 if SFk
TW < 1.

(27)

The total penalty value for the laminate due to the violation
of the maximum stress and Tsai-Wu criteria are then
calculated by summing up the penalty values calculated for
each lamina

PMS =
m∑

k=1

Pk
x + Pk

y + Pk
s ,

PTW =
m∑

k=1

Pk
TW.

(28)

4. Results

4.1. Experimental Results. In order to validate the FEM
model some experimental tests have been performed. For
each case six similar laminated plates are manufactured. One
of the samples is shown in Figure 3. Carbon fibre is used
for all laminated experimental tests, and the size of plate is
500∗500 (mm).

Square laminated composite panels (500×500 mm) were
produced by vacuum bagging. In order to minimise the error,
the average results of these six plates were calculated to be
compared with FEM results obtained from the design tool.

b

a

Z

Y
X

Figure 4: Boundary condition and loading (the plate is clamped on
side a. Displacements are measured on side b).
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Figure 5: An example for one case; t1 to t6 are the experimental test
results for six similar plates under constant load. ta is the average of
t1 to t6 and tF is the FEM outputs.

As it is shown in Figure 4, the plates are fixed on one side (a)
and displacement in z direction is measured on the opposite
free side of the plate (b) due to the effect of gravity only.

In Figure 5, t1 to t6 are the experimental test results for
six similar plates under the constant load. Six plates in each
case have the same layup and geometry; ta is the average of t1
to t6 and tF is the FEM results.

The experimental tests have been carried out for 15
different cases with different loads and layups. In Figure 6
the percentage difference of deformation between tests and
FEM results and in Figure 7 the percentage difference of α
are shown. As is shown in Figures 6 and 7 there is a very
good agreement between FEM and experimental results. In
Figures 6 and 7 the axis which shows error is zoomed in to
10% to distinguish the differences between each case. These
Experimental tests have been done to validate the FE model
which is used in this work. The good agreement, as it is
shown in Figures 6 and 7, indicates the validity of this FEM.
In the following case studies, FE results are compared with
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Table 1: Optimum lamina orientations for material T300/5308 under different loads.

Loading: Optimum lamina orientations Safety factor

Nxx ,Nyy ,Nxy (MPa m) Akbulut and Sonmez [35]
Present work

Akbulut and Sonmez [35] Present work

(Figure 2) Max. stress Tsai-Wu Max. stress Tsai-Wu

10/5/0
[

3727/−3727

] [
3929/−3929

]
1.0277 1.0068 1.1309 1.1001

20/5/0
[

3123/−3123

] [
3627/−3627

]
1.1985 1.0208 1.3305 1.1560

40/5/0
[

2620/−2620

] [
2622/−2622

]
1.5381 1.0190 1.6504 1.1903

80/5/0
[

2125/−1928

] [
2125/−2125

]
1.2213 1.0113 1.2302 1.0120

120/5/0
[

1735/−1735

] [
1735/−1735

]
1.0950 1.0030 1.0951 1.0030
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Figure 6: Percentage difference of deformation between tests and
FEM results.

similar works with the same boundary condition as shown
in Figure 4 with different loadings.

4.2. Case Study Results. In this Section, two case studies
are considered. The first case study compares the obtained
results with those which were found by Akbulut and Sonmez
[35] to validate the proposed optimisation method. The
graphite/epoxy materials T300/5308 with the properties of
E11 = 40.91 GPa, E22 = 9.88 GPa, G 12 = 2.84 GPa, ϑ12 =
0.292, F1t = 779 MPa, F1c = −1134 MPa, F2t = 19 MPa,
F2c = −131 MPa, and S = 75 MPa is considered for the first
case study.

In this case the maximum acceptable twist angle is αmax =
.01. In Tables 1 and 2 the results are compared with previous
work [35]. As it is shown in Table 1, the number of lay-
up increase for some loads and it shows that in these cases
the amount of twist angle is more than αmax. Clearly by
increasing the lay-ups, safety factor for both Tsai-Wu and

t1
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Figure 7: Percentage difference of (α) between tests and FEM
results.

Maximum stress will be increased. In Table 2, the number
of lay-ups and thickness is constant but in some cases the
optimum orientation angles is different from the previous
work. Although the safety factor is reduced, it avoids passing
the acceptable twist angle and the safety factor is still more
than 1, therefore, it is still acceptable. When the maximum
twist angle is less than the αmax, the results are comparable
with the work has been done by Akbulut and Sonmez [35].

In the second case study a highly anisotropic material is
considered (material II). The elements of stiffness matrix are
D1111 = 138000, D1122 = 44000, D2222 = 138000, D1133 =
5000, D2233 = 6000, D3333 = 47000, D1112 = 2000, D2212 =
8000, D3312 = 3000, D1212 = 10000, D1113 = 0, D2213 = 3500,
D3313 = 0, D1213 = 21000, D1313 = 58000, D1123 = 0, D2223 =
1000, D3323 = 2500, D1223 = 2000, D1323 = 4500, and D2323 =
23000.

In Figure 8 the amount of twist angle under a constant
load for different ply angles is shown. So the amount of
(θmax)i in (20) are (±30,±60) which are the local maximums.
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Table 2: Optimum lamina orientations for material T300/5308 under different loads for constant thickness.

Loading: Nxx ,Nyy ,Nxy Optimum lamina orientations Safety factor

(KPa m) (Figure 2) Akbulut and Sonmez [35] Present work Akbulut and Sonmez [35] Present work

200/200/0
[

50.804/−49.804/26.594/−49.734

] [
50.804/−49.804/26.594/−49.734

]
2.14 2.14

200/0/200
[

31.7216

] [
32.404/−56.614/−7.814/33.874

]
4.84 4.59

400/200/0
[

30.984/−36.574/37.674/−37.204

] [
−20.124/58.014/−49.904/20.114

]
1.64 1.42

200/200/200
[

4516

] [
4516

]
1.11× 1016 1.11× 1016

Table 3: Optimum lamina orientations for second case study material under different loads for constant thickness.

Loading: Nxx ,Nyy ,Nxy ,Nzz (KPa m) Optimum lamina orientations
Safety factor

Max. stress Present work

100/100/0/20
[
−77.684/23.544/−22.784/49.794

]
1.2720 1.0931

100/0/100/20
[

53.458/−78.238

]
1.5402 1.2112

200/100/0/20
[
−22.234/49.264/−65.334/11.234

]
1.3200 1.111

100/100/100/20
[

44.88/−33.218

]
1.3401 1.0376
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Figure 8: Twist angle for a first layer of material (II).

This test is for the first layer in order to find the (θmax)i
and the areas which were explained in Section 3.2. FEM tests
show that these (θmax)i are the same by adding the next
layers. If the stiffness matrix is symmetric the curves will
be symmetric about y axis. A general stiffness matrix for
material II is considered, so there is no mirror about y axis.
Optimum lamina orientations under different loads in this
case are shown in the Table 3. In this case the pure bending
load Nzz is also applied to the plate.

5. Conclusion

In this study, an optimisation methodology of composite
plates was presented. A method was proposed in order to
overcome the difficulties and shortcomings faced by the
previous research. In previous work the effect of transverse
shear was neglected, and therefore the induced twist angle is
ignored. In some applications the twist angle, which is the

direct effect of transverse shear, is undesirable. Therefore,
in this research, after optimising the fibre orientations, by
considering the induced twist angle as well as safety factor,
the induced twist angle always stays less than the acceptable
twist angle. One of the other weakness in previous work was
that the plate was optimised under specific loads, such as
longitudinal or in-plane loading. By the proposed method
in this research the out-plane stress optimisation can be
solved as well as the in-plane stresses. In order to have
a reliable optimisation, simulated annealing, which is one
of the stochastic optimisation methods and can escape the
local minima is applied and the penalty function for this
optimisation method is modified. This modified penalty
function forces the induced twist to stay under a predefined
induced twist. In addition, two Tsai-Wu and maximum stress
failure criteria are used in the algorithm individually to avoid
false optimal design.
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