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The automatic discrimination of rock fracture and blast events is complex and challenging due to the similar waveform
characteristics. To solve this problem, a new method based on the signal complexity analysis and machine learning has been
proposed in this paper. First, the permutation entropy values of signals at different scale factors are calculated to reflect complexity
of signals and constructed into a feature vector set. Secondly, based on the feature vector set, back-propagation neural network
(BPNN) as a means of machine learning is applied to establish a discriminator for rock fracture and blast events. Then to evaluate the
classification performances of the new method, the classifying accuracies of support vector machine (SVM), naive Bayes classifier,
and the new method are compared, and the receiver operating characteristic (ROC) curves are also analyzed. The results show
the new method obtains the best classification performances. In addition, the influence of different scale factor g and number of
training samples # on discrimination results is discussed. It is found that the classifying accuracy of the new method reaches the

highest value when g = 8-15 or 8-20 and »n = 140.

1. Introduction

In laboratory rock tests, in situ rock excavation, and a lot
of other rock engineering, signals of rock fracture events
are often mixed with other signals such as environmental
noise, impact and vibration, and blast signal. When these
signals are monitored by microseismic or acoustic emission
machines [1-4], the presence of jamming signals, especially
blast signals, may result in the wrong interpretation, for
example, erroneous state evaluation and disaster prediction
[5, 6]. Consequently, it is necessary to ensure a clean database
of rock fracture signals. Although the discrimination of rock
fracture and blast events can be performed by experts, manual
discrimination of rock fracture and blast signals is time-
consuming and subjective due to the fact that it depends on
the experience. Therefore, discrimination of rock fracture and
blast signals, in particular large quantities of signals, requires
a reliable and automatic method.

In recent years, machine learning has been widely applied
to realize automatic identification and classification about
signals. Machine learning [7-10] includes many methods,

such as neural network [11-13], support vector machine [14,
15], and naive Bayes classifier [16, 17]. Currently, several
recognition methods of rock fracture or similar signals were
proposed in some studies. For example, Shang et al. [18]
classified microseismic events and quarry blasts according to
artificial neural networks (ANN) based on principal com-
ponent analysis. Yildirim et al. [12] used the extracted peak
amplitude ratio (S/P ratio) of quarry blasts and earthquakes
to contrast classification accuracies of FFNN, PNN, and
ANFIS. Liu etal. [19] proposed a method of wavelet transform
and ANN to recognize acoustic emission signals for different
rocks. Del Pezzo et al. [20] used ANN based on seismogram
signatures to classify earthquakes and underwater explosions.
Peng et al. [21] used improved BPNN and combined feature
extraction method to recognize seismic signal.

All the aforementioned methods usually conduct feature
extraction before feature recognition. Waveform parameters
of signals, such as amplitude, frequency, and total radiated
energy, are extracted as eigenvectors. However, those wave-
form parameters are sometimes impossible to reflect the
characteristic of the total waveform absolutely. In addition,
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the process of extracting parameters also consumes much
time and effort. In order to classify signals more precisely and
easily, it is vital to find a classification method that need not
depend on waveform parameters of rock fracture and blast
signals.

In this study, a new method based on signal complexity
analysis and machine learning has been proposed to achieve
automatic identification of rock fracture and blast signals
without waveform parameter. The method calculates signal
complexity based on multiscale permutation entropy (MPE)
and uses back-propagation neural network (BPNN) as a tool
of machine learning. To calibrate and validate the proposed
method, the signal complexity values of predetected events
were also input into support vector machine (SVM) and naive
Bayes classifier to classify signal category. In addition, the
influence of scale factors and number of training samples on
classifying accuracy was also analyzed for the new method.

2. Methodology

2.1. Signal Complexity Analysis with Multiscale Permutation
Entropy. Feature extraction of signals is usually required
before signal discrimination. Almost all the previous studies
used waveform parameters as discrimination features. For
example, Vallejos and McKinnon [22] used 13 parameters of
seismic full waveform as discrimination feature vectors of
blast and microseismic events. Mousavi et al. [23] extracted
40 features from time, frequency, and time-frequency
domains to classify deep and shallow microearthquakes.
However, the commonly used characteristic parameters are
difficult to obtain automatically, which limits the automatic
identification of rock fracture events. Furthermore, the above
waveform parameters are obtained from single scale analysis,
which reflects less information of signals. To solve the
above problems, this paper extracts feature vectors of signals
based on signal complexity standpoint. Signal complexity is
expressed primarily by correlation and random degree of
time series for a signal, which reflects the overall feature
of a signal. The complexity of a signal can be described by
many methods, such as permutation entropy (PE) [24, 25],
multiscale permutation entropy (MPE) [26, 27], Lempel-Ziv
complexity [28], and multiscale Lempel-Ziv complexity [29].
MPE is more robust due to the only use of the order of time
series values; meanwhile MPE can obtain multiscale signal
information. This paper applies thus MPE to calculate signal
complexity as signal recognition features. The basic principles
are introduced as follows.
A one-dimensional time series is given as follows:

X={x@G),i=12,...,n}. 1)

Coarse graining of the above time series can be expressed
by
. 1 & . n
A== x 1SJS[—]) 2)

i=(j-1)g+1 g

where g stands for the scale factor and x(j) stands for the
multiscale time series. When g = 1, the coarse graining time
series stands for the original time series.
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Phase space reconstruction of coarse graining series is
performed:

X1G) = [x1G),x1(i+71),....x1(+(m-1)7)],
3
ie [I,E—m+1], ©
q

where m is the embedded dimension and 7 is the time delay.
If the m number of real values contained in each X(i) can be
arranged in ascending order as

(xGi+G-1)1)<xT(i+(,-1)71) <
<x(i+(j,-1)7)}

and if there exist two or more elements in X4(i) that have
the same value, for example, x?(i+(j, —1)7) = x1(i+(j,—1)7),
their original positions can be sorted such that, for j; < j,,

i+ (i -1D71)<xT(i+(j, - 1)7) (5)

Accordingly, any vector X%(i) can be mapped onto a
group of symbols as

P = i o5 fim (6)

where I = 1,2,...,k and k < m!; m! is the largest number
of permutations. The permutation entropy of time series at g
scale is expressed as follows:

(4)

k
HY (m) = - ; P InPi(]). (7)

If PA(I) = 1/m!, Hg(m) will reach a maximum In(m!) and
Hg(m) will be normalized; then

H2(m
0 <PE! = P()g. (8)
P In(m!)
Then
_ 1 2 q
MPE = [PE,, PE},..., PEI], ©)

where PE]qJ in MPE represents signal complexity when the

scale factor is equal to g. The size of PEZ value indicates the
degree of randomness of time series. The smaller the value
of PEZ is, the more regular the time sequence states are. The

greater the value of PE; is, the more random the time series
is.

2.2. Signal Identification with Back-Propagation Neural Net-
work. After signal features are extracted by signal complexity,
then discrimination of rock fracture and blast signals is
performed by feature recognition. However, manual identifi-
cation is time-consuming and easily influenced by individual
factors. In order to reliably discriminate rock fracture and
blast signals automatically, BP neural network [30] as an
identification tool is applied. It is made up of an input layer, a
hidden layer, and an output layer.
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There are two kinds of signals flowing between layers
in BP neural network. The working signals spread forward
and other error signals between actual outputs and expected
outputs are back-propagated. The basic process is shown as
follows.

The hidden layer input of the ith node:

m
net; = Zwijxj +0;, (10)
=

where net; represents the hidden layer input of the ith node,
w;; stands for the weight value from the ith node of the hidden
layer and the jth node of the input layer, x is the jth input of
input layer, and 6, is the ith threshold of the hidden layer. The
hidden layer output of the ith node:

y; = ¢(net;) = ¢ <Zwijxj + 9i> . (11)
=1

In the formula, y; is the hidden layer output of the ith
node and ¢ stands for the inspirit function of the hidden layer.
The output layer input of the kth node:

9 q m
net; = Zwkiyi +a = Zwkigb (Zwijxj + 6i> +a, (12)
=1

i=1 i=1

where net;, represents the output layer input of the kth node,
wy; stands for the weight value from the kth node of the out
layer and the ith node of the input layer, and g is the kth
threshold of the output layer. The output layer’s output of the
kth node:

q
or =y (net) =y <Zwkiyi + ak)
i=1

q m
=y <Zwki¢> <Zwijxj + 0i> + ak> .
i=1 =1

In the formula, o, is the output layer’s output of the kth node
and y stands for the inspirit function of the output layer.
The error function El; is given by (14) and the BP ANN

stops when E]; < & is satisfied, where & is a given precision.

(13)

1
E; = EZZ (Ty - Ok)z’ (14)
Pk

where T} is expected value of output node k.
A learning process updates the weights w;; for each
neuron based on the following equation:

oEF
w;: = P

ij = Wij — ’75’ (15)
ij

where 7 is learning rate, 7 € (0, 1).

3. Discrimination Process and Performance of
the New Method

3.1. Discrimination Process. This section describes the pro-
cess of whole discrimination of rock fracture and blast signals
based on the proposed method. The process divides signals
waveform data into training and test and validation sets. The
specific steps of the new method are as follows.

Step 1 (sample selection). Choose training samples of I (I >
0.5S) numbers from 200 sets of samples that are named S. The
I samples are composed of blasting and rock fracture signal
samples. And the remaining data in S are regarded as test and
validation data.

Step 2 (feature extraction). Use MPE to calculate permuta-
tion entropies H,,,. of training samples with different scale
factors to form feature vectors of training sets; the remaining
data are also extracted to form features vectors of test and

validation sets.

Step 3 (train machine learning tools). Input the feature
vectors Hy,. of training samples to train BPNN and make
it adjust the weight value constantly until the error is below

the set error value.

Step 4 (classification of test and validation data). Input the
feature vectors H,,,. of test and validation samples to the
BP neural network that has been trained. Through network
internal calculation, the accuracies of test and validation data

can be derived.

According to the above operation, the classification
results are derived. The whole process sketch is shown in
Figure 1.

3.2. Discrimination Performance Evaluation. In order to
evaluate the performance of the new methods, the receiver
operating characteristic (ROC) curve is applied. ROC is a
graphical plot which illustrates the performance of a binary
classifier system, as its discrimination threshold is varied. It
is created by plotting the fraction of true positives out of
the positives (TPR = true-positive rate) versus the fraction
of false positives out of the negatives (FPR = false-positive
rate), at various threshold settings. In this study, rock fracture
and blasts events are considered as a two-class prediction
problem; there are four possible outcomes from a binary
classifier, as shown in Table 1. A true positive (TP) means that
a rock fracture event has been identified as a rock fracture
event and a false negative (FN) means that a rock fracture
event has been identified as a blast event. A true negative (TN)
means that a blast event has been identified as a blast event
and a false positive (FP) means that a blast event has been
identified as a rock fracture event. Then

TPR= 0
TP + FN

Ep (16)
FPR= —.
TN + FP
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FIGURE 1: Sketch of the whole discrimination process.

TaBLE 1: Contingency matrix for two-class prediction problem.

i Actual val
Predicted outcome Ctual value

p n
I True positive (TP) False positive (FP)
n False negative (FN) True negative (TN)
The accuracy (ACC) can be expressed as
TP + TN
ACC = . 17
TP + TN + FP + FN 7)

4. Experiment Verification

4.1. Data Set. The experimental data sets were collected from
Hubei Province, including one hundred rock fracture signals
and a hundred blast signals. The partial signals are shown in
Figure 2.

4.2. MPE-BPNN Analysis. Before MPE values are calculated,
the coeflicients of MPE method itself need to be chosen.
The coefficients include embedding dimension 1, time delay
7, and scale factor g. Bandt and Pompe [31] suggested that

FIGURE 2: Partial signal data from sample set.

the embedding dimension m should take a value from 3
to 7. Meanwhile, with the time delay 7 increasing, small
changes in signals are more difficult to monitor. Therefore,
this paper selects m = 4 and 7 = 1. The scale factor g is
determined by comparing two groups of rock fracture and
blast events, which are selected from 200 sample data sets. The
permutation entropies of the optional signals are calculated
wheng = 1,2,...,30; the results are shown in Figure 3. From
Figure 3, when g > 7, the two have better discrimination.
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FIGURE 3: Effect of the scale factors on the PE values. (a) No. 1 sample; (b) No. 2 sample.

Thus, the value of scale factor g is chosen from 8 to 15. That
is, an eight-dimensional vector can be constructed for each
signal to describe its characteristic.

After the related coefficients are chosen, permutation
entropies of rock fracture and blast signals with different scale
factors (8-15) are calculated and shown in Figure 4.

Then MPE values of 140 waveforms from S which include
rock fracture and blast signals are chosen to train the BPNN.
The remaining data are regarded as test data and validation
data to evaluate the performance of MPE-BPNN method.
Among BPNN that employed the typical network of three lay-
ers, Reyes et al. [32] stated that there should be 2n1+ 1 neurons
in the hidden layer, where # is the number of input neurons.
Due to the scale factors g = 8-15, the nodes of input are 8, so
the hidden layer has 17 neurons and then BPNN is trained.

BPNN is trained for 71 loops by 140 groups of data. The
cross entropies of training and test and validation data are
shown in Figure 5. Best validation performance is 0.01458
at 65th iteration from Figure 5. And error of each data is
calculated and shown in Figure 6. From Figure 6, errors of 200
eight-dimensional vectors that are made up of permutation
entropy are within —0.02664~0.02664; individual data have
superior errors, which reveals little miscarriage of justice of
events.

Results of classification of three data sets and total data set
are shown in Table 2. From Table 2, three rock fracture events
are regarded as blast events falsely and four blast events are
misjudged as rock fracture events in the training data. TPR,
FPR, and ACC of training data are 95.8%, 5.9%, and 95%,
respectively. In the validation data, a blast event is regarded
as a rock fracture event falsely and a rock fracture event is
regarded as a rock fracture event falsely when TPR, FPR,
and ACC of validation data are 92.9%, 6.3%, and 93.3%,
respectively. Meanwhile, a rock fracture event and two blast
events are not misjudged in the test data. Their TPR and FPR
are 92.9% and 12.5%, respectively, and ACC reaches 90%.
Overall, five rock fracture events are regarded as blast events
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TaBLE 2: Classification results for different sets.
Training Validation Test Total
TP 69 13 13 95
FP 4 1 2 7
TN 64 15 14 93
FN 3 1 1 5
TPR 95.8% 92.9% 92.9% 95%
FPR 5.9% 6.3% 12.5% 7%
ACC 95% 93.3% 90% 94%

falsely and seven blast events are misjudged as rock fracture
events in the total data. TPR and FPR of training data are
95.0% and 7%, respectively, and ACC reaches 94%.

In order to display classification performance of the new
method more intuitively, ROC curves of different sets of data
are shown in Figure 7. From Figure 7, corner point of training
set is closest to top left corner, which means TPR achieves
maximum rapidly when related FPR is low and represents the
better accuracy of classification of two signals in training. As
a result of training, corner points of test set and validation set
are both close to top left corner, which means rock fracture
and blast events are classified accurately in test and validation
sets. ROC curve of total set is also drawn in Figure 7. Corner
point of total set is also close to top left corner. Thus this
illustrates that the proposed method has high accuracy of
discrimination of rock fracture and blast signals.

4.3. Comparison of Discrimination Performance for SVM,
Naive Bayes, and the Proposed Method. To evaluate the per-
formance of the proposed method in this paper, Naive Bayes
and support vector machine [33] have also been implemented
collectively. The first 70% of the rock fracture and blast events
have been used as training samples and the remaining 30% of
data have been used as test samples. The total data numbers
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FIGURE 4: Permutation entropy of data with different scale factors. Permutation entropy with (a) g = 8, (b) g = 9, (c) g = 10, (d) g = 11, (e)
q=12,(f)g=13,(g) g = 14,and (h) g = 15.
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TaBLE 3: Classification results for different methods.

Classifier SVM Naive Bayes Proposed method
TP 27 24 26

FP 11 5 3

TN 19 25 29

FN 3 6 2

TPR 90% 80.0% 92.86%
FPR 36.67% 16.67% 9.38%

ACC 76.67% 81.67% 91.67%

are 200 groups. The classification results are shown in Table 3

and Figures 8-10.
As shown in Table 3 and Figures 8 and 9, FP that indicate
blasts are regarded as rock fracture events mistakenly, being
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TABLE 4: Classification accuracy with different scale factors.
Scale factor 8-10 8-15 8-20 8-25 8-30

Rock fracture 90% 95% 94% 93% 92%
Blast 91% 93% 94% 91% 92%

Total accuracy 90.5% 94% 94% 92% 92%

11, 5, and 3, respectively, for SVM, naive Bayes, and the new
method. FN that indicate rock fracture events are regarded
as blasts falsely, being 3, 6, and 2, respectively, for SVM,
naive Bayes, and the new method. FP and FN reveal that
the proposed method has lower miscarriage of justice than
others. The accuracies (ACC) are 76.67%, 81.67%, and 91.67%,
respectively, for SVM, naive Bayes, and the new method,
which illustrates that the proposed method obtains the best
classification accuracies on the whole and shows the highly
nonlinear mapping ability of the proposed method.

From Figure 10, corner point of the new method is
closest to top left corner in ROC curve, which shows that
the new method has high TPR when FPR is low. This
phenomenon exposes the fact that the new method possesses
better performance than other classifiers mentioned in this
paper. As Table 4 shows, TPR are 90%, 80%, and 92.86% for
the new method, SVM, and naive Bayes, respectively, when
FPR are 36.67%, 16.67%, and 9.38%.

In conclusion, the new method obtains the best classifi-
cation results.

5. Discussion

In order to further evaluate the performance of the proposed
method, the influence of different scale factors and training
sample numbers is discussed.

Shock and Vibration

TaBLE 5: Classification accuracies with different training numbers.

Training set 100 120 140 160 180
Rock fracture 90% 90% 95% 92% 90%
Blast 91% 91% 93% 92% 92%

Total accuracy ~ 90.5% 90.5% 94% 92% 91%

5.1 The Influence of Scale Factors on the Identification Results.
From Section 4, an eight-dimensional vector [Hse, Hlfe, e
Hées ] is selected to express characteristic of each waveform.
In order to further analyze the influence of scale factors on
the identification results, the new method is run when ¢ are
chosen from 8 to 10, 15, 20, 25, and 30, respectively. The
changes in the classification accuracies are shown in Table 4
when the number of scale factors increases.

As shown in Table 4, when the feature vector is three-
dimensional, the total classification accuracy of the new
method is 90.5%, and with an increase of scale factor, the total
classification accuracy increases. When g are 8-15, the rock
fracture accuracy reaches the highest value. When g are 8-20,
the blast classification accuracy only has the modest growth.
When g are greater than 20, the classification accuracy
declines and tends to be stable afterwards. The reason is that
the increase of the scale factor could make it more difficult
to express the complexity of the signal. Meanwhile, the
increasing number of scale factors increases the calculating
time. Therefore, the best choices for scale factors that should
be selected, according to this experiment, are 8-15 or 8-20.

5.2. The Influence of Training Sample Numbers on the Iden-
tification Results. Appropriate numbers of training samples
are vital for the proposed method to determine classification
accuracy. Here, 100, 120, 140, 160, and 180 samples of 200
groups of data are chosen, respectively, as training sets. The
accuracies of different training sample numbers are shown in
Table 5.

As shown in Table 5, with the number of training samples
increasing, classification accuracies of all events first remain
unchanged and then rise and decline lastly. Due to the fact
that rock fracture and blast signals have complex waveform
features, an excessive number of training samples may lead
to an overfitting problem, which results in the decreased
classification accuracy. According to the above analysis, it is
appropriate to select the number of samples as 140.

6. Conclusion

In this paper, a new method has been proposed for distin-
guishing rock fracture and blast events. The new method
has many advantages. First, the method turns out to be
rather fast and it does not seek for waveform parameters
of detected signals and only signal time series are required,
which is more convenient and simple because signal time
series have been detected by related equipment on the site.
Secondly, depending on self-learning capacity of BPNN, it
can classify rock fracture and blast signals automatically,
which deals with time-consuming and subjective problem of
manual discrimination.
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In this study, multiscale permutation entropy (MPE)
is applied to calculate complexity values for two hundred
signals including 100 rock fracture and 100 blast signals.
The calculated MPE values can indicate signal complexity
and characteristic and are regarded as feature vectors of
rock fracture and blast signals. Then back-propagation neural
network as means of machine learning is used to construct
discriminator for rock fracture and blast signals based on fea-
ture vectors. Accuracies of training, validation, and test sets
from 200 data sets reach 95%, 93.3%, and 90%, respectively.
Accuracy of all data reaches 94%. TPR of training, validation,
and test sets and all data both achieve maximum rapidly
when related FPR is low, which reveals better accuracy and
sensitivity of classification of two signals.

To evaluate the performance of the new method, the
comparison of classification performances of SVM, naive
Bayes, and the new method is carried out. Accuracies of
the above three methods are 76.67%, 81.67%, and 91.67%,
respectively. The results show the new method obtains the
best classification accuracy. ROC curves of the above three
methods are also contrasted. Corner point of the new method
is closest to top left corner in ROC curve, which illustrates
that the new method has the best specificity and sensitivity.

It is noted that the scale factors of MPE and quantities
of training samples for BPNN are very important for iden-
tification results. For 200 data sets, the best scale factors
are 8-15 or 8-20 and the best quantities of training samples
are 140. Excessive number of training samples may lead to
an overfitting problem, which would reduce classification
accuracy.
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