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A predictive variable gain strategy in iterative learning control (ILC) is introduced. Predictive variable gain iterative learning control
is constructed to improve the performance of trajectory tracking. A scheme based on predictive variable gain iterative learning
control for eliminating undesirable vibrations of PMSM system is proposed.The basic idea is that undesirable vibrations of PMSM
system are eliminated from two aspects of iterative domain and time domain. The predictive method is utilized to determine the
learning gain in the ILC algorithm. Compression mapping principle is used to prove the convergence of the algorithm. Simulation
results demonstrate that the predictive variable gain is superior to constant gain and other variable gains.

1. Introduction

Due to their high efficiency, high power density and low
noise, low loss, small size, and so forth, permanent mag-
net synchronous motor (PMSM) is used widely in various
industrial fields. Furthermore, the applications of PMSM are
expanding rapidly.

However, PMSMperformance at low speed is bad because
of the existence of torque ripple which deteriorates the accu-
racy and repeatability of PMSM and undermines potentially
its suitability in precision electromechanical device. Thus,
eliminating torque ripple is very important for improving
PMSM performance.

Many control methods have been utilized to suppress the
torque ripple.They include PID control scheme [1, 2], predic-
tive control [3], adaptive fuzzy control [4], robust control [5],
sliding-mode control [6], and so on. These control means
improve the performance of PMSM system from different
aspects [7], but applying conventional PID controller and
modern control techniques mentioned in the above to deal
with torque ripple cannot attain desired levels; moreover,
some of them are too complex to employ in practice.

Because of the periodic feature of PMSM on some
applications and the simplicity of iterative learning control,
a large number of learning control schemes were developed

to remove torque ripple in PMSM. Those learning schemes
applied to permanent magnet synchronous motors can be
divided into two categories according to the learning gain:
the first class is fixed gain iterative learning control [8]
and the other is variable gain iterative learning control. The
second category has obvious advantages in instantaneous
characteristics and robustness of system when compared
with fixed gain iterative learning control, so designing a
reasonable, objective, and effective algorithm in iterative
learning controller to determine the value of learning gain
at each moment is a vital important factor in solving the
problem of instantaneous error growth which has aroused a
strong interest of the researchers.

An iterative learning algorithm with a variable gain in
iteration domain to remove measurement disturbances and
guarantee that the tracking error converges to zero was
developed by Zhang et al. [9], but time domain uncertainty
is not considered; under this circumstance, Xu et al. [10]
proposed a variable PID gain with iterative learning control
scheme applied to nonlinear system to tracking the desired
output; although this PID gain takes into account distur-
bances in both time domain and iterative domain, the choice
of coefficients for PID gain is subjective.

Unlike [9, 10], we propose to use predictive control to
determine the gain of iterative learning control during in both

Hindawi Publishing Corporation
Journal of Control Science and Engineering
Volume 2015, Article ID 353712, 6 pages
http://dx.doi.org/10.1155/2015/353712

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/195004472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Journal of Control Science and Engineering

time index and iterative index. The main contributions of
this method include three aspects: the first is superiority in
control performance compared with constant gain and PID
variable gain. The second is that this scheme can be applied
not only to the linear system but also to the nonlinear system,
so it has a wider application. Finally, although predictive
control has been successful applied to the motor control [11–
14], it is the first time, as far as the author known, that it is
used to determine the gain of iterative learning control; the
proposed scheme in this paper overcomes the subjectivity of
the gain value choice.

2. Material and Methods

2.1. Process Description. We assume that the PMSM motion
model is described as [15]
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in the above, 𝑀 is the load weight, 𝜉 is a dampen coefficient,
𝑥

1
, 𝑥
2
represent the position and velocity of mover, respec-

tively, 𝑓
𝑑
is a motor load disturbance, 𝑓fric is the friction, 𝑓cog

is a alveolar thrust ripple, 𝑓rel is a reluctance thrust ripple, 𝐹𝑚
is the reluctance motor electromagnetic force to remove part
of the thrust fluctuations, and 𝑓fric can be expressed as
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where 𝑓

𝑠
is the maximum static friction; 𝑓

𝑐
is a Coulomb

friction, 𝑥
2𝑠
and 𝜀 are empirical parameters used to describe

the Stribeck effect, and sgn() is a switching function; generally
it is believed that𝑓cog is a periodic functionwhich is described
as

𝑓cog (𝑥1 + 𝑃) = 𝑓cog (𝑥1) . (3)

𝑃 is polar distance. It is assumed that motor electromagnetic
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mover current in the vector control mode:
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𝑓rel is a periodic function to satisfy
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In (1), current 𝑖
𝑞
denotes the input signal, 𝑥

1
, 𝑥
2
represent the

states of system, and𝑦 denotes the output; generally, the exact
input produces the desired output, but in practice, the torque
ripple is unavoidable; as a result, the real output is not the
desired.

In order to resolve above question, we develop a control
scheme which merges the iterative learning and predictive
control to eliminate the bad effect of the torque ripple.

The main target of this paper is to find a proper learning
gain such that the output error is minimized, and arbitrary
high precision output tracking is achieved.

2.2. Iterative Learning Control Law. In this section, we
develop a scheme to get the appropriate learning gain bymin-
imizing the performance function in the predictive control
process.

For simplicity, we consider an open-loop iterative learn-
ing law. During the iterative index 𝑘 + 1, the learning update
is given by

𝑖

𝑞𝑘+1
= 𝜑𝑖

𝑞𝑘
+ 𝜙𝑒

𝑘
, (7)

where 𝜙 is the learning control gain and 𝑒

𝑘
is the output error;

that is,
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. (8)

𝑦

𝑞𝑑
is a realizable desired output trajectory, 𝑖

𝑞𝑘+1
, 𝑖
𝑞𝑘

are the
system inputs in the 𝑘 + 1st iterative and 𝑘th iterative, 𝜑 is a
filter, and 𝑘 is the iterative learning index.

2.3. Predictive Gain. In order to find out the appropriate
learning gain by predictive control, we firstly set up the
predictive model where the learning gain acts as a system
input.

At sampled time 𝑡 in the iterative index 𝑘 + 1, combining
(1) with (5), we can write the equation for the PMSM:
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Inserting (9) into (7), we get
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For the sake of getting an updating learning gain in next
sample time 𝑡 + 1, we make use of predictive control method.
The predictive model is given by
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𝜙

𝑘
, 𝑦
𝑘
, 𝑥
1,𝑘
, and 𝑥

2,𝑘
denote the input, output, and states of

system in the 𝑘th iterative index, respectively; the system in
the above is a nonlinear system.

Secondly, we turn the nonlinear PMSM model (11)
decouples into a new linear system via the input-output
feedback linearization scheme. According to the exact linear
theory, calculating Lie derivative of the output variable, we
get the relative degree which is equal to the number of the
system state variables; as a result, (11) satisfies the exact linear
condition and can be linearized as
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where 𝑥
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a new control input. We can discretize (10):
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We assume that the predictive horizon is 𝐻

𝑝
and the control

horizon is𝐻V;ΔV can be calculated by the following criterion:
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In the light of the least square formula, the expression of the
ΔV is obtained as
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The open-loop learning gain 𝜙
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Considering (5), we have
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It can be rewritten in the form
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2.4. Convergence Analysis. In this section, we give the condi-
tion under which the system output error converges to zero.

Consider (1) and it can be written as
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We assume the following properties for system (20):
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for all 𝑡 ∈ [0, 𝑇] and 𝑀
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(2) It is assumed that, at each iterative process, the initial
state error sequence {𝛿𝑥

𝑘
(0)}, 𝑘 ≥ 0, converges to
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(3) For any realizable output trajectory and an appro-
priate initial condition, there exists a unique control
input generating the trajectory for the plant.
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𝑘
:
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0
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(26)

According to lemma 2 in [16], we have the convergence
conditions 0 < 𝜑 < 1, 𝑀

4
> 1, and 𝑀

3
and 𝑀

4
are constant.
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Figure 1: Desired and actual output.
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Figure 2: Error response in the 1st iterative.

2.5. Simulation. In this section, we will make a comparison
between the iterative learningmethod based on the predicted
variable gain and two kinds of efficient iterative learning
control method which in recent years have been widely used
for permanent magnet synchronous motors: constant gain of
iterative learning control strategy and the variable PID gain
iterative learning control strategy.

PMSM system preferences are as follows.
Load weight 𝑀 = 5 kg, 𝑙 = 0.0333A/kg, damping

coefficient is 20.99Nm/min−1, pole pitch is 60.9mm, 𝐹
𝑚

=

(3/2)𝑃

𝑛
𝜙

𝑓
𝑖

𝑑
, 𝑃
𝑛
= 2, 𝜙

𝑓
= 0.125wb, friction 𝑓

𝑠
= 𝑓

𝑐
= 15N,

control horizon 𝑛𝑐 = 3, and predictive horizon 𝑛𝑝 = 7;
assume that the initial state error is zero and the desired
output is a sine wave and the cycle is 𝜋; amplitude is 5.

The simulation results are shown in Figures 1–7.
Figure 1 shows a comparison between the desired PMSM

output and the actual PMSM output in the 1st, 2nd, and
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Figure 4: Errors of the constant gain, PID gain, and predictive gain
in the 1st iterative.

3rd iteratives with the fixed gain iterative learning controller,
although the actual system output will approach the desired
output with the increase of the number of iterations, instan-
taneous vibration bandwidth is sometimes dramatic large
which is in fact detrimental to system. Figures 2 and 3 give a
more intuitive description about the instantaneous vibration
growth which show that max vibration bandwidth increases
from 0.158mm to 1.4mm just after four iteratives. These
phenomena also give full explanation of the importance of
predictive gain learning control.

Figures 4–6 show the actual system output in different
iterative indices with constant gain learning controller, PID
variable gain learning controller, and predictive gain learning
controller, respectively. We can see from Figures 4–6 that
the predictive gain is significantly better than the fixed gain
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Figure 5: Errors of the constant gain, PID gain, and predictive gain
in the 6th iterative.
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Figure 6: Errors of the constant gain, PID gain, and predictive gain
in the 15th iterative.

and the PID gain. Firstly, the error vibration amplitude of
predictive gain is less than the other two gains; secondly, error
descent rate of predictive gain in time domain is also faster
than fixed gain and PID gain iterative learning control.

For the sake of getting a more intuitive understanding
for the advantages of the scheme proposed by this paper,
Figure 7 is given. It can be seen that when the initial state
error is zero, on the premise of the convergence conditions of
iterative learning control, the predictive variable gain iterative
learning has a higher convergent rate; meanwhile tracking
accuracy also has been greatly improved.
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3. Conclusion

A variable gain iterative learning control strategy based
on predictive control for PMSM has been developed. This
method not only increases the iterative convergence rate, but
also eliminates error in the time domain. The convergence of
this technique is proved by the contractive operator theory.

Future work will consider the choosing of predictive
horizon to get a better control performance.
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