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This paper presents a modified artificial bee colony algorithm (MABC) for solving function optimization problems and control of
mobile robot system. Several strategies are adopted to enhance the performance and reduce the computational effort of traditional
artificial bee colony algorithm, such as elite, solution sharing, instant update, cooperative strategy, and populationmanager.The elite
individuals are selected as onlooker bees for preserving good evolution, and, then, onlooker bees, employed bees, and scout bees are
operated.The solution sharing strategy provides a proper direction for searching, and the instant update strategy provides the newest
information for other individuals; the cooperative strategy improves the performance for high-dimensional problems. In addition,
the population manager is proposed to adjust population size adaptively according to the evolution situation. Finally, simulation
results for optimization of test functions and tracking control of mobile robot system are introduced to show the effectiveness and
performance of the proposed approach.

1. Introduction

In the past decades, many effective approaches have been
proposed to solve the optimization problem, such as
genetic algorithm (GA), particle swarm optimization (PSO),
electromagnetism-like algorithm (EM), and immune algo-
rithm (IA) [1–13]. Recently, a stochastic global optimization
algorithm, artificial bee colony (ABC) algorithm, motivated
by the foraging behavior of bee colony was proposed [14–
16]. The ABC algorithm is a population-based algorithm
with the advantages of finding global optimization solution,
being simple and flexible, and using very few control param-
eters. The ABC algorithm has been applied to many real-
world applications, for example, function optimization, real-
parameter optimization, digital filter design, clustering, and
neural network training [14, 16–24].

Although the ABC algorithm benefits from the afore-
mentioned advantages, it has some disadvantages of accuracy
and slow convergent speed. Herein, we propose the modified
artificial bee colony (MABC) algorithm to improve the
performance of optimization. For the initialization, there
is no way to select the population size for solving current

problem. Having more individuals can extend the search-
ing space and increase the probability of finding global
optimization solution; however, it costs much time in each
generation; oppositely, it may obtain a local minimum. In
this paper, a population manager is introduced to adjust
population size according to the evolution status. In addition,
the ABC algorithm convergent speed is slow for high-
dimensional problem. Herein, we adopted a cooperative
strategy to improve it [25–27]. Besides, the elite individuals
are assigned as the onlooker bees for preserving good evolu-
tion, solution sharing, and instant update strategies provide
a proper searching direction. We utilize these strategies in
MABC algorithm to improve the performance of optimiza-
tion accuracy. Finally the illustrated examples for function
optimization are introduced to show the effectiveness and
performance of the proposed MABC algorithm. As a result,
we use theMABC algorithm to find the proper parameters of
PID neural networks which generate the control sequences
for tracking control of a mobile robot system.

The rest of this paper is as follows. Section 2 introduces
the proposed modified artificial bee colony (MABC) algo-
rithm.The discussion and analysis of illustrated examples for
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test functions are shown in Section 3. Finally, the conclusion
is given.

2. Modified Artificial Bee
Colony (MABC) Algorithm

The artificial bee colony (ABC) algorithm was proposed for
parameters optimizationwhich simulates the foraging behav-
ior of bee colony [14, 15]. It consists of three kinds of bees:
employed bees, onlooker bees, and scout bees. This paper
introduces the modifications of ABC to improve the per-
formance of optimization, including elite, solution sharing,
instant update, cooperative strategy, and populationmanager
strategies. Figure 1 shows the flowchart of the proposed
MABC algorithm; it contains initialization, evaluation, and
ranking, onlooker bees with solution sharing, employed bees
with solution sharing, instant update embedded selection,
scout bees, cooperative strategy, and population manager
phases. Detailed description is introduced as follows.

At first, the optimization problem is formulated as

minimize 𝑓 (𝑋)

subject to 𝑋 ∈ 𝑆,

𝑆 = {𝑋 ∈ R
𝐷 | 𝐿
𝐵
≤ 𝑋 ≤ 𝑈

𝐵
, 𝐿
𝐵
, 𝑈
𝐵
∈ R
𝐷} ,

(1)

where 𝑓(𝑋) is the objective function,𝑋 is the parameters,𝑈
𝐵

and𝐿
𝐵
are the corresponding upper and lower bound vectors,

respectively, and 𝐷 is the problem dimension. Herein, each
individual (or bee) 𝑋 represents a solution agent.

Before starting the MABC algorithm, the following
parameters of the MABC algorithm should be also set here.
The population size is adjusted by the current evolution
results for each generation;𝑃

𝑆
denotes the current population

size. Since the ABC algorithm consists of two groups of bees,
we set minimum population size as two; in order to avoid
unlimited increase, the maximum population size should
be predefined. In addition, we must select the maximum
generation 𝐺 to be the stop criterion. As above, we define
𝑃
𝑂
as the number of onlooker bees, 𝑃

𝐸
as the number of

employed bees, 𝑐𝑑 as the update number in selection, 𝑐𝑖 as
false searching number, and 𝑔 as generation (or iteration)
index.

2.1. Initialization Phase. Herein, each individual (or bee) 𝑋
represents a solution agent and is initialized randomly from
the search space 𝑆.

2.2. Evaluation Phase. This phase calculates the objective
function values of all individuals; that is, it evaluates the
corresponding performance. Our goal is to minimize the
objective value; according to 𝑓(𝑋

𝑖
), the fitness value is

defined as

fit (𝑋
𝑖
) =

1

1 + 𝑓 (𝑋
𝑖
)
, 𝑖 = 1, 2, . . . , 𝑃

𝑆
. (2)
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Figure 1: Flowchart of the proposed MABC algorithm.

The individual having smallest objective value is defined as
the current best individual 𝑋best; that is, 𝑋best = {𝑋

𝑖
|

min𝑓(𝑋
𝑖
), 𝑋
𝑖
∈ 𝑆}. Subsequently, all individuals are ranked

and indexed according to the objective value (or fitness
values). In addition, the corresponding probability value is
defined as

PV (𝑋
𝑖
) =

fit (𝑋
𝑖
)

∑
𝑃𝑆

𝑖=1
fit (𝑋
𝑖
)
, 𝑖 = 1, 2, . . . , 𝑃

𝑆 (3)

which is adopted for onlooker bees operation.

2.3. Onlooker Bees Phase. In nature behavior, onlooker bees
receive the information about the nectar amount of the foods
from the employed bees according to the waggle dance.
Based on this character, their searching direction is according
to high quality nectar amounts (fitness value). Herein, we
choose the half better population as onlooker bees. To
enhance the convergence, the solution sharing strategy is
adopted in this phase; that is, the information of the current
best 𝑋best is used to find the searching direction; that is,

𝑉
𝑖
= 𝑋
𝑖
+ 𝜙
1
(𝑋
𝑘
− 𝑋
𝑖
) + 𝜙
2
(𝑋best − 𝑋

𝑖
) , (4)

where 𝜙
1
and 𝜙

2
are random vectors between [−1, 1] and

[0, 1], respectively, and 𝑘 is selected by roulette wheel
approach according to PV(𝑋

𝑖
), 𝑘 ̸= 𝑖. Note that 𝑉

𝑖
is the trial

solution; it will be updated after selection operation. Selection
is a general used technique for presenting the better offspring;
the operation is

𝑋
𝑖
=

{
{
{

𝑉
𝑖

if 𝑓 (𝑉
𝑖
) ≤ 𝑓 (𝑋

𝑖
)

𝑋
𝑖

otherwise.
(5)
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The current best individual 𝑋best is also updated in each
selection operation; that is,

𝑋best =
{
{
{

𝑋
𝑖

if 𝑓 (𝑋
𝑖
) ≤ 𝑓 (𝑋best)

𝑋best otherwise.
(6)

Herein, we update each individual and best individual instan-
taneously, but not until all individuals have operated in a
generation. After a new individual is produced, the current
best individual 𝑋best is evaluated instantly. Each individual
𝑋
𝑖
and the current best individuals 𝑋best would be updated

instantly. Therefore, we can provide the newest information
for the next individual in searching process. Figures 2(a) and
2(b) show the flowchart of general used selection and instant
update method, respectively. This modification will enhance
the performance of convergence.

2.4. Employed Bees Phase. In nature behavior, employed bees
find new food sources in their neighborhood. Based on this
characteristic, the randomly searching direction is adopted.
Herein, the remaining individuals with lower fitness value
are set to be employed bees; that is, the population size of
onlooker bees 𝑃

𝐸
is 𝑃
𝑆
/2 if 𝑃

𝑆
is even or (𝑃

𝑆
−1)/2 if 𝑃

𝑆
is odd,

𝑖 = (𝑃
𝑂
+1), (𝑃

𝑂
+2), . . . , 𝑃

𝑆
.The difference between employed

bees and onlooker bees is the differential vector composed
of randomly selected individual 𝑋

𝑘
and each individual 𝑋

𝑖
.

Herein, we also adopt solution sharing strategy to enhance
the convergence. The corresponding update law is

𝑉
𝑖
= 𝑋
𝑖
+ 𝜙
1
(𝑋
𝑘
− 𝑋
𝑖
) + 𝜙
2
(𝑋best − 𝑋

𝑖
) , (7)

where 𝜙
1
and 𝜙

2
are random vectors between [−1, 1] and

[0, 1], respectively, and 𝑘 ∈ {1, 2, . . . , 𝑃
𝑆
} and 𝑘 ̸= 𝑖. Note

that the selection of𝑋
𝑘
has the random property and the trial

solution may have better evolution when the onlooker bee is
selected. Herein, the instant update selection is also adopted
in this phase.

2.5. Scout Bees Phase. The scout bees are used to find undis-
covered food sources in nature behavior. While onlookers
and employed bees carry out the exploitation process in the
search space, the scouts control the exploration process. The
scout bees carry out a random search to discover new food
source. Herein, a new individual is generated as a scout bee
randomly:

𝑋new = 𝐿
𝐵
+ 𝜙
3
× (𝑈
𝐵
− 𝐿
𝐵
) , (8)

where 𝜙
3
is random value between [0, 1]. Besides, this new

individual replaces the worst individual.

2.6. Cooperative Strategy Phase. As described above, an addi-
tional improvement can be obtained through cooperation
[25–27]. It is hard to find the global optimum for high-
dimensional problems. The concept of cooperation is to
partition the searching space into low-dimensional ones.
The cooperative strategy in MABC algorithm is to exchange
information and generate extra individuals. At first, we decide

the number of individuals to implement cooperative strategy
which is selected by roulette wheel approach. In our experi-
ment, four individuals are selected for cooperative strategy; a
detailed discussion of the illustrated example is given below.
Then, the solution vector denotes (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝐷
). We copy

the best individual and use the individuals selected by roulette
wheel approach (𝑋

𝑟1
, 𝑋
𝑟2
, 𝑋
𝑟3
, and 𝑋

𝑟4
). The cooperative

vector is generated by replacing the current best individual
𝑋best parameter using one of the individuals𝑋

𝑖
, where 𝑖 = 𝑟

1
,

𝑟
2
, 𝑟
3
, 𝑟
4
, 𝑟
1

̸= 𝑟
2

̸= 𝑟
3

̸= 𝑟
4

̸= 1. Herein, we also used
the instant update to enhance the performance. Thus, the
evaluation in cooperative process will be 4×𝐷 times. Figure 3
summarizes the cooperative strategy for MABC algorithm.

2.7. Population Management Phase. The first thing for the
population-based algorithm applications is to decide the
initial population, that is, population size 𝑃

𝑆
. The population

size is often chosen according to users’ experience [28].
In this paper, a population management is introduced to
update the population size adaptively according to the current
evolution status. Two criterions are introduced to decide the
increasing or decreasing of the population size. The first
one is similarity examination and evaluation of evolution
performance. Figure 4 shows the flowchart of the population
manager. Since the population of MABC consists of two
groups of bees, we set minimum population size to be two. In
order to avoid unlimited increase of population, a maximum
population size is also predefined. Details are introduced as
follows.

Similarity Examination. We observe that similar individuals
with similar objective values and locations may converge
to similar locations; thus the worse individual of similar
individuals is removed. It can improve the efficiency and
reduce computation effort. The similarity examination is
introduced:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝑋
𝑖
) − 𝑓 (𝑋

𝑘
)

𝑓 (𝑋
𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 𝛿
𝑚
,

󵄩󵄩󵄩󵄩𝑋𝑖 − 𝑋
𝑘

󵄩󵄩󵄩󵄩 < 𝑟
𝑚
, (9)

where 𝛿
𝑚

and 𝑟
𝑚

are the thresholds and ‖ ⋅ ‖ is the dis-
tance between individuals 𝑋

𝑖
and 𝑋

𝑘
. A one-dimensional

illustration is shown in Figure 5. We can observe that the
individuals 𝑄

1
and 𝑄

2
have similar objective values, but

the distance dis(𝑄
1
, 𝑄
2
) is greater than 𝑟

𝑚
. Although the

individuals 𝑄
3
and 𝑄

4
have similar location, they do not

satisfy the other condition. In the case of the particles𝑄
5
and

𝑄
6
, they have similar objective values and locations which

satisfy conditions (9). In other words, the particle 𝑄
5
should

be removed.

Evaluation of Evolution Status. In this step, we evaluate
the evolution status of current generation to decide to
increase or decrease the population size. As above introduced,
the maximum and minimum population sizes should be
set. Herein, we choose selection of onlooker bees for the
basis of population management. Note that 𝑐𝑑 = ∑

𝑃𝑂

𝑖=1
𝑐𝑑
𝑖

denotes the update numbers (find the better solutions) for
each generation and 𝑐𝑖 = ∑

𝑃𝑂

𝑖=1
𝑐𝑖
𝑖
denotes the number of
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Figure 2: Flowchart of selection operation: (a) the general used selection; (b) instant update embedded selection for MABC algorithm.
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Figure 3: Flowchart of cooperative strategy.

false searching (cannot find the better solutions). Therefore,
the proposed populationmanagement criterion can be intro-
duced as follows.

(i) If 𝑐𝑑 is greater than 𝑐𝑖 (𝑐𝑑 ≥ 𝑐𝑖), then the population
size can be decreased and the worse individuals with
poor performance in current generation are removed.

Yes
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No

No

No

Yes

Yes

Yes

No

Start population manager 

Remove redundant individuals by similarity examination

No

Remove individuals
Create new individual

End population manager

Update population size PS

cd > ci

PS > min PS

PS > min PS

PS = PS − (cd − ci)

PS = min PS

PS = PS + 1

ci > cd

PS < max PS

Figure 4: Flowchart of population manager.

(ii) On the other hand, that is, 𝑐𝑖 ≥ 𝑐𝑑, then an additional
individual should be generated randomly.

As described above, the maximum and minimum pop-
ulation sizes are set to preserve the evolution computational
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< 𝛿m

Figure 5: Example of how to remove the redundant individuals by
similarity examination [11].

efficiency. Figure 4 summaries the flowchart of the proposed
population manager.

Summary of MABC Algorithm. The complete MABC algo-
rithm has been shown in Figure 1. After initializing all the
parameters from search space 𝑆, all individuals are evaluated
and ranked by the corresponding objective values. The half
better individuals of the population are operated by onlooker
bee phase with solution sharing strategy and the instant
update embedded selection is adopted to enhance the search-
ing performance. Subsequently, the cooperative strategy is
done. Similar to the onlooker bee phase, the employed bee
phase with solution sharing strategy and the instant update
embedded selection are operated. Finally, the scout bee phase
is adopted to create new individuals randomly and the
proposed population management will update the individual
number according to the evaluation of the evolution status
in current generation. Similar individuals are also examined
and the redundant individuals are removed in this step. The
MABC algorithm is stoppedwhen the generation number (𝑔)
is equal to the maximum generation (𝐺).

3. Computer Simulation Results: Optimization
of Test Functions

In this section, the test functions (𝑓
1
(𝑥), . . . , 𝑓

10
(𝑥)) given in

Table 1 are presented to show the performance and efficiency
of the MABC algorithm [29]. The corresponding presetting
parameters of the MABC algorithm is discussed for the
sphere test function with ten variables. For the MABC
algorithm, the initial population size is 𝑃

𝑆
(0) = 10; the

boundary of population size is two in population manager
and the maximum generation for stop criterion is 1000. In
the following discussion, the presetting parameters of used
strategies for MABC algorithm will be suggested according
the statistical analysis of ten independent runs. These sug-
gested parameters are adopted for the application of tracking
control of mobile robot.
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Figure 6: Comparison results for different individuals to implement
cooperative strategy in 100 generations.

Discussion (a): Individuals Number to Implement Cooperative
Strategy. As described above, the computational effort of
cooperative strategy is proportional to the number of selected
individuals. However, less individuals selected for cooper-
ative strategy could not enhance the performance. Herein,
none, two, four, and six individuals are adopted to examine.
Figure 6 andTable 2 show the comparison results for different
number of individuals to implement the cooperative strategy.
From Figure 6, We can observe that using cooperative strat-
egy has better result than not using cooperative strategy and
four individual cases have the better performance. In Table 2,
we can also find that the results of using four individuals and
using six individuals have almost the same accuracy, but the
computation time of using six individuals is larger than the
result of using four individuals. Therefore, we suggest that
using four individuals to implement cooperative strategymay
have better performance and efficiency.

Discussion (b):ThresholdValue 𝛿
𝑚
of Individuals Combination

for Similarity Examination. Herein, we discuss the effect of
threshold value of individuals combination for similarity
examination. Since similar individuals may converge to sim-
ilar objective values and locations, we remain the best indi-
vidual among similar individuals. A larger threshold value
will cause that the different individuals are merged easily and
loss the population diversity in the current generation. By
the way, the population size will be decreased rapidly. On the
other hand, a small threshold value consumes too much time
in the search for redundant individuals. The corresponding
computational effort may be huge.

Figure 7 and Table 3 show the comparison results of
MABC using different values of 𝛿

𝑚
in similarity examination.

The objective value comparisons using different 𝛿
𝑚
are shown

in Figure 7. Figure 7(a) shows the convergent trajectories of
MABC using different 𝛿

𝑚
, and Figure 7(b) shows the varia-

tion of population size by population manager in this case.
The average populations for 1000 generations are introduced
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Figure 7: Comparison results for different values of 𝛿
𝑚
: (a) convergence trajectories in 100 generations; (b) variation of population size for

different 𝛿
𝑚
in 1000 generations.
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Figure 9: Comparison results for different number of decreasing individuals per generation: (a) convergent trajectories; (b) variation of
population size.
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Figure 10: Comparison results for different number of increasing individuals per generation: (a) convergent trajectories; (b) variation of
population size.
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Table 1: Test functions [29].

Function Decision space Optimal
solution

Sphere 𝑓
1
(𝑥) =

𝐷

∑
𝑖=1

𝑥2
𝑖 [−100, 100]𝐷 0

Schwefel 2.22 𝑓
2
(𝑥) =

𝐷

∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 −
𝐷

∏
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 [−10, 10]𝐷 0

Schwefel 1.2 𝑓
3
(𝑥) =

𝐷

∑
𝑖=1

(
𝑖

∑
𝑗=1

𝑥
𝑗
)

2

[−100, 100]𝐷 0

Schwefel 2.21 𝑓
4
(𝑥) = max {

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 , 1 ≤ 𝑖 ≤ 𝐷} [−100, 100]𝐷 0

Rosenbrock 𝑓
5
(𝑥) =

𝐷−1

∑
𝑖=1

[100 (𝑥
𝑖+1

− 𝑥2
𝑖
) + (𝑥

𝑖
− 1)
2

] [−30, 30]𝐷 0

Step 𝑓
6
(𝑥) =

𝐷

∑
𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋)

2 [−100, 100]𝐷 0

Quartic 𝑓
7
(𝑥) =

𝐷

∑
𝑖=1

𝑖𝑥4
𝑖
+ random[0, 1) [−1.28, 1.28]𝐷 0

Rastrigin 𝑓
8
(𝑥) =

𝐷

∑
𝑖=1

[𝑥2
𝑖
− cos (2𝜋𝑥

𝑖
) + 10] [−5.12, 5.12]𝐷 0

Ackley 𝑓
9
(𝑥) = −20 exp[

[

−0.2√
1

𝐷

𝐷

∑
𝑖=1

𝑥2
𝑖
]

]

− exp(
1

𝐷

𝐷

∑
𝑖=1

cos (2𝜋𝑥
𝑖
)) + 20 + exp(1) [−32, 32]𝐷 0

Griewank 𝑓
10
(𝑥) =

1

4000

𝐷

∑
𝑖=1

𝑥2
𝑖
−
𝐷

∏
𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1 [−600, 600]𝐷 0

Generalized
penalized

𝑓
11
(𝑥) = 0.1{sin2 (3𝜋𝑥

1
)+
𝐷−1

∑
𝑖=1

(𝑥
𝑖
− 1)
2

[1 + sin2 (3𝜋𝑥
𝑖+1

)]

+ (𝑥
𝐷
− 1)
2

[1 + sin2 (2𝜋𝑥
𝐷
)]
}
}
}

+
𝐷

∑
𝑖=1

𝑢 (𝑥
𝑖
, 5, 100, 4),

where

𝑢(𝑥
𝑖
, 𝑎, 𝑘, 𝑚) =

{{{{{
{{{{{
{

𝑘(𝑥
𝑖
− 𝑎)𝑚, 𝑥

𝑖
> 𝑎

0, −𝑎 ≤ 𝑥
𝑖
≤ 𝑎

𝑘(−𝑥
𝑖
− 𝑎)𝑚, 𝑥

𝑖
< −𝑎

[−5, 5]𝐷 0

Schwefel 𝑓
12
(𝑥) =

1

(1/500) + ∑
25

𝑗=1
(1/(𝑗 + ∑

2

𝑖=1
(𝑥
𝑖
− 𝑎
𝑖𝑗
)6))

[−65.536, 65.536]𝐷 0.998004

𝜃c(k)
𝛿𝜃(k)

𝜃c(k + 1)

dL

b

dR

xc

yc

(xc(k + 1), yc(k + 1), 𝜃c(k + 1))

(xc(k), yc(k), 𝜃c(k))

Figure 11: Model description of mobile robot.

Table 2: Comparison results in 10 independent runs for different
individuals to implement cooperative strategy.

Individuals Objective value
Best Worst Mean Time (sec)

None 1.16 × 10−4 4.32 × 10−3 9.63 × 10−4 0.39
2 5.53 × 10−15 4.04 × 10−13 1.55 × 10−14 0.73
4 1.48 × 10−17 1.70 × 10−15 7.33 × 10−16 0.94
6 2.79 × 10−17 2.26 × 10−15 2.16 × 10−16 1.19

in Table 3, 𝑃
𝑆

= 5.8, 6.9, and 8.5 for 𝛿
𝑚

= 0.5, 0.1, and
0.01, respectively. Table 3 introduces the comparison results
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Table 3: The comparison results in 10 independent runs for different values of 𝛿
𝑚
.

𝛿
𝑚

Objective value
Best Worst Mean Average population Time (sec)

0.5 1.73 × 10−14 3.15 × 10−13 3.37 × 10−13 5.8 0.88
0.1 4.27 × 10−17 9.72 × 10−15 2.16 × 10−16 6.9 0.94
0.01 2.45 × 10−18 8.94 × 10−16 8.84 × 10−17 8.5 1.09

Table 4: The comparison results in 10 independent runs for different 𝑟
𝑚
.

Objective value
𝑟
𝑚

Best Worst Mean Average population Time (sec)

0.1 × searching range 1.69 × 10−18 1.11 × 10−14 3.43 × 10−16 6.4 0.90
0.05 × searching range 2.03 × 10−18 9.87 × 10−15 2.16 × 10−16 7.1 1.06
0.01 × searching range 2.45 × 10−19 8.92 × 10−15 1.47 × 10−16 9.2. 1.10

Table 5: Comparison result in 10 independent runs for different
number of decreasing individuals per generation.

Decreasing
individuals

Mean objective
value

Average
population Time (sec)

1 8.38 × 10−16 8.5 0.90
𝑐𝑑 − 𝑐𝑖 5.29 × 10−16 7.2 0.84
3 1.54 × 10−11 4.6 0.73

Table 6:The comparison result in 10 independent runs for different
number of increasing individuals per generation.

Increasing
individuals

Mean objective
value

Average
population Time (sec)

1 6.98 × 10−17 6.9 0.84
2 8.22 × 10−17 13.3 1.16
3 1.12 × 10−17 16.7 1.38

of objective value in ten independent runs. From Figure 7
and Table 3, we can observe that the convergence speed and
accuracy (in Table 3) of individuals combination strategies
with 𝛿

𝑚
= 0.1 and 𝛿

𝑚
= 0.01 have better results than

the strategy with 𝛿
𝑚

= 0.5. In Table 3, we consider the
computation time of each case; the computation time of the
strategy with 𝛿

𝑚
= 0.01 spends more time than the strategies

with 𝛿
𝑚

= 0.1 and 𝛿
𝑚

= 0.5. Therefore, we suggest the value
𝛿
𝑚

= 0.1.

Discussion (c): Threshold Value of Distance 𝑟
𝑚

for Similar-
ity Examination. Herein, we discuss the effect of distance
between individuals for individual combination by similarity
examination. Figure 8 and Table 4 show the comparison
result of different values of 𝑟

𝑚
(0.1, 0.05, and 0.01 of search-

ing space). The objective value comparisons using different
values of 𝑟

𝑚
are shown in Figure 8(a) and the variations

of the population size in evolutionary process are shown
in Figure 8(b). From Figure 8, we can observe that the
performance is almost the same after 35 generations. Com-
pared with the average population and computation effort
(computer time in second), the result of 𝑟

𝑚
= 0.1 × searching

Table 7:The comparison result of different algorithms for𝐷 = 10 in
1000 generations.

Test functions MABC ABC

𝑓
1

Mean 6.94 × 10−16 5.62 × 10−6

Run time (sec) 0.85 0.94

𝑓
2

Mean 1.49 × 10−9 2.26 × 10−5

Run time (sec) 0.95 0.94

𝑓
3

Mean 3.01 × 10−15 7.65 × 10−5

Run time (sec) 0.81 0.92

𝑓
4

Mean 5.73 × 10−6 1.14
Run time (sec) 0.93 0.97

𝑓
5

Mean 4.22 × 10−3 5.21
Run time (sec) 0.69 0.90

𝑓
6

Mean 1.17 × 10−17 3.28 × 10−11

Run time (sec) 0.9 0.90

𝑓
7

Results 0.33 0.62
Run time (sec) 1.0 1.9

𝑓
8

Mean 1.84 × 10−6 0.59
Run time (sec) 0.80 0.92

𝑓
9

Mean 1.25 × 10−8 1.60 × 10−3

Run time (sec) 0.89 0.94

𝑓
10

Mean 3.96 × 10−2 0.13
Run time (sec) 1.48 0.96

𝑓
11

Mean 4.18 × 10−15 5.34 × 10−10

Run time (sec) 1.64 1.41

𝑓
12

Mean 0.998 0.998
Run time (sec) 4.04 2.78

range has smaller average population and computation time.
Therefore, we choose 𝑟

𝑚
= 0.1 × searching range to be the

suggested value.

Discussion (d): Decreasing Number of Individuals per Gen-
eration for Population Management. As shown in Figure 4,
the decreasing individuals number is set to be the difference
between evolution update number and false searching num-
ber, that is, 𝑐𝑑−𝑐𝑖. Herein, we discuss the effect of the number
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Table 8:The comparison result of different algorithms for𝐷 = 30 in
5000 generations.

Test functions MABC ABC

𝑓
1

Mean 7.93 × 10−26 4.56 × 10−2

Run time (sec) 8.95 7.34

𝑓
2

Mean 1.14 × 10−17 0.18
Run time (sec) 8.72 7.86

𝑓
3

Mean 2.35 × 10−20 38.75
Run time (sec) 8.35 7.43

𝑓
4

Mean 3.37 × 10−8 6.44
Run time (sec) 8.84 7.71

𝑓
5

Mean 1.90 2.64 × 102

Run time (sec) 8.22 7.42

𝑓
6

Mean 1.55 × 10−29 6.63 × 10−8

Run time (sec) 10.92 12.63

𝑓
7

Results 0.35 0.90
Run time (sec) 11.39 14.5

𝑓
8

Mean 1.02 × 10−10 20.38
Run time (sec) 9.24 7.69

𝑓
9

Mean 3.28 × 10−14 1.32
Run time (sec) 12.15 7.86

𝑓
10

Mean 1.72 × 10−2 0.85
Run time (sec) 13.67 7.98

𝑓
11

Mean 4.86 × 10−30 2.30 × 10−3

Run time (sec) 28.42 12.67

𝑓
12

Mean 0.998 0.998
Run time (sec) 42.81 16.70

of decreasing individuals per generation for populationman-
ager. The comparisons using different number for decreasing
individuals per generation is shown in Figure 9. Figures
9(a) and 9(b) show the objective values and the variations
of population size, respectively. Table 5 also introduces the
comparison results of objective values, average population
size, and computation time. From Figure 9, we can observe
that using one decreasing individual and 𝑐𝑑 − 𝑐𝑖 decreasing
individuals have better results than the result of using three
decreasing individuals. Also shown in Table 5, the result of
one decreasing individual spends more time than the others.
Therefore, we suggest that using 𝑐𝑑−𝑐𝑖 decreasing individuals
can obtain good performance and less computational effort.

Discussion (e): Increasing Number of Individuals per Gen-
eration for Population Management. Similar to the discus-
sion above, we have a discussion about the number of
increasing individuals per generation. As shown in Figure 4,
when the false searching dominates the evolution, that is,
the number of false searching is greater than the update
number, an additional new individual is generated randomly.
The objective value comparisons using different number of
increasing individuals per generation are shown in Figure 10
and Table 6. Figures 10(a) and 10(b) show the convergent
trajectories and variations of population size using different
increasing number of individuals. Table 6 introduces the

comparison results of objective values, average population
size, and computation time. From Figure 10, we can observe
that the results are almost the same. In Table 6, using
one increasing individual spends less time than the others.
Therefore, we suggest that using one increasing individual can
obtain good performance.

According to the previous comparison and analysis, the
following presetting parameters are suggested to reach the
better results.

(1) The number of individuals to implement cooperative
strategy: 4.

(2) Merge threshold value: 𝛿
𝑚

= 0.1.

(3) Distance between individuals: 𝑟
𝑚
= 0.1 × searching

range.

(4) The number of decreasing individuals per generation:
𝑐𝑑 − 𝑐𝑖.

(5) The number of increasing individuals per generation:
1.

By using the above presetting parameters, the simulation
result is shown below. In order to verify the performance
of MABC algorithm, the comparison results with traditional
ABC algorithm are obtained. The population size of the
traditionalABCalgorithm is set as 20.The comparison results
for 𝐷 = 10 and 𝐷 = 30 are shown in Tables 7 and 8,
respectively. Table 7 shows the comparison results between
MABC and ABC. We can observe that the MABC algorithm
has better performance of accuracy than traditional ABC
for all test functions. On the other hand, the computer time
(computational effort) is greater than the ABC algorithm
since several strategies are adopted. However, due to the
populationmanager the computer time is not proportional to
the uses of additional strategies. According to the simulation
results of testing functions, the MABC algorithm has the
ability to find the global optimum. It is also valid for training
the fuzzy systems or neural networks for control application.

4. Application on Tracking Control of
Mobile Robot Systems

To illustrate the effectiveness of the proposed MABC algo-
rithm, here we consider the tracking control of mobile robot
system. The robot is controlled by two PID neural networks
which are trained by the proposed MABC algorithm.

In recent years, the path tracking control of mobile robot
has been discussed in many applications. Herein, we apply
the PIDNN controllers for path tracking of mobile robot.
The states of the mobile robot are represented by (𝑥

𝑐
, 𝑦
𝑐
, 𝜃
𝑐
),
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Figure 12: Control architecture: (a)MABC-based control structure for themobile robots system; (b) network diagram of PID neural network.
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Figure 13: Trajectory (𝑥, 𝑦) of mobile robot by the proposed
approach.

shown in Figure 11; the discrete-time model can be expressed
as

[
[

[

𝑥
𝑐 (𝑘 + 1)

𝑦
𝑐 (𝑘 + 1)

𝜃
𝑐 (𝑘 + 1)

]
]

]

=
[
[

[

𝑥
𝑐 (𝑘)

𝑦
𝑐 (𝑘)

𝜃
𝑐 (𝑘)

]
]

]

+

[
[
[
[
[
[
[
[

[

𝛿𝑑 (𝑘) × cos(𝜃
𝑐 (𝑘) +

𝛿𝜃 (𝑘)

2
)

𝛿𝑑 (𝑘) × sin(𝜃
𝑐 (𝑘) +

𝛿𝜃 (𝑘)

2
)

𝛿𝜃 (𝑘)

]
]
]
]
]
]
]
]

]

,

(10)

where 𝛿𝑑 = (𝑑
𝑅

+ 𝑑
𝐿
)/2 and 𝛿𝜃 = (𝑑

𝑅
− 𝑑
𝐿
)/𝑏 are

used as control inputs. Here, 𝑑
𝑅
and 𝑑

𝐿
denote the distances

traveled by the right and the left wheel, respectively. Also, 𝑏
is the distance between the wheels. The adopted controller
architecture based ondirect adaptive control scheme is shown
in Figure 12(a). In this architecture, PIDNNs play the roles of
controller to generate the proper control inputs 𝛿𝑑 and 𝛿𝜃,
respectively. The PIDNN

1
’s inputs are 𝑒

1
(𝑘), 𝑒
1
(𝑘 − 1), and

𝑒
1
(𝑘−2), where 𝑒

1
(𝑘) = √(𝑥

𝑟
(𝑘) − 𝑥

𝑐
(𝑘))2 + (𝑦

𝑟
(𝑘) − 𝑦

𝑐
(𝑘))2.

The PIDNN
2
’s inputs are 𝑒

2
(𝑘), 𝑒
2
(𝑘−1), and 𝑒

2
(𝑘−2), where

𝑒
2
(𝑘) = 𝜃

𝑟
(𝑘)−𝜃

𝑐
(𝑘).The network diagram of PIDNN system

is shown in Figure 12(b). The PIDNN’s output is

𝑢 (𝑘) = 𝑢 (𝑘 − 1) + 𝑘
𝐷 (𝑘) (𝑒 (𝑘) − 2𝑒 (𝑘 − 1) + 𝑒 (𝑘 − 2))

+ 𝑘
𝐼 (𝑘) 𝑒 (𝑘) + 𝑘

𝑃 (𝑘) (𝑒 (𝑘) − 𝑒 (𝑘 − 1)) ,
(11)

where 𝑘
𝑃
(𝑘), 𝑘

𝐼
(𝑘), and 𝑘

𝐷
(𝑘) are parameters of PIDNNs.

They are selected by MABC to minimize the tracking error.
To evaluate the performance, we define the objective

function for PIDNN
1
and PIDNN

2
as

𝑔
1
(𝑋
𝑖
)

= √(𝑥
𝑟 (𝑘 + 1) − 𝑥

𝑐 (𝑘 + 1))
2
+ (𝑦
𝑟 (𝑘 + 1) − 𝑦

𝑐 (𝑘 + 1))
2
,

𝑔
2
(𝑋
𝑖
) =

󵄨󵄨󵄨󵄨𝜃𝑟 (𝑘 + 1) − 𝜃
𝑐 (𝑘 + 1)

󵄨󵄨󵄨󵄨 .

(12)

The MABC algorithm for tuning the PIDNN controllers is
formulated in the form of

Minimize 𝑔
1
(𝑋
𝑖
) + 𝑔
2
(𝑋
𝑖
)

subject to 𝑋
𝑖
∈ 𝑆,

𝑆 = {𝑋
𝑖
= (𝑘
𝑃𝑖
, 𝑘
𝐼𝑖
, 𝑘
𝐷𝑖
) − 30 ≤ 𝑋

𝑖
≤ 30} .

(13)

As above, the MABC algorithm has the ability to select opti-
mal PIDNN controller parameters to minimize the tracking
error. To illustrate the effectiveness of PIDNN controller,
we consider the path tracking control of 8-shaped reference
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Figure 14: Control efforts of PIDNN controllers: (a) 𝛿𝑑 and 𝛿𝜃; (b) enlarged scale of the control efforts of PIDNN
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Figure 15: Variation of PIDNN’s parameters: (a) PIDNN
1
; (b) PIDNN

2
.

trajectory. Herein, we adopt the proposed MABC algorithm
for tuning the PIDNNs’ parameters and generate suitable
control action/signals. The 8-shaped reference trajectory is
shown in Figure 13. Figure 13 shows the reference 8-shaped
trajectory and the trajectory of mobile robot (blue: reference;
red: PIDNN with MABC’s result). From Figure 13, we can
observe that the PIDNNviaMABCalgorithmat initialization
(0, 1) can track the reference trajectory accurately. Figure 14
shows the control efforts of PIDNN controllers 𝛿𝑑 and 𝛿𝜃;
the enlarged scale for 𝛿𝜃 between 50 and 4000 time instants
is shown in Figure 14(b). Figure 15 shows the variation of
parameters of PIDNNs; there are six parameters to tune by
the proposed MABC algorithm. Obviously, it is feasible by
using PIDNN controllers in tracking control of mobile robot.
In addition, the adjustable parameters for controllers are few

and validated. In consideration of computational effort, the
average time for calculating new parameters is 0.015 seconds.
This also shows the effectiveness of the proposed approach.

5. Conclusion

In this paper, we have proposed the modified artificial bee
colony (MABC) algorithm for solving function optimization
problems and tracking control of mobile robot system.
Several strategies are developed to enhance the performance
and to reduce the computational effort of artificial bee colony
algorithm, such as elite, solution sharing, instant update,
cooperative strategy, and population management. The elite
individuals are selected as onlooker bees for preserving
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good evolution, and, then, onlooker bees with solution
sharing, employed bees with solution sharing, and scout
bees are operated. The instant update strategy provides
the newest information of solution for other individuals,
and the cooperative strategy improves the performance for
high-dimensional problems. In addition, the population
management is proposed to adjust population size per gen-
eration. Illustrated examples of optimization of test functions
are introduced to show that the proposed MABC method
has better result than traditional ABC. Finally, to illustrate
the effectiveness of the proposed MABC algorithm, the
MABC algorithm is applied on the tracking control of
mobile robot system. Simulation results are introduced to
show the effectiveness and performance of the proposed
approach.
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