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Combined Soret and Dufour effects on thermosolutal convection induced in a horizontal layer filled with a binary fluid and subject
to constant heat andmass fluxes are investigated analytically and numerically.The thresholdsmarking the onset of supercritical and
subcritical convection are predicted analytically and explicitly versus the governing parameters. The present investigation shows
that different regions exist in the 𝑁-Du plane corresponding to different parallel flow regimes. The number, the extent, and the
locations of these regions depend on whether SrDu > −(1 + Le2)/2Le2 = 𝑓(Le) or SrDu < −(1 + Le2)/2Le2. Conjugate effects of
cross-phenomena on thresholds of fluid flow and heat and mass transfer characteristics are illustrated and discussed.

1. Introduction

Great interest in the study of thermosolutal convection in
fluid and porous media has been motivated by its presence
in many engineering applications, such as in hydrology,
petrology, geophysics, and material processing technology
where melting and solidification of binary alloys are involved
[1]. More specifically, such flows are encountered in nature
(lakes, solar ponds, and atmosphere). In the industrial
field, examples include food processing, chemical processes,
crystal growth, energy storage, material processing, and
many other examples. Important experimental, analytical,
and numerical results on convective heat and mass transfer
are documented in earlier books of Nield and Bejan [2]
and De Groot and Mazur [3]. Most studies on this topic
are concerned with double diffusive convection in verti-
cal/horizontal cavities for which the flows induced by the
buoyancy forces result from the imposition of both thermal
and solutal boundary conditions on the vertical/horizontal
walls [4–6].

The diffusion of mass due to temperature gradient is
called Soret or thermodiffusion effect that often counts
among the main drivers of various convective phenomena
occurring within thermal stratifiedmedia. Recently, Rahman
and Saghir [7] proposed a detailed historical review of works,
focusing on different aspects of Soret effect. Examples of
interesting phenomena resulting from the coupling between
double diffusive convection and Soret effect are available in
the paper by Bourich et al. [8] who investigated analyti-
cally and numerically Soret-driven thermosolutal convection
within a shallow porous or fluid layer subject to a vertical
gradient of temperature, using a Brinkman-Hazen-Darcy
model in its transient form.The critical Rayleigh numbers for
the onset of subcritical, oscillatory, and stationary convection
were determined explicitly as functions of the governing
parameters for infinite and finite layers.

Generally, Soret and Dufour effects are assumed neg-
ligible in problems related to double diffusive convection.
However, such effects could be of significant effect when
density differences exist in the flow regime. In fact, energy
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flux can be generated by composition of gradients (Dufour or
diffusion-thermoeffect). Similarly, mass fluxes can be created
by temperature gradients (Soret or thermodiffusion effect).
In an earlier study, Malashetty [9] investigated the effect of
anisotropic thermoconvective currents, in the presence of
Soret and Dufour effects, on the critical Rayleigh number
for both marginal and overstable motions. Mortimer and
Eyring [10] used the elementary transition state approach
to obtain a simple model theory for the Soret and Dufour
effects. They found that the results of the theory conform
to the Osanger reciprocal relationship. Gaikwad et al. [11]
studied the onset of double diffusive convection in a two-
component couple stress fluid layer with Soret and Dufour
effects using both linear and nonlinear stability analysis. The
effects of Soret and Dufour parameters together with the
couple stress parameter on the stationary and oscillatory
convection are graphically illustrated and discussed. In the
presence of Soret and Dufour effects, Nithyadevi and Yang
[12] presented numerical results on natural convection in a
square enclosure filled with water, partially heated from one
vertical wall, and totally cooled from the opposite vertical
wall. The study was conducted around the maximum density
for three different combinations of the heating element
location. Makinde et al. [13] described a theoretical study
used to analyze the hydromagnetic flow and mass diffusion
of chemical reactive species with first- and higher-order
reactions of an electrically conducting fluid over a moving
vertical plate. The study was conducted in the presence of
Soret and Dufour effects with convective heat exchange at the
plate surface. Pal and Mondal [14] considered the problem
of steady laminar, hydromagnetic two-dimensional mixed
convection flow due to stretching sheet in the presence of
Soret and Dufour effects. Cheng [15] examined the Dufour
and Soret effects on the steady boundary layer flow due to
natural convection heat andmass transfer over a vertical cone
embedded in a porous medium with constant wall tempera-
ture and concentration. The results presented show that the
effects of Dufour and Soret parameters on the local surface
temperature are increased by increasing the Lewis number.
Tsai and Huang [16] investigated heat andmass transfer from
natural convection flow along a vertical surface with variable
heat fluxes embedded in a porous medium due to Soret and
Dufour effects. They concluded that Soret and Dufour effects
could play a significant role. Soret and Dufour effects have
been also considered by Hayat et al. [17] who studied mixed
convection boundary layer flow about a linearly stretching
vertical surface in a porous medium filled with a viscoelastic
fluid and, more recently, by Wang et al. [18] who studied the
onset of double diffusive convection in a horizontal cavity.

The main purpose of the present investigation is to
study analytically and numerically the combined effects of
Soret and Dufour parameters on double diffusive convection
developed in a horizontal layer filled with a binary fluid.This
paper is an extended version of preliminary results presented
in a conference [19]. Analytical predictions are developed
and validated numerically for shallow enclosures.TheDufour
parameter effects on thresholds of stationary convection,
subcritical convection, flow structure, and heat and mass
transfer are also discussed.

2. Mathematical Formulation

The system under study is a two-dimensional shallow cavity
of length 𝐿󸀠 and height 𝐻󸀠, filled with a binary fluid. The
vertical end-walls of the layer are adiabatic and impermeable
to mass transfer while its horizontal walls are subject to
uniformfluxes of heat, 𝑞󸀠, andmass, 𝑗󸀠.Theflow is assumed to
obey the Boussinesq approximation. Using the vorticity and
the stream function formulation and taking into account the
cross-phenomena (Soret and Dufour effects), the dimension-
less governing equations are obtained as follows:

1
Pr

[ 𝜕 (∇2𝜓)
𝜕𝑡 + 𝑢 𝜕 (∇2𝜓)

𝜕𝑥 + V
𝜕 (∇2𝜓)

𝜕𝑦 ]

= ∇4𝜓 − 𝑅𝑇 ( 𝜕𝑇𝜕𝑥 + 𝑁 𝜕𝑆𝜕𝑥 ) ,
(1)

𝜕𝑇𝜕𝑡 + 𝑢 𝜕𝑇𝜕𝑥 + V
𝜕𝑇𝜕𝑦 = ∇2𝑇 + 𝐷𝑢𝑁∇2𝑆, (2)

𝜕𝑆𝜕𝑡 + 𝑢 𝜕𝑆𝜕𝑥 + V
𝜕𝑆𝜕𝑦 = Sr𝑁 ∇2𝑇 + 1𝐿𝑒 ∇2𝑆, (3)

∇2𝜓 = −𝜁. (4)

The associated hydrodynamic, thermal, and solutal
boundary conditions are

𝑥 = ± 𝐴𝑟2 : 𝜓 = 0,
𝜕𝑇𝜕𝑥 = 0,
𝜕𝑆𝜕𝑥 = 0,

(5a)

𝑦 = ± 12 : 𝜓 = 0,
𝜕𝑇𝜕𝑦 = − 1 − 𝑁Du1 − LeSrDu

= −𝜑𝑇,
𝜕𝑆𝜕𝑦 = − 1 − LeSr/𝑁1 − LeSrDu

= −𝜑𝑆.
(5b)

The parameters governing the problem are the thermal
Darcy-Rayleigh number, 𝑅𝑇 = 𝑔𝛽𝑇Δ𝑇󸀠𝐻󸀠3/(�11]), the Pran-
dlt number, Pr = ]/�11, the Lewis number, Le = �11/�22,
the buoyancy ratio, 𝑁 = 𝛽𝑆Δ𝑆󸀠/(𝛽𝑇Δ𝑇󸀠), and the aspect
ratio of the cavity, 𝐴𝑟 = 𝐿󸀠/𝐻󸀠. The parameters Sr and Du
are, respectively, the Soret and Dufour parameters expressed
as Sr = 𝛽𝑆�21/(𝛽𝑇�11) and Du = 𝛽𝑇�12/(𝛽𝑆�11), with
�11 being the thermal diffusivity, �12 being cross-diffusion
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due to solute concentration component, �21 being cross-
diffusion due to temperature component, and �22 being
solute diffusivity.

In the presence of the cross-diffusion phenomena, the
Nusselt and Sherwood numbers are defined as follows:

Nu = 1Δ𝑇 + 𝑁DuΔ𝑆 ,
Sh = 1Δ𝑆 + ((Sr ⋅ Le) /𝑁) Δ𝑇 ,

(6)

where Δ𝑇 = 𝑇(0, −1/2) − 𝑇(0, 1/2) and Δ𝑆 = 𝑆(0, −1/2) −𝑆(0, 1/2) are the temperature and concentration differences,
evaluated at 𝑥 = 0 with the origin of the coordinate system
being taken at the center of the cavity.

3. Methods

3.1. Numerical Solution. The numerical solution of (1) to
(3) was obtained using a finite-difference method, described
in detail by Bourich et al. [8]. A second-order scheme
was used for the discretization of the spatial derivatives.
Equations (2)-(3) were marched in time using the Alter-
nating Direction Implicit (ADI) method. The stream func-
tion equation (4) was solved at each time step with the
Point Successive Overrelaxation (PSOR) method with an
optimum overrelaxation coefficient calculated for the used
grid. In addition, a convergence criterion was adopted for
the stream function to satisfy a variation by less than
10−5 for each time step. A second criterion ∑ ∑ |Γ𝑛+1𝑖,𝑗 −
Γ𝑛𝑖,𝑗|/ ∑ ∑ |Γ𝑛+1𝑖,𝑗 | ≤ 10−6 was used to check the conver-
gence of the numerical code. Here, Γ stands for any of
the variables 𝑇, 𝑆, or 𝜓. The superscripts 𝑛 and (𝑛 + 1)
indicate the iterations numbers, and the subscripts 𝑖 and𝑗 indicate locations in the grid system. For large aspect
ratio enclosures, nonuniform grid was used in the 𝑥-
direction near the short walls to capture the flow details
near the enclosures end-walls and also in the 𝑦-direction
to obtain a finer grid in the close vicinity of the horizontal
walls.

3.2. Analytical Solution. For a shallow enclosure with con-
stant heat and mass flux boundary conditions, an approxi-
mate analytical solution based on the parallel flow concept is
possible, which renders the problem amenable to a paramet-
ric study while retaining the essential physics of the problem.
The analytical solution is developed for steady-state flows
using the parallel flow approximation (see, e.g., Bourich et al.
[8]), which leads to the following simplifications (justified by
examining the streamlines, isotherms, and iso-concentration
lines obtained numerically). These simplifications lead to𝜓(𝑥, 𝑦) = 𝜓(𝑦), 𝑇(𝑥, 𝑦) = 𝐶𝑇𝑥 + 𝜃𝑇(𝑦), and 𝑆(𝑥, 𝑦) =𝐶𝑆𝑥 + 𝜃𝑆(𝑦), where 𝐶𝑇 and 𝐶𝑆 are, respectively, unknown
constant temperature and concentration gradients in the 𝑥-
direction (the direction of the long sides of the cavity). Using
these approximations together with the boundary conditions
(5a) and (5b), (1)–(3) reduceto a set of ordinary differential

equations for which the solution is obtained as follows:

𝜓 (𝑦) = 𝜓0 (4𝑦2 − 1)2 ,
𝑇 (𝑥, 𝑦)

= 𝐶𝑇𝑥 + 𝐶𝑇 − 𝐶𝑆Du𝑁Le
1 − LeSrDu

𝜓015 𝑦 [48𝑦4 − 40𝑦2 + 15]
− 𝜑𝑇𝑦,

𝑆 (𝑥, 𝑦)
= 𝐶𝑆𝑥 + 𝐶𝑆 − 𝐶𝑇Sr/𝑁

1 − LeSrDu
⋅ Le𝜓015

⋅ 𝑦 [8𝑦4 − 40𝑦2 + 15] − 𝜑𝑆𝑦,

(7)

where 𝜓0 is the stream function value at the midheight of the
layer, given by

𝜓0 = 𝑅𝑇384 (𝐶𝑇 + 𝑁𝐶𝑆) . (8)

The analytical expressions of 𝐶𝑇 and 𝐶𝑆 were deter-
mined by using thermal and solutal balances in the
layer, which leads to the following expressions:

𝐶𝑇 = − 815 𝜓0
⋅ 2𝑎𝜓02 (𝜑𝑇 + 𝜑𝑆𝑁Du) Le2 + 𝐴 (𝜑𝑇 − 𝜑𝑆Le𝑁Du)

(2𝑎𝜓02)2 + 2𝑎𝜓02𝐵 + 𝐴2 , (9a)

𝐶𝑆 = − 815 𝜓0
⋅ 2𝑎𝜓02 (𝜑𝑇 (LeSr/𝑁) + 𝜑𝑆) Le + 𝐴Le (𝜑𝑆 − 𝜑𝑇 (Sr/𝑁))

(2𝑎𝜓02)2 + 2𝑎𝜓02𝐵 + 𝐴2 , (9b)

where 𝑎 = 64/315, 𝐴 = 1−LeSrDu, and𝐵 = Le2+2Le2DuSr+1.
Introducing the expressions of 𝐶𝑇 and 𝐶𝑆 into (8) yields

a fourth-order polynomial in terms of 𝜓0 for which the
following solutions are obtained:

𝜓0 = 0,
𝜓0 = ∓ 12 [−𝑑1 ∓ √𝑑21 − 𝑑2]1/2 , (10)

with

𝑑1 = 1
2𝑎Le2 [𝐵 − 𝑅𝑇720 𝐹1] ,

𝑑2 = 1
𝑎2Le2 [𝐴2 − 𝑅𝑇720 𝐹2] ,

𝐹1 = Le (𝑁 + Le) ,
𝐹2 = 𝑁𝐶1 + 𝐶2,

(11)

where 𝐶1 = Du[Le(Sr − 1) − 1] + Le and 𝐶2 = SrLe[Le(Du −1) − 1] + 1.
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From a mathematical point of view, (10) may exhibit, in
addition to the rest state solution, two types of bifurcations
depending on the sign within the square root. Although
it should be mentioned that several numerical tests were
performed, only the solutions corresponding to positive sign
were obtained numerically. Hence, the convective solution
with the negative sign within the square root is termed
“unstable solution” and the convective solution correspond-
ing to positive sign within the square root is similarly
qualified “stable solution.”

The new expressions of Nusselt and Sherwood numbers
are obtained as follows:

Nu = 11 − (8/15) 𝜓0𝐶𝑇 ,
Sh = 11 − (8/15) 𝜓0Le𝐶𝑆 .

(12)

Foremost, it may be remarked from (10) that the parallel
flow solutions exist only when the following two conditions
are satisfied:

−𝑑1 ∓ √𝑑21 − 𝑑2 > 0,
𝑑21 − 𝑑2 > 0. (13)

The resolution of the inequalities of (13) is performed in
the𝑁-Du planewith Sr, Le, and𝑅𝑇 as parameters. Depending
of the sign of 𝐵 (parameter in the expression of 𝑑1 given
before), two main cases are possible.

3.2.1. The Parameter 𝐵 > 𝑂. This condition is satisfied if
SrDu > −(1 + Le2)/2Le2. Depending on the signs of 𝐹1 and𝐹2, four cases are to be distinguished.
Case 1 (𝐹1 ≤ 0 and 𝐹2 ≤ 0). For this case, 𝐹1 ≤ 0 ⇒ 𝑑1 ≥ 0
and 𝐹2 ≤ 0 ⇒ 𝑑2 ≥ 0, which means that the parallel flow
solution is not existing regardless the values of Sr, Le and𝑅𝑇. In Figure 1, the domain in the 𝑁-Du plane where the
convective parallel flow is not possible is denoted as region
1. This region is defined by 𝐹1 ≤ 0 and 𝐹2 ≤ 0.
Case 2 (𝐹1 ≤ 0 and 𝐹2 > 0). For this case, 𝐹1 ≤ 0 ⇒ 𝑑1 ≥ 0
and 𝐹2 > 0 ⇒ 𝑑2 < 0 for 𝑅𝑇 ≥ 𝑅𝑇𝐶 = 𝑅0(𝐴2/𝐹2). Thus,
the unstable solution is not possible and the stable solution
is possible only when 𝑅𝑇 exceeds the critical value 𝑅𝑇𝐶. The
convective flow bifurcates from the rest state through a zero
amplitude convectionwhich indicates that the solution corre-
sponds to a supercritical bifurcation.The critical value of 𝑅𝑇𝐶
represents the supercritical Rayleigh number, 𝑅sup

𝑇𝐶 , marking
the onset of the supercritical convection. The expression of
this threshold value is given by

𝑅sup
𝑇𝐶 = 𝑅0𝐴2𝐹2 . (14)

In Figure 1, the domain in the 𝑁-Du plane for which the
conditions of Case 2 are satisfied is denoted as region 2 and it
is defined by 𝐹1 ≤ 0 and 𝐹2 > 0.

Case 3 (𝐹1 > 0 and 𝐹2 > 0). For these conditions, the signs of𝑑1 and 𝑑2 depend on the Rayleigh number as follows:

𝑑1 ≥ 0 for 𝑅𝑇 ≤ 𝑅𝑇𝐶
1

= 𝑅0 𝐵𝐹1 ,
𝑑2 ≥ 0 for 𝑅𝑇 ≤ 𝑅𝑇𝐶

2

= 𝑅0𝐴2𝐹2 .
(15)

As a result, two subcases are to be considered.

Case 3.1 (𝑅𝑇𝐶
2

≤ 𝑅𝑇𝐶
1

). The development of the above
inequality leads to

𝐹3 = 𝑁 (𝐴2Le − 𝐵𝐶1) + 𝐴2Le2 − 𝐵𝐶2 ≤ 0. (16)

Note that, for 𝑅𝑇 ≤ 𝑅𝑇𝐶
2

, 𝑑1 ≥ 0 and 𝑑2 ≥ 0 which means
that there is no parallel flow solution. On the other hand, for𝑅𝑇 > 𝑅𝑇𝐶

2

, 𝑑1 ≥ 0 and 𝑑2 < 0 indicating the existence of a
supercritical bifurcation and the corresponding supercritical
Rayleigh number is given by (14).The domain corresponding
to these conditions in the 𝑁-Du plane is denoted region 3
in Figure 1. This region is defined by 𝐹1 > 0, 𝐹2 > 0, and𝐹3 = 𝑁(𝐴2Le − 𝐵𝐶1) + 𝐴2Le2 − 𝐵𝐶2 ≤ 0.

Even if regions 2 and 3 seem to have similar characteris-
tics, they are presented separately because they differ in terms
of some asymptotical behaviors at large values of 𝑅𝑇.
Case 3.2 (𝑅𝑇𝐶

2

> 𝑅𝑇𝐶
1

). For this case 𝐹3 = 𝑁(𝐴2Le − 𝐵𝐶1) +𝐴2Le2 − 𝐵𝐶2 > 0). Hence, for 𝑅𝑇 < 𝑅𝑇𝐶
1

, 𝑑1 ≥ 0 and 𝑑2 ≥ 0.
It follows that there is no parallel flow solution. For 𝑅𝑇𝐶

1

<𝑅𝑇 ≤ 𝑅𝑇𝐶
2

, 𝑑1 < 0 and 𝑑2 ≥ 0 which means that both stable
and unstable solutions are existing within this range of 𝑅𝑇.
The stable solution corresponds to a subcritical bifurcation,
which occurs through finite amplitude convection at a saddle
node point. The subcritical threshold, 𝑅sub

𝑇𝐶 , is given by

𝑅sub
𝑇𝐶

= 𝑅0 (𝐵𝐹1 − 2Le2𝐹2) + 2Le√𝐴2𝐹21 + Le2𝐹22 − 𝐵𝐹1𝐹2𝐹21 .
(17)

In addition, for 𝑅𝑇 > 𝑅𝑇𝐶
2

, 𝑑1 < 0 and 𝑑2 < 0 which
implies that the unstable solution disappears for this range of𝑅𝑇. The domain corresponding to these conditions in the 𝑁-
Du plane is termed region 4 in Figure 1.This region is defined
by𝐹1 > 0, 𝐹2 > 0, and𝐹3 = 𝑁(𝐴2Le−𝐵𝐶1)+𝐴2Le2−𝐵𝐶2 > 0.
Case 4 (𝐹1 > 0 and 𝐹2 < 0). For these conditions, 𝑑1 ≥ 0
for 𝑅𝑇 ≤ 𝑅𝑇𝐶

1

= 𝑅0(𝐵/𝐹1) and 𝑑2 ≥ 0 independently of the
values of the Rayleigh number. It follows that two subcases
are possible.

Case 4.1 (𝑅𝑇 ≤ 𝑅𝑇𝐶
1

). Note that, for this range of 𝑅𝑇, 𝑑1 ≥ 0
and𝑑2 ≥ 0whichmeans that there is no parallel flow solution.

Case 4.2 (𝑅𝑇 > 𝑅𝑇𝐶
1

). This condition is satisfied for 𝑑1 <0 and 𝑑2 ≥ 0. This means that both stable and unstable
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Figure 1: Regions corresponding to different bbehaviours for Sr = 0.1 and Le = 1.1.

solutions are existing for any value of 𝑅𝑇 greater than the
subcritical threshold, 𝑅sub

𝑇𝐶 , given by the same expression as
that for region 4. The corresponding domain in the 𝑁-Du
plane is termed region 5 in Figure 1 and it is defined by 𝐹1 > 0
and 𝐹2 < 0.
3.2.2. The Parameter 𝐵 < 𝑂. This inequality is satisfied for
SrDu < −(1 + Le2)/2Le2. For this case also, four cases are
possible depending of the signs of 𝐹1 and 𝐹2.
Case 1 (𝐹1 > 0 and 𝐹2 < 0). These conditions are the same
as those defining region 5. The corresponding domain in the𝑁-Du plane is termed region 5 in Figure 1 and it is defined by𝐹1 > 0 and 𝐹2 < 0.
Case 2 (𝐹1 > 0 and 𝐹2 ≥ 0). For these conditions, 𝑑1 < 0
independently of the values of the Rayleigh number and 𝑑2 ≥0 for 𝑅𝑇 ≤ 𝑅𝑇𝐶

2

= 𝑅0(𝐴2/𝐹2). This means that both stable
and unstable solutions are existing in this range for𝑅𝑇 ≥ 𝑅sub

𝑇𝐶 .
The supercritical threshold Rayleigh number is given by (17).
In addition, for 𝑅𝑇 > 𝑅𝑇𝐶

2

, 𝑑1 < 0, and 𝑑2 < 0 which implies
that the unstable solution disappears for this range of 𝑅𝑇.The

corresponding domain in the 𝑁-Du plane is termed region 4
in Figure 1, defined by 𝐹1 > 0 and 𝐹2 ≥ 0.
Case 3 (𝐹1 ≤ 0 and 𝐹2 ≥ 0). For these conditions, the signs of𝑑1 and 𝑑2 depend on the Rayleigh number as follows:

𝑑1 ≥ 0 for 𝑅𝑇 ≥ 𝑅𝑇𝐶
1

= 𝑅0 𝐵𝐹1 ,
𝑑2 ≥ 0 for 𝑅𝑇 ≤ 𝑅𝑇𝐶

2

= 𝑅0𝐴2𝐹2 .
(18)

Two subcases emerge from these conditions.

Case 3.1 (𝑅𝑇𝐶
2

≤ 𝑅𝑇𝐶
1

). This inequality is verified for 𝐹3 =𝑁(𝐴2Le−𝐵𝐶1)+𝐴2Le2−𝐵𝐶2 ≥ 0.Thus, for𝑅𝑇 ≤ 𝑅𝑇𝐶
2

, 𝑑1 ≤ 0
and 𝑑2 ≥ 0, which means that both stable and unstable
solutions are existing.Thebifurcation is of a subcritical nature
and the subcritical Rayleigh number is given by (17). For𝑅𝑇 >𝑅𝑇𝐶

2

, the unstable solution disappearswithin this range of𝑅𝑇.
The domain in the 𝑁-Du plane satisfying these conditions is
indicated by region 6 in Figure 1. This region is defined by𝐹1 ≤ 0, 𝐹2 ≥ 0, and 𝐹3 ≥ 0. It is to underline that, even if
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regions 5 and 6 seem to have the same characteristics, they
are presented separately because they differ in terms of some
asymptotical behaviors at large values of 𝑅𝑇.
Case 3.2 (𝑅𝑇𝐶

2

> 𝑅𝑇𝐶
1

). For this case, 𝐹3 < 0. Then, for 𝑅𝑇 <𝑅𝑇𝐶
1

, 𝑑1 ≥ 0 and 𝑑2 ≥ 0 and the parallel flow solution is
not existing. On the other side, for 𝑅𝑇 > 𝑅𝑇𝐶

2

, 𝑑1 ≥ 0 and𝑑2 < 0 indicating the existence of a supercritical bifurcation
and the corresponding supercritical Rayleigh number is given
by (14).The domain corresponding to these conditions in the𝑁-Du plane is termed region 2 in Figure 1 and it is defined by𝐹1 ≤ 0, 𝐹2 ≥ 0, and 𝐹3 < 0.
Case 4 (𝐹1 ≤ 0 and 𝐹2 ≤ 0). For this case, the inequality
SrDu < −(1 + Le2)/2Le2 is verified and there is no
corresponding domain in the 𝑁-Du plane.

In summary, the 𝑁-Du plane can be divided into five
regions for SrDu > −(1 + Le2)/2Le2 and into four regions
for SrDu < −(1 + Le2)/2Le2. In region 1, the parallel flow
is not possible while in regions 2 and 3, the only possible
flow is the supercritical stationary one. For the remaining
regions (regions 4, 5, and 6) both subcritical and supercritical
convections are possible.

4. Results and Discussion

4.1. Effect of Du and 𝑁 on Convection Thresholds. This
section is devoted to analyze the combined effects of the
Dufour parameter and the buoyancy ratio on thresholds of
convection. In addition, some interesting behaviors of the
fluid flow are illustrated and discussed.

The parameter Du represents the relative importance of
the cross-diffusion due to solute concentration component
with respect to that due to the thermal gradient. It could be
varied by changing the mass flux intensity or by considering
variousworking binary fluids. For a given𝑁, different regions
could be crossed in Figure 1 by incrementing Du, depending
on whether 𝑁 ≥ 𝑁Sup

𝐿 or 𝑁 < 𝑁Sup
𝐿 . The parameter 𝑁Sup

𝐿 is
calculated analytically and its expression is given by 𝑁Sup

𝐿 =−SrLe2/(Le(Sr − 1) − 1). The effect of Du on thresholds of
stationary convection is exemplified in Figures 2(a) and 2(b)
illustrating, respectively, the cases 𝑁 ≥ 𝑁Sup

𝐿 (case illustrated
with 𝑁 = 1.5, Le = 1.1, and different Sr) and 𝑁 < 𝑁Sup

𝐿
(case illustrated with 𝑁 = −1.5, Le = 1.1, and different Sr).
The value Le = 1.1 was chosen within the experimental range
of the Lewis number where both cross-phenomena of Soret
and Dufour effects are significant.

For 𝑁 ≥ 𝑁Sup
𝐿 , the threshold of stationary convection is

characterized by a decrease toward a minimum (well visible
in Figure 2(a) for the negative values of Sr but not visible
for the positive values of this parameter due to the restricted
range of Du). It is seen in Figure 2(a) that the threshold of sta-
tionary convection decreases first by increasing Du to reach
a minimum value at Du = Dumin and increases afterwards
quickly toward a vertical asymptote (infinite value) for Du =
Dusup𝐶 . However, for the positive values of Sr, the variations of

𝑅Sup
𝑇𝐶 versus Du are moderate for negative values of the latter

parameter.The increase of𝑅Sup
𝑇𝐶 accompanying the increase of

Du in its negative range is characterized by an augmentation
which becomes more and more slow by decreasing Sr within
its positive range. In the positive range of Du, the fast increase
toward the vertical asymptote is also observed for the positive
values of Sr.The critical value of Du leading to this asymptote
increases by decreasing Sr. For 𝑁 < 𝑁Sup

𝐿 , an opposite
behavior to that described in Figure 2(a) is observed. In fact,
an increase of Du from the limiting valueDusup𝐶 induces first a
sharp decrease of 𝑅sup

𝑇𝐶 from infinite toward a minimum value
obtained at Du = Dumin. Afterward, 𝑅sup

𝑇𝐶 increases slowly
(with different rates depending on Sr). These results show
that, for 𝑁 ≥ 𝑁Sup

𝐿 /(𝑁 < 𝑁Sup
𝐿 ), the Dufour parameter could

play a destabilizing effect if Du < Dusup𝐶 /(Dusup𝐶 < Du <
Dumin) or a stabilizing one if Dumin < Du < Dusup𝐶 /(Du <
Dumin). The analytical expressions of Dumin and Dusup𝐶 are,
respectively, given by

Dusup𝐶 = SrLe (Le + 1) − 𝑁Le − 1
SrLe (𝑁 + Le) − 𝑁 (Le + 1) ,

Dumin

= −LeSr (−2SrLe (Le + 1) + 𝑁 (2Le + 1) + Le + 2) − 𝑁 (Le + 1)
LeSr (LeSr (𝑁 + Le) − 𝑁 (Le + 1)) .

(19)

The Dufour effect on 𝑅Sub
𝑇𝐶 is illustrated for different

values of Soret parameter, Sr, for the three possible cases
(determined analytically) that lead to different behaviors
depending on the crossing region.Thus, Figure 3(a) illustrates
the case 𝑁Sub

𝐿 ≥ 𝑁 > −Le, Figure 3(b) illustrates the case 𝑁 >𝑁Sub
𝐿 , and the third case illustrated in Figure 3(c) corresponds

to 𝑁 ≤ −Le and Sr < Sr𝐶. The analytical expression of 𝑁Sub
𝐿

is given by

𝑁Sub
𝐿 = Sr ⋅ Le2

Le ⋅ (2 − Sr) + 2 . (20)

For the first case, Figure 3(a) shows that the subcritical
Rayleigh number, 𝑅Sub

𝑇𝐶 , decreases linearly by increasing Du
and vanishes when Du approaches a critical value 𝐷Sub

𝐶 .
This critical value of Du increases by the increase of Sr. For
the second case, Figure 3(b) indicates that the subcritical
convection starts from 𝐷Sub

𝐶 . More increase of Du from this
threshold leads to a linear increase of 𝑅Sub

𝑇𝐶 and stabilizes
more the system. Note that for the case of Figure 3(b), the
effect of Sr on 𝑅Sub

𝑇𝐶 is seen to be limited, but its effect of
the limit Dusub𝐶 is important. The analytical expression of
Dusub𝐶 is given by Dusub𝐶 = (2 + 𝛽1 ∓ √𝛽21 − 4𝛽2)/2SrLe,
where 𝛽1 and 𝛽2 are functions of the governing parameters.
The opposite tendencies observed by increasing the Dufour
parameter in Figures 3(a) and 3(b) are explained by the fact
that the increase of Du leads to the successive cross of regions
5 and region 4 in the case of Figure 3(a), while in the case of
Figure 3(b) it leads to the successive cross of regions 4 and
5. For 𝑁 ≤ −Le, the subcritical convection corresponding
to region 6 appears only for Sr < Sr𝐶 as shown in Figure 1.
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Figure 2

For this region, the subcritical convection starts from 𝐷𝑢𝑑
and increases linearly with Du inducing a stabilizing effect.
The Soret parameter has an important effect on the subcritical
Rayleigh number in this region as indicated in Figure 3(c).

The buoyancy ratio 𝑁 measures the relative importance
of solutal buoyancy force (due to combined contributions of
imposed flux of mass and Soret effect) and thermal buoyancy
force (induced by the imposed flux of heat andDufour effect).
It could be varied by changing the imposed flux of heat
and/or mass or by considering various fluids with different
properties.

The influence of the buoyancy ratio 𝑁 on the thresholds
of stationary convection𝑅Sup

TC is illustrated in Figures 4(a) and
4(b) for Le = 1.1 and various Sr. In Figure 4(a), Du = −1.5 to
illustrate the case Du < Dusup𝐿 , while in Figure 4(b) Du = 1.5
to illustrate the case Du ≥ Dusup𝐿 . As shown from Figure 4(a),
the evolution of 𝑅sup

𝑇𝐶 with 𝑁 changes drastically depending
on whether Du < Dusup𝐿 or Du ≥ Dusup𝐿 . For Du ≥ Dusup𝐿 ,
an increase of 𝑁 from a supercritical value 𝑁sup

𝐶 induces
a destabilizing effect characterized first by a sharp decrease
of 𝑅sup
𝑇𝐶 followed by a monotonous and moderate decrease.

The trend is inverted for Du ≥ Dusup𝐿 as it can be seen in
Figure 4(b). In fact, 𝑅sup

𝑇𝐶 increases first monotonously and
in a moderate way. A change in the tendency of the increase
occurs when the value of 𝑁 becomes close to a critical value𝑁sup
𝐶 , leading to a quick increase toward the infinite value of

the asymptote. For this case, it is clear that the increase of𝑁 has a stabilizing role. This behavior can be explained by
the fact that, for Du = −1.5, case corresponding to Du <
Dusup𝐿 , the increase of 𝑁 in Figure 1 leads to cross region 1
first which requires an infinite Rayleigh number to trigger
the flow. However, for Du = 1.5, case corresponding to
Du ≥ Dusup𝐿 , region 3 is crossed first, then region 1. The latter
corresponds to the case where the parallel flow is impossible,

which explains why an infinite Rayleigh number is required
to start the flow.The critical value𝑁sup

𝐶 can be calculated from
the following analytical expression:

𝑁sup
𝐶 = −SrLe (LeDu − Le2 − Le) + 1

Du (LeSr − Le2 − Le) + Le
. (21)

The expression of DuSup𝐿 is also calculated analytically to
obtain

DuSup𝐿 = − Le1 − Le (Sr − 1) . (22)

The evolution of the subcritical Rayleigh number, 𝑅Sub
𝑇𝐶 ,

versus 𝑁 is depicted in Figures 5(a) and 5(b). The case of
Du < Dusub𝐿 is illustrated in Figure 5(a) for Du = −1.5,
Le = 1.1, and different values of Sr. It is to note that, for
this case, the subcritical flow exists only for negative values
of 𝑁. By increasing 𝑁 from a subcritical value 𝑁sub

𝐶 , the
subcritical Rayleigh number 𝑅Sub

𝑇𝐶 undergoes a sharp decline
from its infinite value, indicating that the increase of 𝑁 has a
destabilizing effect. For this case, by increasing 𝑁, we cross
first region 1 (rest state region) in Figure 1 which explains
why an infinite Rayleigh number is required to start the flow
for 𝑁 = 𝑁Sub

𝐶 . The case Du ≥ DuSub𝐿 is exemplified in
Figure 5(b) for Du = 2, Le = 1.1, and different values of Sr.The
examination of this figure shows a big change in the behavior
compared with the first case illustrated in Figure 5(a). In fact,
for Sr = −0.8, an increase of𝑁 induces first an increase of𝑅Sub

𝑇𝐶

toward a maximum value and undergoes after that a decrease
in the remaining range of 𝑁. Note that, for Sr = 0.1, the fluid
remains at rest as long as 𝑁 < 𝑁Sub

𝐶 .
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The analytical expressions of 𝑁Sub
𝐶 and DuSub𝐿 are, respec-

tively, given by

𝑁SuB
𝐶 = 𝐵SrLe (LeDu − Le2 − Le) + 𝐵 − 𝐴2Le2

𝐴2Le − 𝐵Du (SrLe − Le − 1) − 𝐵Le ,

Dusub𝐶 = 2 + 𝛼1 ∓ √𝛼21 − 4𝛼2
2SrLe ,

(23)

where 𝛼1 = ((LeSr−Le− 1)(Le2+ 4Le+ 1) + 2SrLe3)/Le(2Le+2 − SrLe) and 𝛼2 = −(Le + 1)3(SrLe − 1)/Le(2Le + 2 − SrLe).

4.2. Effect of Du on the Flow Intensity and Heat and Mass
Transfer. In this subsection, the influence of theDufour effect
on the flow intensity and heat and mass transfer is examined.
The effect of Du on 𝜓0, Nu, and Sh is depicted in Figures
6(a)–6(c) for Le = 1.1, 𝐴𝑟 = 10, different values of Sr,
and two cases: 𝑅𝑇 = 2730 and 𝑁 = 1.2 (case I) and 𝑅𝑇 =889.3, 𝑁 = −1.2 (case II). The choice of these two cases
was dictated by the fact that, by varying Du, two types of
traversed regions are possible depending on whether 𝑁 ≥−Le (case I) or 𝑁 < −Le (case II). In these figures, it can
be seen that the numerical results are in excellent agree-
ment with the analytical ones corresponding to the stable
branches.
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For case I, both stable and unstable branches are existing
regardless of the Soret parameter. For the stable branch, the
evolutions of 𝜓0 and Nu versus Du are characterized by a
monotonous decrease (the decrease occurs with a higher rate
for the negative value of Sr) and vanishes when Du exceeds a
critical value Du𝑐 which depends on Sr. The unstable branch
exists only between two critical values of Du, that is, for
Du𝑢 < Du ≤ Du𝑐. Within this range of Du, the evolution
of 𝜓0 is characterized by an important increase toward a
maximum reached for Du = Du𝑐. This critical value Du𝑐
marks also the limit of the existence of the unstable branch.

This means that, before their disappearance, the unstable
solutions become identical to the ones corresponding to the
stable branches.

For case II, the evolutions of 𝜓0 and Nu versus Du
depend on the Soret parameter. In fact, for Sr = −1 (for
this value of Sr the corresponding regions in 𝑁-Du plane
are not presented here), both stable and unstable solutions
exist and the quantities 𝜓0 and Nu increase with Du to reach
a maximum and decrease afterward before vanishing. The
unstable branch exists for Du𝑢 < Du ≤ Du𝑐. For Sr = 0.1,
only the stable solution exists and the quantities 𝜓0 and Nu
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Figure 6

exhibit monotonous increases with Du. The dependence of
the flow intensity vis-à-vis Sr can be explained by the fact
that, by varying Du, the crossed regions are region 2 and then
region 6 for Sr = −1 while for Sr = 0.1 the crossed regions are
region 1 and then region 2. From these observations, we can

conclude that the Dufour effect enhances/reduces the flow
intensity and heat transfer for 𝑁 < −Le/𝑁 ≥ −Le.

The evolution of Sh versus Du exhibits a different
tendency in comparison with 𝜓0 and Nu. In fact, the Sh
variations with Du show similar tendencies independently of
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the crossed regions for both cases I and II and Sr = −1. For
this case, Sh varies slightly with Du. The behavior changes
for Sr = 0.1 since the evolution of Sh is characterized by a
monotonous increase with Du to reach a maximummarking
the limit of the stable branch. For case I, by increasing Du the
crossed regions are successively regions 3, 4, and 5 while for
case II the crossed regions are 2 (crossed first) and 6.

5. Conclusion

Thermosolutal natural convectionwithin a shallow fluid layer
subjected to vertical gradients of temperature and solute is
investigated analytically and numerically in the presence of
Soret andDufour effects.The analytical solution based on the
parallel flow assumption is found to be in good agreement
with the numerical solution based on a finite-difference
method used to solve the full governing equations in their
transient forms. In view of the results discussed, the main
conclusions are as follows:

(i) The thresholds of stationary and subcritical convec-
tions are derived analytically versus the governing
parameters.

(ii) We have demonstrated analytically that the plane 𝑁-
Du can be divided into different regions (up to six
regions) with specific flow regimes.

(iii) The number of these regions, their extension, and
their locations depend on whether the product
SrDu = 𝑓(Le) is lower or higher than−(1+Le2)/2Le2.

(iv) The influence of the Dufour effect on the thresholds
of stationary and subcritical convections may be sta-
bilizing or destabilizing, depending on the buoyancy
ratio and the Soret parameter.

(v) The important effect of the thermodiffusion and
diffusion-thermo on fluid flow and heat and mass
transfer characteristics is well demonstrated.

Nomenclature

𝐴𝑟: Aspect ratio of the enclosure (= 𝐿󸀠/𝐻󸀠)
Du: Dufour parameter (= 𝛽𝑇�12/𝛽𝑆�11)𝑔: Gravitational acceleration𝐻󸀠: Height of the enclosure𝐽󸀠: Constant mass flux per unit area𝐿󸀠: Length of the enclosure
Le: Lewis number (= �11/�22)𝑁: Buoyancy ratio (= 𝛽𝑆Δ𝑆󸀠/𝛽𝑇Δ𝑇󸀠)
Nu: Thermal Nusselt number𝑞󸀠: Constant heat flux per unit area
Pr: Prandtl number (= ]/�11)𝑅𝑇: Thermal Rayleigh number (= 𝑔𝛽𝑇Δ𝑇󸀠𝐻󸀠3/�11])𝑆: Dimensionless solute concentration (= (𝑆󸀠 − S󸀠0 )/Δ𝑆󸀠)Δ𝑆󸀠: Concentration solute difference (= 𝑗󸀠𝐻󸀠/�22𝜌𝐶𝑝)
Sr: Soret parameter (= 𝛽𝑆�21/𝛽𝑇�11)
Sh: Sherwood number

𝑇: Dimensionless temperature (= (𝑇󸀠 −𝑇󸀠0 )/Δ𝑇󸀠)Δ𝑇󸀠: Temperature difference (= 𝑞󸀠𝐻󸀠/�11𝜌𝐶𝑝)𝑡: Dimensionless time (= 𝑡󸀠/𝐻󸀠2/�11)𝑢: Dimensionless horizontal velocity(= 𝑢󸀠𝐻󸀠/�11)
V: Dimensionless vertical velocity(= V󸀠𝐻󸀠/�11)𝑥: Dimensionless distance along the 𝑥-axis (=𝑥󸀠/𝐻󸀠)𝑦: Dimensionless distance along the 𝑦-axis (=𝑦󸀠/𝐻󸀠)
Greek Symbols

𝛽𝑆: Solute expansion coefficient𝛽𝑇: Thermal expansion coefficient
�11: Thermal diffusivity
�12: Cross-diffusion due to 𝑆-component
�21: Cross-diffusion due to 𝑇-component
�22: Solute diffusivity𝜌𝐶𝑝: Heat capacity
]: Kinematic viscosity of the fluidΨ: Dimensionless stream function, Ψ󸀠/�11
Subscripts

𝑐: Critical value
0: Reference value.

Superscripts

󸀠: Dimensional variables
Sub: Subcritical
Sup: Supercritical.
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