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A newmultiscale implementation of nonlocal means filtering (MHNLM) for image denoising is proposed.The proposed algorithm
also introduces a modification of the similarity measure for patch comparison. Assuming the patch as an oriented surface, the
notion of a normal vectors patch is introduced. The inner product of these normal vectors patches is defined and then used in the
weighted Euclidean distance of intensity patches as the weight factor. The algorithm involves two steps: the first step is a multiscale
implementation of an accelerated nonlocal means filtering in the discrete stationary wavelet domain to obtain a refined version of
the noisy patches for later comparison. The next step is to apply the proposed modification of standard nonlocal means filtering to
the noisy image using the reference patches obtained in the first step.These refined patches contain less noise, and consequently the
computation of normal vectors and partial derivatives is more precise. Experimental results show equivalent or better performance
of the proposed algorithm compared to various state-of-the-art algorithms.

1. Introduction

Thephenomenon of image degradation is quite natural due to
the digitization and quantization processes in signal acquisi-
tion devices. Although various image denoising techniques
have been extensively studied and effectively employed in the
last two decades, the preservation of texture, edges, and fine
details during image denoising is an open problem and needs
rigorous treatment.

In advance of the nonlocal methodology, a variety of
variational [1–6] PDE [7–12] and wavelet based [13–16]
approaches were proposed for image denoising that rely
on the local features of image data. A major shift towards
nonlocal filtering was initiated by the usage of bilateral
filtering [17], which exploits spatial and intensity domains
for image denoising. In this approach, spatially proximate
pixels are given more weights in the similarity measure.
Later on, the wavelet-based BLS-GSM [18] method provided
the best results in terms of PSNR measure; however, these
denoised images contain ringing artifacts and have low visual
quality. More recently, Buades et al. [19] introduced nonlocal

means filtering for image denoising. Although the PSNR
of nonlocal means filtering was found to be less than the
wavelet-based BLS-GSM [18], the notion of the patch-based
approach combined with the idea of nonlocality has led
to an entirely new way of attacking the problem. Earlier,
approaches similar to nonlocal means were used for image
inpainting [20] and texture synthesis [21]. Ever since the
nonlocal means were proposed, more rigorous research for
better estimation of parameters or finding suitable similarity
measures has improved the performance of nonlocal means
filtering for a variety of noise models in various image
processing applications.

Kervrann et al. [22] provided a theoretical foundation
for an intuitive nonlocal means approach using Bayesian
statistics. In this approach, refined adaptive dictionaries
of similar patches are obtained using Bayesian estimation,
while the irrelevant patches are rejected. Afterwards, these
learned dictionaries are used for patch-based comparison
using a modified similarity measure. Elad and Aharon [23]
proposed learned dictionaries of patches usingK-means SVD
algorithm and then employed sparse representation using 𝐿

0

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 318341, 17 pages
http://dx.doi.org/10.1155/2015/318341



2 Mathematical Problems in Engineering

pseudonorm over the learned dictionaries for construction of
denoised image. Tasdizen [24] proposed using the similarity
of patches in the principal component analysis domain.
Extensive research in patch-based denoising has resulted in
state-of-the-art algorithms [25, 26]. Dabov et al. [25] achieved
enhanced sparsity for similar patches in the predesigned 3D
dictionaries like discrete cosine transform (DCT) or discrete
Haarwavelets transform.These dictionaries are separable and
can be extended from two-dimensional to three-dimensional
form using tensor product. Furthermore, Mairal et al. [26]
extended the dictionary learning approach [23] using 𝐿

1

norm for learning phase and 𝐿
0
pseudonorm for the final

construction phase. The major distinction between this
approach and [25] is the use of learning phase to construct
a dictionary rather than to use a predesigned dictionary. The
learned dictionary is developed either from the given noisy
image or from a database of patches extracted from large
collection of natural images.

Several attempts have been made to relate nonlocal
means filtering with the variational and PDE based image
denoising techniques. Gilboa and Osher [27] provided an
elegant interpretation of the nonlocal means approach as a
generalization of variational and PDE-based formulations.
Brox et al. [28] proposed a computationally efficient algo-
rithm for nonlocal filtering that arranged the data in a cluster
tree.This special arrangement further helps in preselection of
similar patches. Also, an iterative version of nonlocal filtering
based on the variational framework was suggested in [28].
Pizarro et al. [29] introduced a discrete version of variational
formulation that exploits the nonlocal data and smoothness
(NDS) constraints for a variety of generalized dissimilarity
measures defined on the space of image patches. This for-
mulation results in a new similarity measure that considers
not only the patch similarity of the two selected pixels but
also the similarity of the respective neighbors. Moreover, the
formulation emphasized the connection between diffusion
based approaches and NDS formulation. Yang and Jacob [30]
proposed a unified variational framework for nonlocal regu-
larization by introducing robust distance norm to determine
interpatch distances. Furthermore, by using this formulation
for inverse problems, theoretical justification is provided for
heuristic iterative nonlocal means approaches. Tschumperlé
and Brun [31] defined a patch space for implementing PDE-
based diffusion or smoothing process.

In addition to the photometric similarity, which is used
for patch-based comparison, the patches contain much more
information that requires the attention of researchers. With
this motivation, we propose the notion of a normal vectors
patch corresponding to each intensity patch. By employing
this new notion in the second step of our algorithm, we
achieve remarkably better results than most of the state-of-
the-art algorithms in the presence of moderate or severe
noise. Inspired by the special treatment of the central patch
in [32], we also employ a slightly higher weight than in
the standard nonlocal means approach. The weight value
in our approach is associated with the central patch empir-
ically through experiments. This modification has further
improved our results.

Earlier, Mahmoudi and Sapiro [33] have proposed the
average gradient orientation difference in combination with
nonlocal means filtering which seems to be similar to the
second step of our proposed method. However, the approach
of [33] significantly differs from the proposed approach due
to two main reasons. Firstly, for [33], the average gradient
information is employed only for preclassification of the
intensity patches to increase the computational efficiency of
standard nonlocal filtering without the modification of the
classical similaritymeasure.Whereas, the proposed approach
exploits the interactions of normal vectors patches for the
modification of the similarity weights without any preclassi-
fication step. Secondly, the average gradient orientations of
patches are used in [33] on the basis of the assumption that
the average gradient direction is expected to be similar in the
presence of additive white Gaussian noise.This assumption is
somewhat arguable in the presence of severe noise level.

The rest of the paper is organized as follows. A brief
review ofmethodologies used in this paper is provided in Sec-
tion 2. The new multiscale algorithm and its implementation
are explained in Section 3. Experimental results are described
and discussed in Section 4, and conclusions are drawn in
Section 5.

2. Preliminaries

2.1. Nonlocal Means Filtering. Consider a noisy gray-scale
intensity image

𝑢 = 𝑢
𝑜

+ 𝜐 (0, 𝜎
2I) , (1)

where 𝑢
0
is the true noise free image to be recovered, 𝜐

represents the zero mean additive white Gaussian noise of
known variance 𝜎

2 and I is the Identity matrix with the same
dimensions as those of the given image. Instead of the non-
local filtering, it is preferable to use the notion of semilocal
filtering. It was mentioned in [32] that considering the whole
image to search for similar patches has no major benefit,
with the exception of periodic or quasiperiodic images. Also,
searching the whole image for each pixel is computationally
too expensive. Therefore, in the rest of this paper, the term
nonlocal means refers specifically to semilocal filtering. The
nonlocal means filtering is defined [19] as follows:

𝑢nlm (𝑖) =
1

𝐾 (𝑖)
∑

𝑗∈Δ 𝑖

𝑤 (𝑖, 𝑗) 𝑢 (𝑗) , (2)

where 𝑢nlm(𝑖) denotes the denoised value at pixel location 𝑖

and𝑤(𝑖, 𝑗) is the weight obtained by determining similarity of
noisy intensity patches P(𝑖) and P(𝑗) around the central pixel
𝑖 and its neighboring pixel 𝑗, respectively, within the search
window Δ

𝑖
. The normalization factor is given by 𝐾(𝑖) =

∑
𝑗∈Δ 𝑖

𝑤(𝑖, 𝑗).
The weights, 𝑤(𝑖, 𝑗), are obtained using the Gaussian

weighted 𝐿
2
norm [19]:

𝑤 (𝑖, 𝑗)
𝑖 ̸=𝑗

= exp(−

󵄩󵄩󵄩󵄩P (𝑖) − P (𝑗)
󵄩󵄩󵄩󵄩

2

2,𝛼

ℎ2
) , (3)
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where 𝛼 is the standard deviation of Gaussian function to
consider the spatial proximity of the central patch and its
neighboring patches in the search window. The patches, in
the search window, spatially closer to the central patch are
assigned higher weights than those for the distant patches.
The nonlocal means approach involves three parameters: the
size of the patch P(𝑖), the size of the search window Δ

𝑖
, and

the filtering or smoothing parameter ℎ. Detailed discussions
on the suitable choices of these parameters can be found in
[32, 34].

Note that the similarity measure, given in (3), trivially
assigns the largest value of 1 to the patch when compared
to itself, so that the central patch has the weight 1 as ‖P(𝑖) −

P(𝑗)‖
2

2,𝛼
= 0 for 𝑖 = 𝑗. However, the weight value assigned to

the central patchmay not be reliable for the noisy image data.
To avoid this unreliable self-similarity weight, Buades et al.
[19] offered the maximum value of all the weights computed
for 𝑗 ̸= 𝑖 around the central patch for the center self-similarity
weight.The standard similarity measure can then be given by

𝑤 (𝑖, 𝑗) =

{{{

{{{

{

exp(−

󵄩󵄩󵄩󵄩P (𝑖) − P (𝑗)
󵄩󵄩󵄩󵄩

2

2,𝛼

ℎ2
) 𝑗 ̸= 𝑖

max
𝑘∈Δ 𝑖 ;𝑘 ̸=𝑖

{𝑤 (𝑖, 𝑘)} 𝑗 = 𝑖.

(4)

2.2. Accelerated Nonlocal Means Filtering. To increase the
computational efficiency of nonlocal means filtering, several
approaches [28, 33, 34, 36] have been introduced. Buades
et al. [34] suggested an accelerated version (block-based) of
nonlocal means algorithm that, instead of using the central
pixel, replaces the whole patch around the central pixel with
a weighted average of patches around the neighboring pixels
in the search window. Mathematically this filtering process is
defined as [34]

Pnlm (𝑖) =
1

𝐾 (𝑖)
∑

𝑗∈Δ 𝑖

𝑤 (𝑖, 𝑗)P (𝑗) , (5)

where the similarity measure, 𝑤(𝑖, 𝑗), is the same as defined
in (3). Finally, the pixel value at central location 𝑖 is recovered
by averaging all the resulting estimators (patches) containing
that pixel location. However, the cost for the computational
improvement of the accelerated nonlocal means is a slight
degradation in the visual quality of the denoised image.

Mahmoudi and Sapiro [33] proposed a fast implemen-
tation of nonlocal means filtering through preclassification
step to remove unrelated patches prior to the computation of
similarity weights. This preclassification step is implemented
on the basis of either the comparison of the local average gray
values computed from intensity patches or the comparison
of average gradients computed from the gradient patches. In
either case, due to the presence of noise, this preclassification
step is followed by thresholding process. Finally, the weights
are computed only with the preclassified patches. We employ
the block-based nonlocal means filtering [34] in the first step
of our algorithm exploiting its relative simplicity as compared
to other fast implementations.

2.3. Adaptive Similarity Measure Approaches. In this section,
we briefly discuss the recent approaches proposing effective
modifications to the similarity measure used in the clas-
sical nonlocal means filtering. For further details of these
modifications, we refer to [37, 38]. The weighted patch-wise
photometric distance between patches P(𝑖) and P(𝑗) can be
expressed in vectorial notation as

󵄩󵄩󵄩󵄩P (𝑖) − P (𝑗)
󵄩󵄩󵄩󵄩

2
= (P (𝑖) − P (𝑗))

𝑡G (P (𝑖) − P (𝑗)) , (6)

where G denotes a fixed diagonal matrix which contains
Gaussian weights. Despite the fact that the weighted 𝐿

2
norm

represented by weightmatrixG performs quite well, nonlocal
means filtering results in oversmoothing in a certain area
of a given image due to fixed weight matrix. One of the
most effective approaches to incorporate the locally adaptive
similarity weights is based on finding the local covariance
matrix.The locally adaptive photometric distance is therefore
defined as

󵄩󵄩󵄩󵄩P (𝑖) − P (𝑗)
󵄩󵄩󵄩󵄩

2
= (P (𝑖) − P (𝑗))

𝑡 C−1

P𝑗 (P (𝑖) − P (𝑗)) , (7)

where the CP𝑗 is the local covariance matrix for the patch
centered at pixel 𝑗. However, it is not possible to obtain
reliable covariance matrix from a single observation that
contains noise as well. In order to overcome this problem, a
certain redundancy in the given image is used as an implicit
prior which is generally true in case of natural images.
Exploiting this assumption, the noisy patches in the observed
image similar to the reference patch are sampled and grouped
to obtain an estimate of covariance matrix. Several methods
[35, 39, 40] have been proposed to obtain robust and reliable
estimates of locally adaptive covariance matrix which are
briefly described below.

Dabov et al. [39] proposed further enhancement for the
original BM3D method [25] by introducing shape adaptive
transform basis (BM3D-SAPCA) instead of fixed DCT or
wavelet transform basis. This shape adaptivity is achieved
by incorporating the following modifications. Firstly, the
shape adaptive 3D groups of patches similar to the reference
patch are constructed as described in [41]. Secondly, the local
covariance matrix is estimated from this group provided that
the number of similar patches is large enough to ensure the
reliable estimation of the local covariance matrix. Thirdly,
PCA transform is obtained by the eigen-decomposition of
the estimated covariance matrix and only those eigenvectors
are retained as principal components whose eigenvalues are
greater than a fixed threshold value. Next, the truncated PCA
transform is applied on the 3D group of the shape adaptive
patches with 1D orthogonal wavelet transform along the third
direction of the group. All the remaining process is same as
that of the original BM3D [25].

Zhang et al. [40] proposed LGP-PCA approach where
PCA is performed on the local covariance matrix estimated
by local pixel grouping (LPG) of the patches. Afterwards,
the linearminimummean square-error estimation (LMMSE)
technique is used for coefficient shrinkage in the PCA trans-
form domain obtained from diagonalization of the covari-
ance matrix. This approach is similar to BM3D-SAPCA [39]
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in the sense that it involves two steps denoising process.
However, in contrast to the BM3D, it does not depend on
basic estimate (oracle) obtained in first iteration. Recently,
Lebrun et al. [35] has proposed NL-Bayes algorithm tomerge
the Fourier transform domain like methods with Bayesian
framework. In this case, a reliable estimate of the covariance
matrix is obtained by applying Bayes’ rule for 3D groups
of noisy patches followed by MAP (maximum a posteriori)
estimation. The LPG-PCA method [40] can be realized as a
special case of this more general approach.

As will be described in the next section, the proposed
modification to the classical similarity measure significantly
differs from the above mentioned approaches. It assigns
the adaptive similarity weights based on the correlation
of normal vectors patches in addition to the similarity of
intensity patches. Also, unlike the above techniques, the
proposed approach does not apply 2D or 3D grouping of the
similar patches.

2.4. Discrete Stationary Wavelet Transform. Wavelets have
numerous applications, in particular, in signal and image
processing, thanks to the efficient time-frequency localiza-
tion andmultiresolution properties.The wavelet transform is
generated by the convolution integral with a wavelet 𝜓 which
defines a Riesz basis for 𝐿

2
(R) with a two parameter family

{𝜓
𝑗,𝑙

}
𝑗,𝑙∈Z, where

{𝜓
𝑗,𝑙

(𝑥) = 2
𝑗/2

𝜓 (2
𝑗
𝑥 − 𝑙)}

𝑗,𝑙∈Z
. (8)

The wavelet decomposition of 𝑓 ∈ 𝐿
2
(R) is given by

𝑓 (𝑥) = ∑

𝑗,𝑙∈Z

𝑑
𝑗,𝑙

𝜓
𝑗,𝑙 (𝑥) with 𝑑

𝑗,𝑙
= ⟨𝑓, 𝜓̃

𝑗,𝑙
⟩ , (9)

where 𝜓̃
𝑗,𝑙

is the dual wavelet to 𝜓
𝑗,𝑙
. For the orthogonal

wavelet case, 𝜓̃
𝑗,𝑙

= 𝜓
𝑗,𝑙
. The wavelet decomposition provides

the perfect reconstruction and multiresolution analysis of 𝑓,
as well. In the practical situation, 𝑓 is a signal with finite
resolution scale. In this case, the wavelet decomposition has
the following representation:

𝑓 (𝑥) = ∑

𝑙

𝑐
𝐽0 ,𝑙

𝜙
𝐽0,𝑙

+

𝐽

∑

𝑗=𝐽0

∑

𝑙

𝑑
𝑗,𝑙

𝜓
𝑗,𝑙

(𝑥)

with 𝑐
𝐽0,𝑙

= ⟨𝑓, 𝜙
𝐽0,𝑙

⟩ ,

(10)

where 𝐽 is the finest resolution scale determined by the size
of the signal 𝑓 and 𝐽

0
< 𝐽 is a chosen coarsest resolution

scale. Also, 𝜙 is the scaling function associated with the
wavelet 𝜓. The standard discrete wavelet transform (DWT)
decomposes a signal 𝑓 into low and high pass subbands. At a
given resolution scale 𝑗, (𝑐

𝑗,𝑙
) is the approximate (low-passed)

data and (𝑑
𝑗,𝑙

) is the detail (high-passed) data of 𝑓. For the
properties of the wavelet transform, we refer to [42].

The one-dimensional wavelet can be applied through
separable extension to obtain a two-dimensional wavelet.
One easy way to construct two-dimensional wavelet is to
use the tensor product of one-dimensional wavelet. In this

case, there are one scaling function 𝜙 and three kinds of
wavelet, 𝜓

𝑘
(𝑘 = 1, 2, 3): 𝜓

1, 𝜓
2, and 𝜓

3 are horizontally,
vertically, and diagonally oriented wavelets, respectively. For
a given image data 𝑢, the wavelet transform provides the
subband data through thewavelets and scaling function at the
resolution scale 𝑗 by

𝑊
𝑘

𝑗
(𝑢) = (⟨𝑢, 𝜓̃

𝑘

𝑗,𝑙
⟩) , 𝑘 = 1, 2, 3, (11)

𝑆
𝑗 (𝑢) = (⟨𝑢, 𝜙

𝑗,𝑙
⟩) . (12)

So, 𝑆
𝑗
(𝑢) represents the low-passed data and 𝑊

𝑘

𝑗
(𝑢) are high-

passed detail data: 𝑊
1

𝑗
(𝑢), 𝑊

2

𝑗
(𝑢), and 𝑊

3

𝑗
(𝑢) are horizontal

detail, vertical detail, and diagonal detail subband data,
respectively. Note that the standard DWT generates the
downsampled data due to low and high pass filtering followed
by the decimation in the nature of DWT. Also, even if
DWT has the perfect reconstruction property, it is not shift
invariant as the wavelet coefficients of the given data and its
shifted version may not be same [43]. So, the transformed
data loses some detail information.

To overcome this kind of disadvantage, the discrete
stationary wavelet transform (DSWT) was proposed [42, 43].
One of the main ideas of DSWT is to perform low and
high pass filteringwithout decimation. In this approach,mul-
tiresolution analysis is achieved by simply inserting zeroes
between every adjacent pair of the coefficients in low andhigh
pass filters associatedwith thewavelet.The insertion of zeroes
makes the dimensions of filters at the resolution scale 𝑗 same
as those at the resolution scale 𝑗+1. Subsequently, the DSWT
provides a redundant representation of a data so that the
resulting wavelet decomposition is overcomplete. We notice
the following advantages of the DSWT in the viewpoint of
image denoising.

(i) The redundant representation of data contains more
information than the case of nonredundant one.

(ii) The shift invariance representation has smooth reg-
ularity and also does not contain the error due to
downsampling.

(iii) The size of the subband data is same as that of the
input image data, so that the spatial information of
those data can be directly compared.

In the proposed method, we implicitly exploit these
advantages to obtain the similaritymeasure of normal vectors
patches. For our notational convenience, we will use the same
notation for DSWT as the case of DWT.That is, 𝑆

𝑗
(𝑢),𝑊𝑘

𝑗
(𝑢),

and 𝑘 = 1, 2, 3 are the subband data at the resolution scale 𝑗

generated by the DSWT.

3. The Proposed Algorithm

In this section, we adopt a hybrid approach to nonlocalmeans
filtering. Our scheme is composed of two steps, as shown in
Figure 1. In the first step, we apply the accelerated (block-
based) version in the wavelet transform domain to obtain
a predenoised image as shown in Figure 2. In the second
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Figure 1: Schematic depiction of the proposed nonlocal means filtering algorithm. Phase 1 image is obtained in the first step. Afterwards, in
the second step, phase 1 image is used in combination with the given noisy image to obtain a final denoised image.
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Figure 2: Schematic depiction of the first step of the proposed algorithm at the scale 𝑗 with 𝐽
0

≤ 𝑗 ≤ 𝐽.

step, we employ a modified version of conventional nonlocal
means filtering on the given noisy image. In this step, the
weights are computed using the predenoised image obtained
in the first step.

3.1. Multiscale Accelerated Nonlocal Means Filtering. Inspired
by various approaches [22, 23, 25], based on using prede-
noised images to obtain refined patches, we seek to obtain a
predenoised image in our approach. However, in contrast to
those techniques, we adopt a very simple approach as shown
in Figure 2. We first decompose the image 𝑢 using the two-
dimensional discrete stationary wavelet transform [43] with
a chosen coarsest level 𝐽

0
,

DSWT (𝑢) = (((𝑊
1

j ) , (𝑊
2

𝑗
) , (𝑊

3

𝑗
))

𝐽0≤𝑗≤𝐽
, (𝑆

𝐽0
)) 𝑢, (13)

where 𝑊
1

𝑗
(𝑢), 𝑊

2

𝑗
(𝑢), and 𝑊

3

𝑗
(𝑢) represent the horizontal,

vertical, and diagonal detailed data, respectively, obtained
with (11) at the scale 𝑗 with 𝑗 = 𝐽

0
, . . . , 𝐽. Also, 𝑆

𝐽0
(𝑢) is the

approximate data given by (12) at the coarsest resolution scale
𝐽
0
.

The accelerated (block-based) version of nonlocal means
filtering [34] is performed on each of the detail data 𝑊

1

𝑗
(𝑢),

𝑊
2

𝑗
(𝑢), and𝑊

3

𝑗
(𝑢) at each scale 𝑗. To be precise, the estimated

wavelet coefficients patch (or block) ŵ𝑘

𝑗
𝑢(𝑡) at location 𝑡 from

the detailed data 𝑊
𝑘

𝑗
(𝑢) is obtained by applying (5) as

ŵ𝑘

𝑗
𝑢 (𝑡) =

1

𝐾 (𝑟)
∑

𝑠∈Δ 𝑡

𝑤 (𝑡, 𝑠)w𝑘

𝑗
𝑢 (𝑠) , (14)

where the weights 𝑤(𝑡, 𝑠) are computed using wavelet coeffi-
cients patches w𝑘

𝑗
𝑢(𝑠) instead of using intensity patches P(𝑠)

in (4). Subsequently, the denoised wavelet coefficient 𝑤
𝑘

𝑗
𝑢(𝑡)

at central location 𝑡 is recovered by averaging all the resulting
estimated blocks containing that location. This process is
implemented on each detailed subband data independently
and finally the predenoised image is obtained using the
inverse discrete stationary wavelet transform. Thanks to
overcomplete, shift invariant, and sparse representation of
an image in the DSWT domain, the image can be efficiently
denoised using accelerated nonlocal means filtering without
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severe degradation of texture, edges, and fine details. This
predenoised image will further be used as a reference image
along with the given noisy image for computation and
comparison of normal vectors patches in the subsequent
section. It is worth noticing that several recent methods [44,
45] have implemented nonlocal means filtering in wavelet
domain for super-resolution of images and video sequences.

3.2. Normal Vectors Patches and Weight Factors. Assuming
the patches as surfaces, to each intensity patch of size 𝑚 × 𝑚

at pixel location 𝑖, we associate a normal vectors patch Ñ
𝑖

of size 2𝑚 × 2𝑚. In order to construct this normal vectors
patch, we first compute the gradient of the image at each
pixel location and then form the patches of horizontal and
vertical components of the gradient vectors around each pixel
𝑖.These partial derivative patches are denoted byN

𝑖,𝑥
andN

𝑖,𝑦
,

where the subscripts 𝑥 and 𝑦 represent partial derivatives in
the horizontal and vertical directions, respectively.The size of
N
𝑖,𝑥
andN

𝑖,𝑦
patches is the same as that of the intensity patch.

Definition 1. The normal vectors patch Ñ is defined as

Ñ ≡ (N
𝑥
)
𝑚×𝑚

⊕ (N
𝑦
)
𝑚×𝑚

= (
N
𝑥

O
O N

𝑦

)

2𝑚×2𝑚

, (15)

where ⊕ denotes the direct sum of matrices andO is the zero
matrix of size 𝑚 × 𝑚.

For a similarity measure between two normal vectors
patches Ñ

𝑖
and Ñ

𝑗
, we employ the inner product for square

real matrices induced by the trace as follows:

⟨Ñ
𝑖
, Ñ

𝑗
⟩ = tr (Γ

𝑖𝑗
) , (16)

where we set the matrix Γ
𝑖𝑗
as

Γ
𝑖𝑗

= Ñ𝑡

𝑖
Ñ
𝑗

= (N
𝑖,𝑥

⊕ N
𝑖,𝑦

)
𝑡

(N
𝑗,𝑥

⊕ N
𝑗,𝑦

)

= (N𝑡

𝑖,𝑥
N
𝑗,𝑥

⊕ N𝑡

𝑖,𝑦
N
𝑗,𝑦

) .

(17)

Recall that for square real matrices 𝐴 and 𝐵 with same
size, ⟨𝐴, 𝐵⟩ = tr(𝐴𝑡

𝐵) is a well-defined inner product.
The inner product defined above signifies the geometric
correlation between the central normal vectors patch Ñ

𝑖
at

central location 𝑖 and the neighboring patch Ñ
𝑗
at the position

𝑗 in the search window.The higher the absolute value of inner
product the more the similarity between the normal vector
patches and vice versa. In order to obtain the individual
normal vector in the neighboring patch that may have the
highest correlation with that of the central patch, we define
the diagonal matrix as follows:

Λ
𝑖𝑗

= diag (N𝑡

𝑖,𝑥
N
𝑗,𝑥

+ N𝑡

𝑖,𝑦
N
𝑗,𝑦

) . (18)

The maximum individual correlation, denoted by 𝜏
𝑖𝑗
, is

defined as

𝜏
𝑖𝑗

=
󵄩󵄩󵄩󵄩󵄩
Λ

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩∞
= max

1≤𝑝≤𝑚

𝑛

∑

𝑞=1

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑝𝑞

󵄨󵄨󵄨󵄨󵄨
, (19)

where ‖𝐴‖
∞

norm denotes the maximum of absolute row
sumof amatrix𝐴. Since thematrixΛ

𝑖𝑗
is the diagonalmatrix,

this norm yields the maximum absolute value of all diagonal
entries of Λ

𝑖𝑗
. In order to obtain the modified similarity

measure between normal vectors patches in the next section,
we define a weight factor as follows.

Definition 2. A weight factor 𝜂(𝑖, 𝑗) based on two normal
vectors patches Ñ

𝑖
and Ñ

𝑗
is defined as

𝜂 (𝑖, 𝑗)
𝑖 ̸=𝑗

= exp(−

⟨Ñ
𝑖
, Ñ

𝑗
⟩

𝜏
𝑖𝑗

(𝑚2 − 1)
)

= exp(−

tr (Γ
𝑖𝑗
)

𝜏
𝑖𝑗

(𝑚2 − 1)
) .

(20)

Remark 3. It can be easily verified that the weight factor 𝜂

satisfies the following properties to measure the similarity
between normal vectors patches.

(i) 𝜂(𝑖, 𝑗) > 0 ∀𝑗 ∈ Δ
𝑖
(Positivity).

(ii) 𝜂(𝑖, 𝑗) = 𝜂(𝑗, 𝑖) ∀𝑗 ∈ Δ
𝑖
(Symmetry).

(iii) 𝜂(𝑖, 𝑗) ≤ 𝑀 < ∞ ∀𝑗 ∈ Δ
𝑖
(Bounded).

It can be noticed that in case of more similar normal
vectors patches, tr(Γ

𝑖𝑗
)/𝜏

𝑖𝑗
(𝑚

2
− 1) is a large value resulting

in the small value of 𝜂(𝑖, 𝑗) and vice versa. The intuitive
motivation for introducing this factor is to acquire the degree
of similarity of the original intensity patches, based on the
similarity of the corresponding normal vectors patches, as
shown in Figure 3. Note that the weight factor involves the
computation of derivativeswhich is sensitive to the noise level
in the image. Since in the predenoised image obtained in the
first step, the noise level is much lower than in the given noisy
image, the computation of partial derivatives is more reliable.
Therefore, we use the weight factor in the second step of our
algorithm.

3.3. Modified Nonlocal Means Filtering. After obtaining pre-
denoised image as defined in Section 3.1, we perform the
modified version of standard nonlocal means filtering on
a given noisy image, based on the similarity of reference
patches from the predenoised image.

Definition 4. The modified similarity measure between dis-
tinct intensity patches P(𝑖) and P(𝑗) is defined as

𝑤 (𝑖, 𝑗)
𝑖 ̸=𝑗

= exp(−

󵄩󵄩󵄩󵄩P (𝑖) − P (𝑗)
󵄩󵄩󵄩󵄩

2

2
𝜂 (𝑖, 𝑗)

ℎ2
) , (21)

where the weight factor 𝜂(𝑖, 𝑗) is given in Definition 2.

It can be noticed that the Gaussian weight 𝐺
𝛼
in (3) is

replaced by the weight factor 𝜂(𝑖, 𝑗) obtained with (20). The
Gaussian weights were used to take into account the spatial



Mathematical Problems in Engineering 7

Neighboring intensity
patch

patch
Central intensity

Search
window

(a) Intensity based patches

normal vectors patch

W
eig

ht
 fa

cto
r

vectors patch

Search
window

̃ central normalNi

̃ neighboringNj

(b) Normal vectors patches

Figure 3: Schematic depiction for normal vectors patches, corresponding to the respective intensity patches, extracted from Barbara image.

proximity of the patches around the central patch. However,
the proposed weight factor is based upon the similarity or
correlation of the mean normal orientation of the central
patch with other patches in the search window. The smaller
the value of the weight factor 𝜂(𝑖, 𝑗), the higher the similarity
weight 𝑤(𝑖, 𝑗) assigned to the corresponding intensity patch
and vice versa.The proposed metric performs better than the
standard 𝐿

2
norm. This is due to the fact that the standard

metric, using spatial proximity weights, 𝐺
𝛼
, may assign a

small weight value to a distant but similar intensity patch in
the searchwindow.On the other hand, the newmetric assigns
more weight to the distant but similar intensity patch based
on the similarity of normal vectors patches.

Our second modification to standard nonlocal means
filtering is made in the assignment of self-similarity weight.
The standard nonlocal means method assigns the maximum
of all the computed weights as obtained in (4) for 𝑗 = 𝑖. This
choice of weight for self-comparison is intuitive and arbitrary.
Salmon [32] discussed various choices for assigning self-
similarity weight. One of the choices assumed was based on
Stein unbiased risk estimation (SURE) for the central patch
weight that does not affect the remaining similarity weights.
It has been shown in [32] that SURE choice of self-similarity
weight is at par with the arbitrary choice [19] for higher levels
of noise. However, we follow the approach adopted in [19]
with a little modification based on experimental results for
various arbitrary values. For low or medium noise levels in
the image, we assign a slightly higher self-similarity weight
than that in (4), that is, the proposed self-similarity weight is
defined by

𝑤 (𝑖, 𝑖) =
4

3
max

𝑗∈Δ 𝑖 ;𝑗 ̸=𝑖

{𝑤 (𝑖, 𝑗)} . (22)

The intuitive justification for assigning higher self-similarity
weight is based on the assumption that the low or medium
levels of noise do not produce a significance effect on self-
similarity. Therefore this choice yields slightly better results

for low levels of noise. However, for severe noise (𝜎 >

20), the performance of the self-similarity weights defined
in (4) and (22) is found to be the same. We use (22) in
our simulations for both the low and high levels of noise.
The second modification of self-similarity measure is then
optional.Thedistinction in visual appearancewith orwithout
this modification is imperceivable.

3.4. Summary of the Proposed Algorithm. The flow chart of
the proposed denoising algorithm is shown in Figure 4 and it
can be summarized as follows.

(i) Construct multiscale data in the wavelet domain by
decomposing the noisy image using discrete station-
ary wavelet transform up to the coarsest scale 𝐽

0
.

(ii) Perform the accelerated nonlocal means filtering on
the multiscale data, as described in Section 3.1, to
obtain the denoised wavelet transform components.

(iii) Reconstruct the predenoised image using inverse of
the DSWT. This image will be used as a reference in
the next step for patch-based comparison.

(iv) Denoise the given noisy image using the modified
nonlocal means filtering as proposed in Section 3.3.
The patch comparison is performed on the refined
patches obtained in the previous step.

3.5. Extension to Color Image Denoising. Although the pro-
posed algorithm is primarily designed for gray-scale images,
a possible extension to color images is also concerned here.
For this purpose, we consider a natural color image in 𝑅𝐺𝐵

color domain with additive i.i.d. zero mean Gaussian noise
and variances 𝜎

2

𝑅
= 𝜎

2

𝐺
= 𝜎

2

𝐵
= 𝜎

2 in each of 𝑅𝐺𝐵 channels.
Nonlocalmeans filtering can be extended in a straightforward
fashion to joint or simultaneous filtering of all color channels
without disturbing the inherent correlations of color chan-
nels. However, due to 2DDSWT transform in the first step of
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Figure 4: The flow chart of the proposed MHNLM algorithm. The given image is decomposed up to two scale levels using DSWT and
accelerated nonlocal means [34] is applied on the detail data (HL, LH, and HH) at each scale. Afterwards, the predenoised image is obtained
using IDSWT. Finally, the modified similarity measure based nonlocal means filtering is employed on the given noisy image using reference
normal vector patches extracted from the predenoised image.

the proposed algorithm, we follow the approach as described
in [25, 35, 41]. For the first step only,The given noisy image is
transformed to 𝑌𝑈𝑉 color domain using the transformation
defined by

𝐴
𝑌𝑈𝑉

= (

0.30 0.59 0.11

−0.15 −0.29 0.44

0.61 −0.51 −0.10

) , (23)

where 𝑌 denotes the luminance channel and 𝑈 and 𝑉

are two chrominance channels. The resulting channels are
sufficiently decorrelated. Further, due to this transformation,
the luminance channel has higher SNR than the other two
chrominance channels. The noise variances 𝜎

2

𝑌
, 𝜎

2

𝑈
, and 𝜎

2

𝑉

can be determined using the relation [41]:

[𝜎
2

𝑌
𝜎
2

𝑈
𝜎
2

𝑉
] = [𝜎

2

𝑅
𝜎
2

𝐺
𝜎
2

𝐵
] 𝑇, (24)

where 𝑇 denotes the transpose of 𝐴
𝑌𝑈𝑉

with element wise
square of its entries.

The first step of the algorithm, described in Section 3.1,
is applied to each channel independently. Consequently, a
predenoised image in𝑌𝑈𝑉 color space is transformed back to
original𝑅𝐺𝐵 color space. For the second step of the proposed
algorithm, let the normal vectors patch, Ñ

𝑖
, centered at pixel

𝑖 in 𝑅𝐺𝐵 color space be denoted by

Ñ
𝑖
:= {Ñ(𝑐)

𝑖
}
3

𝑐=1
, (25)

where the superscript 𝑐 = 1, 2, 3 denotes the individual
color channel 𝑅, 𝐺, 𝐵, respectively, and Ñ(𝑐)

𝑖
represents the

normal vectors patch in that color channel defined by (15).

The similarity of normal vectors patches, denoted by 𝑑
(𝑁)

𝑖𝑗
, is

performed jointly on all the color channels as

𝑑
(𝑁)

𝑖𝑗
=

1

3 (𝑚2 − 1)

3

∑

𝑐=1

⟨Ñ(𝑐)

𝑖
, Ñ(𝑐)

𝑗
⟩

𝜏
(𝑐)

𝑖𝑗

=
1

3 (𝑚2 − 1)

3

∑

𝑐=1

tr (Γ
(𝑐)

𝑖𝑗
)

𝜏
(𝑐)

𝑖𝑗

,

(26)

where Γ
(𝑐)

𝑖𝑗
and 𝜏

(𝑐)

𝑖𝑗
are defined for each channel using the

relations (17) and (19), respectively.Theweight factor, 𝜂
𝑖𝑗
, used

in the proposed similarity measure can then be obtained with

𝜂
𝑖𝑗

= exp (−𝑑
(𝑁)

𝑖𝑗
) . (27)

Finally, the modified photometric similarity measure can be
defined as

𝑤 (𝑖, 𝑗) = exp (−𝑑
2

𝑖𝑗
𝜂
𝑖𝑗
) , (28)

where 𝑑
𝑖𝑗
denotes the classical nonlocal means distance for

𝑅𝐺𝐵 color patches P(𝑖) and P(𝑗) given by

𝑑
2

𝑖𝑗
=

1

3

3

∑

𝑐=1

󵄩󵄩󵄩󵄩󵄩
P(𝑐) (𝑖) − P(𝑐) (𝑗)

󵄩󵄩󵄩󵄩󵄩

2

(ℎ(𝑐))
2

. (29)

4. Results and Discussion

4.1. Gray-Scale Image Denoising. To evaluate the results of
the proposed method, the benchmark gray-scale intensity
images of Lena, Barbara, Boats, Peppers, and House are
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considered. We use 9 × 9 patches, 15 × 15 search windows,
and ℎ = 6𝜎 as the filtering parameter in the first step. In the
second step, we select 7 × 7 patches with filtering parameter
ℎ = 4𝜎. The filtering parameter is empirically reduced to
4𝜎 from 6𝜎 to avoid the oversmoothing phenomenon. The
finest resolution scale for 512 × 512 gray-scale image is
𝐽 = 9. The proposed algorithm, denoted by MHNLM, is
compared with various state-of-the-art algorithms: those by
Dabov et al. [25] (BM3D), Lebrun et al. [35] (NL-Bayes),
Portilla et al. [18] (BLS-GSM), Buades et al. [19] (NLM),
Elad and Aharon [23] (K-SVD), and Kervrann et al. [22]
(BNLM) (Table 3). The denoising results for NL-Bayes and
the standard NLM methods are obtained using source codes
[46, 47], respectively.

4.2. Computational Complexity Comparison. In what follows,
we present the comparison of computational complexity
in terms of the number of operations required. In our
proposed algorithm, the computational time is proportional
to 𝑁

2
𝑛
2
𝑚
2
(1 + 3(𝐽 − 𝐽

0
)/𝑚

2
), where 𝑁

2, 𝑛
2, and 𝑚

2 are the
sizes of image, search window, and patch, respectively. The
first term in this expression refers to the number of operations
required in classical nonlocal means filtering. The second
term refers to complexity of the accelerated nonlocal mean
filtering on three detail subbands at each scale. The coarsest
level of multiscale decomposition in DSWT domain is 𝐽

0
= 7.

In our simulations, we employ biorthogonal spline wavelet
transform for DSWT decomposition.The time complexity of
the nonlocalmeans filtering is𝑁

4
𝑛
2 where the searchwindow

is set as the whole image. However, for semilocal version of
the standard NLM [19], compared here, the time complexity
is given by𝑁

2
𝑛
2
𝑚
2. In case of BNLM [22], the computational

time depends upon the sub-sampling size 𝐿 of the image
and is given by 𝑁

2
𝑛
2
𝑚
2
/𝐿

2. In the absence of sub-sampling
scheme (𝐿 = 1), the computational complexity of BNLM is
the same as that ofNLM. ForBM3D [25], the time complexity,
excluding the 3D transformation overhead, is given by 2(𝑛

2

1
+

𝑛
2
)𝑚

2
𝑁

2
/𝐿

2, where the sum, 𝑛2
1
+𝑛

2
represents the number of

operations required for grouping the patches in 3D transform
domain. The multiplication factor, 2, is used to indicate the
two step image denoising nature of BM3D algorithm. The
sub-sampling parameter, 𝐿 is the sliding window size used
for block matching and is set to 1 when the grouped patches
do not overlap. The computational complexity of NL-Bayes
[35] is similar to that of BM3D. This is due the fact that NL-
Bayes algorithm employs Bayes’ rule to the the 3D groups
obtained with BM3D approach. Finally, the computational
cost of K-SVD [23] is given by (4𝐾𝑚

2
𝐿 + 2𝐾(𝐿 + 𝑚

2
) +

𝐾
3
)𝑁

2 [48], where 𝐾 denotes the desired sparsity level and 𝐿

represents the number of atoms (columns) in the dictionary.
The remaining terms, 𝑚

2 and 𝑁
2 have the usual meanings

of patch and image size, respectively. Among all the methods
compared here, K-SVD algorithm is the most expensive due
to the sequential update of each of the 𝐿 atoms (columns)
in the dictionary. From the above analysis, it can be noticed
that the computational complexity of the proposed algorithm,

somehow, lies between those of the classical nonlocal means
filtering and BM3D.

4.3. Visual Quality Comparison. Here, we discuss and com-
pare the denoising capability of the proposed algorithm with
that of the above mentioned algorithms. The peak signal-
to-noise ratio (PSNR) is used for comparing the denoising
capability of each scheme. For an original gray-scale image
𝑢
𝑜
of size 𝑀 × 𝑁, let 𝑢̂ be the denoised image obtained as its

estimate using certain denoising algorithm.The PSNR is then
defined as

PNSR (𝑢̂)

= 10 log(
(255)

2

(𝑀𝑁)
−1

∑
𝑀

𝑖=1
∑
𝑁

𝑗=1
[𝑢

𝑜
(𝑖, 𝑗) − 𝑢̂ (𝑖, 𝑗)]

2
) .

(30)

Table 1 provides the PSNR comparison values for the above
cited approaches; the bold-faced values represent the best
performance among the last five columns. The results of
BM3D and NL-Bayes are quite competitive regardless of the
noise level and are better than the rest of the compared
algorithms. The reason for these outstanding results is the
enhanced sparse representation obtained with 3D transform
domain and collaborative filtering as discussed earlier. NL-
Bayes is similar to BM3D in its structure. However, it exploits
Bayesian framework rather than hard thresholding orWiener
filtering used in BM3D. For the rest of the algorithms, KSVD
performance is better when the noise level is low. On the
other hand, the proposed method yields better results in the
presence of moderate and severe noise (𝜎 ≥ 20). It can
be noticed that the results of the proposed algorithm are
always better than the classical nonlocal means filtering. Our
results can also be confirmed according to the average of the
performances at various noise levels. Table 2 indicates that, on
average, our algorithm outperforms KSVD, BLS-GSM, and
BNLM in the presence of moderate or severe noise. However,
the performance of the proposed method is slightly lower
than those of the KSVD, BLS-GSM, and BNLM for low level
of noise (𝜎 = 10) as depicted in Figure 8. Therefore, the
proposed algorithm is more suitable in the scenarios where
the noise levels are high.

Apart from the quantitative analysis with the PSNR
values, the quality of visual appearance for the test images
can also be assessed in terms of fine details and textures. For
instance, in case of Lena’s face shown in Figure 5(d) weak
fine marks on the chin are preserved at the moderate noise
level of 𝜎 = 20. Barbara image is a well-known example that
contains a lot of texture. As shown at the magnified scale in
Figures 6(d) and 7(d), our algorithm efficiently retains the
texture on the table cover, scarf, and chair. Similarly, the
noise free image of house, shown in Figure 7(e) contains
very fine regular pattern of bricks that is quite intermingled
with the noise. The proposed algorithm has managed to
recover the brick structure while removing the noise effec-
tively. Lastly, the boats image is the representative of the
benchmark images with very fine details, sharp edges, and
discontinuities. Although, our algorithm effectively removes
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Table 1: PSNR comparison of the proposed and various state-of-the-art algorithms for gray-scale images.

Image 𝜎 BM3D [25] NL-Bayes [35] GSM [18] NLM [19] KSVD [23] BNLM [22] MHNLM

Lena

10 35.93 35.88 35.61 34.35 35.47 35.25 35.40
15 34.27 34.02 33.90 32.10 33.70 33.68 33.93
20 33.05 32.88 32.66 31.56 32.38 32.63 32.75
25 32.05 31.89 31.69 30.44 31.32 31.55 31.76
50 28.86 28.83 28.61 27.35 27.79 27.51 28.47

Barbara

10 34.98 34.95 34.03 33.18 34.42 33.83 33.80
15 33.11 32.70 31.86 30.77 32.37 32.21 32.35
20 31.78 31.55 30.32 30.27 30.83 30.88 31.13
25 30.72 30.39 29.13 29.01 29.60 29.77 30.07
50 27.17 26.84 25.48 25.62 25.47 24.91 26.41

Boats

10 33.92 33.93 33.58 32.93 33.64 33.18 32.94
15 32.14 31.93 31.70 30.70 31.73 31.45 31.52
20 30.88 30.71 30.38 29.73 30.36 30.16 30.42
25 29.91 29.68 29.37 28.56 29.28 29.11 29.43
50 26.64 26.40 26.38 25.25 25.95 25.13 26.22

Peppers

10 34.68 34.77 33.77 33.51 34.28 33.87 33.53
15 32.70 32.53 31.74 31.07 32.22 32.06 32.03
20 31.29 31.31 30.31 30.04 30.82 30.75 30.82
25 30.16 30.16 29.21 28.68 29.73 29.77 29.78
50 26.41 26.49 25.90 24.17 26.13 23.84 26.28

House

10 36.71 36.18 35.35 34.91 35.98 35.67 35.78
15 34.94 34.33 33.64 32.70 34.32 34.23 34.23
20 33.77 33.33 32.39 32.43 33.20 33.24 33.11
25 32.86 32.48 31.40 31.18 32.15 32.30 32.15
50 29.37 29.04 28.26 27.62 27.95 27.64 28.38

Table 2: Average PSNR comparison for various noise levels.

𝜎 BM3D [25] NL-Bayes [35] GSM [18] NLM [19] KSVD [23] BNLM [22] MHNLM
10 35.24 35.14 34.47 33.78 34.76 34.36 34.29
15 33.43 33.10 32.57 31.47 32.87 32.73 32.81
20 32.15 31.96 31.21 30.81 31.52 31.53 31.65
25 31.14 30.92 30.16 29.58 30.42 30.50 30.63
50 27.69 27.52 26.93 26.00 26.66 25.81 27.15

the noise, very thin ropes and strings have not been fully
recovered. Moreover, at the magnified scale, there are very
weak oscillations across the sharp discontinuities such as
edges of ropes and rods. This oscillatory phenomenon may
be inherent to wavelet based filtering which we have used in
the first step of our algorithm.

An appropriate approach to ascertain the visual quality
is the method noise mechanism suggested by Buades et
al. [19]. The method noise is defined as the difference
between the given noisy image and its denoised version
which depicts the noise removed by a specific denoising
operator or algorithm. Buades et al. [19] emphasized that
the method noise should be as closer to random additive

noise as possible to justify the efficacy of certain denoising
algorithm. It provides a way to visualize fine geometrical
features or details such as texture and edges which may not
be preserved by certain denoising algorithm and may be
removed along with the noise. Unfortunately, due to complex
nature of several state-of-the-art algorithms compared here,
the closed form of mathematical description is difficult to
be obtained for the method noise comparison. Therefore the
method noise will be estimated using the difference images
only. It is worth noticing that the visual comparison of the
method noise mechanism relies on the suitable selection of
noise level of the additive white Gaussian noise. A reasonable
value of standard deviation of the noise is 5 or 10 as very
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(a) (b)

(c) (d)

Figure 5: (a), (b), (c), and (d) represent the magnified original, noisy (𝜎 = 20), predenoised, and denoised subimages from Lena image,
respectively.

(a) (b)

(c) (d)

Figure 6: (a), (b), (c), and (d) represent the magnified original, noisy (𝜎 = 20), predenoised, and denoised subimages from Barbara image,
respectively.
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Table 3: PSNR comparison of the proposed and various state-of-the-art algorithms for color images.

Image 𝜎 BM3D NL-Bayes NLM MHNLM

Lena

10 35.22 35.26 34.77 34.52
15 33.94 33.75 33.15 33.15
20 33.02 32.95 31.92 32.18
25 32.27 32.08 30.96 31.48
50 29.88 29.89 27.89 28.41

House

10 36.23 35.82 35.22 35.02
15 34.85 34.90 33.75 33.55
20 33.84 33.28 32.55 32.55
25 33.03 32.42 31.44 31.84
50 30.47 30.20 27.50 28.33

Peppers

10 33.78 33.92 33.74 33.20
15 32.60 32.60 32.28 32.27
20 31.83 31.84 31.24 31.27
25 31.20 31.10 30.35 30.66
50 28.93 28.98 27.14 28.02

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: Columns from left to right represent the magnified original, noisy (𝜎 = 20), predenoised, and denoised subimages from Barbara,
house, and boat images, respectively.
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Figure 8: Average PSNR versus noise level 𝜎 comparison of BM3D, NL-Bayes, GSM, NLM, KSVD, BNLM, and MHNLM.

nicely explained in [37]. This is due to the fact that when
the standard deviation of the additive noise is higher than
the image contrast, features even removed during denoising
process will not be perceivable as they may be buried in the
severe noise removed from the image. In such situation, the
empirical visual assessment of the method noise may not be
reliable.

The method noise of the BM3D [25], NL-Bayes [35],
and classical NL-means [19] are compared with that of the
proposed algorithm. Each of the gray-scale images of Bar-
bara, Lena, boats, and house is contaminated with additive
white Gaussian noise of standard deviation 𝜎 = 10. In
order to obtain proper visualization, the difference images
are rescaled as described in [37]. The method noise results
of the compared algorithms, including the proposed one, are
similar to the white Gaussian noise as shown in Figure 9.
In case of classical nonlocal means, the amplitude of the
noise removed is uniform all over the image regardless of
the structures like textures or edges present in the image as
can be seen in Figures 9(c), 9(g), 9(k), and 9(o). For the rest
of the algorithms, the amplitude of the removed noise varies
with the geometrical features of the underlying image. More-
over the magnitudes of those differences obtained through
classical nonlocal means are comparatively greater than the
respective results for the rest of the approaches. The method
noise result of the proposed algorithm is similar to those of
the BM3D and NL-Bayes as shown in Figure 9. It is worth
noticing that BM3D performs thresholding in 3D transform
domain and NL-Bayes exploits the Bayesian framework for
shrinkage of 3D groups of similar patches. In contrast to
those two approaches, the proposed algorithm does not
perform any thresholding. Instead, it applies the accelerated
version of the classical nonlocal means filtering on the 2D
transform domain. Even then, the noise method is much
similar to BM3D andNL-Bayes.This similarity of themethod
noise indicates that multiscale nonlocal means filtering in
transform domain is empirically equivalent to thresholding
or shrinkage in transform domain. Further, like BM3D and
NL-Bayes, magnitude of the noise removed by the proposed

algorithm depends upon the variation of geometry of the
underlying image. Due to this fact, the proposedmethod also
removes very fine and sharp discontinuities like thin ropes in
boat image as shown in Figure 9(l).

4.4. Color Image Denoising. To evaluate the results of the
proposed method for 𝑅𝐺𝐵 color images, we consider the
color images of Lena, House, and Peppers. In the first step
of the algorithm, we use 9 × 9 patches, 15 × 15 search
windows, and ℎ = 5𝜎 as the filtering parameter. In the
second step, we select 7 × 7 patches with filtering parameter
ℎ = 4𝜎. The search window size is selected as 15 × 15

for noise levels with 𝜎 ≤ 25 and is changed to 19 × 19

otherwise. The proposed algorithm (MHNLM) is compared
with various state-of-the-art algorithms: those byDabov et al.
[25] (BM3D), Lebrun et al. [35] (NL-Bayes), and Buades et al.
[19] (NLM).The denoising results for NL-Bayes and standard
NLM methods are obtained using source codes [46, 47],
respectively (Figure 10). The source codes are available at
the public domain IPOL. The PSNR for 𝑅𝐺𝐵 color images is
defined as
PNSR (𝑢̂)

= 10 log(
(255)

2

(3 |𝑋|)
−1

∑
3

𝑐=1
∑
𝑥∈𝑋

[𝑢
(𝑐)

𝑜 (𝑥) − 𝑢̂(𝑐) (𝑥)]
2
) ,

(31)

where 𝑐 = 1, 2, 3 corresponds to the color channel 𝑅, 𝐺, 𝐵,
respectively. Also, |𝑋| denotes the size of 2D image in the
individual channel and 𝑢

𝑜
and 𝑢̂ represent the original and

denoised 𝑅𝐺𝐵 color images, respectively.
The results of BM3D and NL-Bayes are almost similar

and clearly better than the proposed algorithm. Both the
algorithms exploit the 3D grouping strategy, which is not
employed in the proposed algorithm. Therefore, it would be
interesting to examine the combined effects of 3D collab-
orative filtering and normal vectors patch comparison on
denoising capability. For moderate and severe levels (𝜎 ≥ 20)
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(a) Barbara (b) (c) (d)

(e) Lena (f) (g) (h)

(i) Boat (j) (k) (l)

(m) House (n) (o) (p)

Figure 9: Columns from left to right represent difference of the noisy (𝜎 = 10) and the denoised images using BM3D [25], NL-Bayes [35],
NLM [19], and the proposed MHNLM algorithms, respectively. The rows from top to bottom indicate the results on the gray-scale images of
Barbara, Lena, boat, and house, respectively.

of noise, the proposed algorithm yields better results than
the classical nonlocal means in terms of PSNR. However,
in the presence of low noise (𝜎 ≤ 15) the performance
of the classical nonlocal means provides better results over
the proposed algorithm. The performance of the proposed
algorithm may be enhanced by certain modifications. For
instance, 3D grouping used in BM3D or NL-Bayes can be
combined with the proposed similarity measure.

5. Conclusions

A new definition of normal vectors patch is introduced
to acquire more information about the similarity of inten-
sity patches combined with a multiscale implementation of
the accelerated nonlocal means filtering. The experimen-
tal results demonstrate the effectiveness of the proposed
algorithmusing the notion of normal vectors patch. In future,
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(a) 𝜎 = 25 (b) 𝜎 = 25 (c) 𝜎 = 50

(d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n) (o)

Figure 10: In the first row, the noisy RGB color images of Lena, house, and peppers are shown from left to right with standard deviations
𝜎 = 25, 𝜎 = 25, and 𝜎 = 50, respectively. Columns from left to right in the remaining rows show the denoising results of BM3D [25], NL-Bayes
[35], NLM [19], and the proposed MHNLM algorithms, respectively.

we plan to extend this approach in 3D transform domain that
may achieve enhanced sparsity level to further improve the
image denoising capability.
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