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This paper presents a scalable dynamic load balancing scheme for a parallel front-tracking method based multiphase flow
simulation. In this simulation employing both Lagrangian and Eulerian grids, processes operating on Lagrangian grid are
susceptible to load imbalance due to moving Lagrangian grid points (bubbles) and load distribution based on spatial location
of bubbles. To load balance these processes, we distribute load keeping in view both current processor load distribution and bubble
spatial locality and remap interprocess communication. The result is a uniform processor load distribution and predictable and
less expensive communication scheme. Scalability studies on the Hazel Hen supercomputer demonstrate excellent scaling with
exponential savings in execution time as the problem size becomes increasingly large. While moderate speedup is observed for
strong scaling, speedup of up to 30% is achieved over nonload-balanced version when simulating 13824 bubbles on 4096 cores for
weak scaling studies.

1. Introduction

Multiphase flow in fluidmechanics refers to the simultaneous
flow of a mixture of materials with different chemical proper-
ties or different phases (e.g., solid, liquid, or gas). Phenomena
such as rainfall, floods, oil, and gas flow in pipelines, fog and
mist, water and steammixture in boilers and condensers, the
flow of toner in printers, and blood flow in blood vessels
are examples of multiphase flow to name a few. Given the
widespread prevalence of such processes, it is important to
study and accurately predict flow behavior of these processes
to better understand and, in the case of industrial processes,
to improve their efficiency and effectiveness [1]. Because of
the practical difficulties of performing experimental studies
on multiphase flows, computer simulation has become an
essential tool that can yield great insights into fluid flow
behaviors [2]. Various computationalmethods formultiphase
flow have been presented in literature including volume of
fluid [3, 4], phase field [5, 6], level set [7, 8] and front-
trackingmethod [9, 10].These techniquesmainly differ in the
treatment of boundary among fluids termed as interface or
front. The first three approaches discussed above are based
on front capturing method where the interface between
the fluids is implicitly represented as part of the structured

grid (Eulerian-Eulerian method) while the front-tracking
approach uses a separate unstructured grid for interface
representation and tracking (Eulerian-Lagrangian method).

For the purpose of accuracy and stability, both front
capturing and front-tracking methods require high spatial
and temporal resolution. From the perspective of computer
simulation, this means a higher computational requirement
and, in terms of computation time, a serial implementation
may not be practical in most cases.Therefore, most computa-
tional simulations of these methods are implemented in par-
allel. One of the parallel implementations of multiphase flow
based on front-tracking method is presented in [11]. Authors
parallelize both Eulerian and Lagrangian grid computations
with Lagrangian grid computations performed by a separate
group of processes. In their strategy, processes operating on
the Eulerian grid are termed as subdomain processes while
ones operating on the Lagrangian grid are called subfront
processes. While equally divided Eulerian grid parts are dis-
tributed among subdomains, the distribution of interfaces or
bubbles among subfront processes is based on spatial location
of bubbles in the Eulerian grid. Depending upon the initial
bubble placement and bubble movement during the course
of the simulation, each subfront process may not get the same
number of bubbles creating a load imbalance among subfront
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processes. In their parallelization strategy, a subfront process
communicates with a predetermined fixed number of subdo-
mains. We will refer to this strategy as fixed mapping strategy
in the subsequent discussions. The fixed mapping strategy
requires bubble data sharing among subfront processes for
the bubbles crossing the process boundaries. This introduces
additional communication among subfront processes and
makes an exact analysis of subfront-subfront communication
difficult.

This work is built upon the implementation discussed in
[11] with an emphasis on load balancing and devises a more
predictable communication scheme for subfront processes.
We distribute work among subfront processes based on the
output of a load balancing algorithm [12] and eliminate
bubble sharing among subfront processes. Contributions of
this work can be summarized as follows:

(i) We perform load balancing on subfront processes by
treating interface or bubble distribution problem (a
set of Lagrangian grid points) as a particle distribu-
tion problem (single point) for subfront processes.

(ii) We improve interprocess communication scheme
to incorporate adaptive subdomain-subfront mapping
replacing fixed mapping, which results in more pre-
dictable and less expensive subfront-subfront com-
munication.

(iii) We perform strong and weak scaling studies in a
realistic setting. For strong scaling, we obtain a 5%
speedup for adaptive over fixed mapping scheme
simulating 864 bubbles on 512 cores and for weak
scaling; we achieve up to 30% speedup over fixed
mapping simulating 13824 bubbles on 4096 cores.

In the rest of the paper, after discussing related work in
Section 2, we give an overview of communication over-
heads, load distribution, and load imbalance for the fixed
subdomain-subfront mapped simulation in Section 3. In
Section 4, we present our load balancing and the adaptive
subdomain-subfront mapping communication strategy fol-
lowed by a discussion on our strong and weak scaling results
in Section 5. Finally, we present our conclusions in Section 6.

2. Related Work

Applications that have an evolving geometry and movable
meshes are susceptible to load imbalance because of their
dynamic structure [13]. For multiphase flow simulations, a
number of load balancing strategies are proposed in the
literature. Watts et al. [14] presented the first effort for
dynamic load balancing of multiphase computations. Their
strategy is based on general load balancing model proposed
in [15] suitable for single-phase flow simulations. To make
it suitable for multiphase flows, they introduce the concept
of vector view of the load. In this methodology, load for
each phase is treated separately and load imbalance calculated
using modified load balance equations based on load per
phase. The rest of load balancing steps are treated same
as in [15] except for replacing scalar load quantities with
vector ones.They tested their technique on the Hawk particle

simulator [16] and Concurrent Graph Library for particle
simulations. In both cases, better application efficiency was
achieved with vector load balancing over the scalar load
balancing.

In the Large Eddy Simulation of multiphase flows for gas
turbines,Hamet al. [17] employedParMETIS [18] for dynamic
load balancing by stopping the simulation at a load imbalance
threshold, performing load balancing, and restarting the
application. They argue that simulation stop/start strategy is
feasible because of low overhead of restart time. They tested
their strategy for a small model particle cost distribution
only and have shown to achieve a theoretical speed up of
4x over nonload-balanced version.They, however, admit that
the multiconstraint options used in ParMETIS partitioning
increase edge cuts and may reduce performance in real
applications.

In [19], Borrell et al. presented their parallel implementa-
tion of the volume of fluid (VOF) method with dynamic load
balancing. In VOF, load imbalance occurs due to the non-
homogeneous distribution of interface in the domain. They
devise a five-step procedure for load balancing constituting
load imbalance determination, interprocess communication
scheme determination, load distribution to under loaded
tasks, computation, and finally collection of results by the
parent tasks.Their load balancing version is shown to outper-
form the standard version by a speedup of 3x. Another VOF
based parallel simulation by Agbaglah et al. [20] uses octrees
to refine grid at point of interests and devise a strategy to han-
dle processor load imbalance resulting due to grid adaptivity.
They argue that good initial partitioning can be achieved in
practice using a heuristic bubble partitioning algorithm.Hav-
ing obtained good initial load partitioning, they use weighted
graphs to move load among processors to keep load balanced
and to minimize interprocessor communication. Both of
these implementations deal with single type ofmesh. Arguing
that VOF method is not well suited for implementation on
modern GPU accelerators, Ikebata and Xiao [21] devised
a new multiphase flow computational model that is easily
portable and reasonably scalable on modern GPUs. Their
method is based on front capturing method and the imple-
mentation employs nonconformal domain decomposition
to improve load balancing and computation time. For data
parallel implementations of simulations like multiphase flow,
Aldinucci et al. [22, 23] presented a framework for simplifying
the implementation and increasing portability and scalability
of such applications on heterogeneous platforms (CPUs +
GPUs).

In [24], Houzeaux et al. proposed dynamic load bal-
ancing for particle flow through fluids using dynamic load
balancing library [25]. The library requires the use of hybrid
programming model (MPI + OpenMP). Load balancing
is achieved by relinquishing resources of a blocked MPI
process and using them instead for spawning more OpenMP
threads for another process on the same node increasing
application parallelism.They achieved a speedup of up to 3.5x
for 10M particles simulation and up to 1.5x for 0.5M particle
simulation. This technique, however, has the limitation of
using hybrid programming model and of providing implicit
load balancing for processes residing on the same node only.
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(a) 2D representation of 3D Eulerian and Lagrangian grids
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(b) Multiple Lagrangian grid interfaces in 3D domain. Lagrangian grid is
comprised of triangular elements as depicted

Figure 1: Eulerian and Lagrangian grids.

(a) Separation of Eulerian (left) and Lagrangian (right) grids into
separate computational units

(b) Subdivision of domain and front into subdomains and subfronts.
Similarly colored subfronts and subdomains are mapped to each other

Figure 2: Parallelism in fixed mapping front-tracking multiphase flow simulation.

The previous work on load balancing multiphase flow
simulations has mostly focused on either load balancing
particles or front capturing methods employing single grid
for the treatment of interface. In this work, we focus on
front-tracking method employing two grids for treating fluid
and interface separately (Eulerian-Lagrangian) and balance
processes for the Lagrangian grid.We develop necessary data
structures and communication strategy for dynamic load
balancing of Lagrangian grid processes.

3. Multiphase Flow Simulation

Before discussing contributions of this study, it is pertinent
to give an overview of the existing front-tracking simulation
based on [11]. This simulation is a parallel implementation of
front-tracking method developed by Unverdi and Tryggva-
son [26].Themethod solves governing flow equations for the
entire domain by appropriately taking into account material
properties like density and viscosity and properly treating
interfacial surface tension. Both Eulerian and Lagrangian
grids are employed for this purpose. While flow equations
are solved on the stationary Eulerian grid, boundary or
interface among different materials/fluids is tracked with a
movable Lagrangian grid. A 2D depiction of a rectangular

Eulerian grid andLagrangian grid is shown in Figure 1(a).The
Lagrangian grid for interface representation uses triangular
mesh with each element represented by three vertices as
depicted in Figure 1(b).

The parallel simulation logically incorporates three levels
of parallelism. At the first level, computations of the Eulerian
grid (referred to as Domain) and Lagrangian grids (referred
to as Front) are separated into distinct computational units.
At the second level, both domain and front are further sub-
divided into subdomains and subfronts with each subdomain
and subfront handled by a separate MPI process. At the
third level, each process employs OpenMP multithreading
wherever possible. The first two levels of parallelism are
depicted in Figure 2. This separation and subdivision into
processes, however, necessitates interprocess communication
due to process interdependencies. A brief overview of inter-
process communication is presented in the next subsection. A
comprehensive explanation of interprocess communication
can be found in [11].

3.1. Interprocess Communication. Three types of communi-
cation are introduced as a result of parallelization, namely,
(1) subdomain-subdomain, (2) subdomain-subfront, and (3)
subfront-subfront. Most computations on the Eulerian grid
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are stencil computations requiring exchange of ghost cell
data among neighboring subdomain processes, thus resulting
in subdomain-subdomain communication. This communi-
cation has the highest cost compared with the other two.
However, as the number of ghost cells exchanged in each
iteration is fixed, the communication cost is fixed.

To update the location of interfaces in the simulation
domain, subfront processes need to send interface data to
subdomain processes and collect updated data back resulting
in subdomain-subfront communication. Each subfront is
mapped to one or more subdomain processes based on input
process configuration and spatial location of subdomains.
This mapping is done based on input file provided to the sim-
ulation by the user. Once initially done, the subdomain(s)-
subfront mapping remains fixed throughout the course of
the simulation. Subsequently, the subdomains exchange data
with their mapped subfront only. One of the many possible
mapping configurations is depicted in Figure 2, where a
subfront is mapped to two subdomains. In terms of commu-
nication cost volume, this type of communication ranks as
the second highest. The amount of data exchanged between
subfront and its mapped subdomains depends upon the
number of interfaces or bubbles contained by the subfront.
As the number of interfaces within subfront may vary during
the course of the simulation, this type of communication is
variable.

Due to parallelization of the front, computations on
bubbles are divided among subfront processes. This division
of work depends upon the spatial location of bubbles in the
Eulerian grid and may result in a bubble shared by multiple
subfront processes. A bubble may be shared between as few
as two and as many as eight subfronts. Once computations
are performed on a bubble, bubble data needs to be sent to
the appropriate subdomain(s) for position update. However,
due to fixed subdomain-subfront mapping, owner subfront
cannot directly send shared bubble data to the subdomain(s)
other than the ones it is mapped to. Moreover, as the
bubbles move in the spatial domain during the course of
the simulation, a bubble’s center may fall into the purview
of a different subfront. This bubble movement from one
subfront to another initiates ownership transfer from the
previous owner to the new one. In ownership transfer, all
bubble data is sent from the previous owner to the new
owner subfront resulting in another type of subfront-subfront
communication.

The number of subfronts sharing bubbles and number
of bubbles requiring ownership transfer may vary during
the course of the simulation, which makes it difficult to
approximate subfront-subfront communication. One of the
contributions of this study is to make subfront-subfront
communication more predictable.

3.2. Load Distribution. Subdomain processes are mainly
responsible for two types of computations. Firstly, they solve
flow equations on the Eulerian grid and secondly they update
the spatial position of bubble points lying in their jurisdiction
as received from subfront processes. Owing to the domain
parallelization strategy, distribution of Eulerian grid points

Subdomain processes

End domain

Subfront processes

Initialize front and
assign bubbles

Front calculations

Exchange shared
bubble data (intrafront)

Send bubble data to
domain

Receive updated bubble
data from domain

Exchange shared
bubble data (intrafront)

More front calculations

End front

Initialize domain

Domain calculations

Receive bubble data
from front

Update bubble’s position

Send updated bubble
data to front

More domain
calculations

Figure 3: Simplified flow chart of fixedmapping parallel multiphase
flow simulation. Black arrows indicate interprocess communication.

across subdomain processes is uniform. This implies that
Eulerian grid computations across subdomain processes
are fixed and, therefore, these processes are load-balanced
with respect to Eulerian grid computations. The number of
bubble points requiring position update is dependent upon
spatial bubble distribution in the domain. This means that
subdomain computational load for Lagrangian grid position
update is variable across subdomains during the course of
simulation.

Subfront processes are responsible for computations on
the Lagrangian grid (e.g., calculating interface surface tension
and interface surface normal). In the fixed subdomain-
subfront mapping strategy, because the bubble point assign-
ment to subfronts is based on spatial location of bubbles,
subfront processes may get variable computational load
resulting in load imbalance. This imbalance may get severe
in the case of a large number of bubbles accumulating in
subdomains mapped to only a few number of subfronts. The
load balancing strategy devised in this workmainly addresses
this type of imbalance as discussed in Section 4.

3.3. Program Structure. Figure 3 shows the simplified flow
chart of subdomain and subfront processes, their intercom-
munication (subdomain-subfront) and intracommunication
(subdomain-subdomain, subfront-subfront). The two sets of
processes operate in parallel and synchronize at the end of
each communication type. Each process starts with process
initialization and performs computations on its respective
Eulerian or Lagrangian grid. After initial bubble assignment,
a subfront process sends bubble data to its mapped domains
by exchanging shared bubble data among sharer subfronts
(intrafront communication) and forms a single data packet
for each mapped domain. On the other hand, subdomain
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processes perform ghost cell exchange for stencil compu-
tations. This is followed by subdomain processes receiv-
ing bubble data from mapped subfront, updating bubble
position and other parameters, and sending updated data
back to respective subfronts. Finally updated bubble data
is exchanged among sharer subfronts and then two sets of
processes continue with their respective grid computations.
This process repeats until a specified number of iterations
have been achieved. All the communications are nonblock-
ing employing communication and computation overlap as
much as possible.

4. Load Balancing

For parallel computing systems, load balancing is an impor-
tant consideration for efficient resource utilization and per-
formance. Depending upon the type of parallel application,
various load balancing strategies are available in literature.
Formesh-based applications likemultiphase flow simulation,
graph-based and geometric partitioners are commonoptions.
These partitioners can be used for both static load balancing
in which average system behavior is used to make load bal-
ancing decision or dynamic load balancing in which current
system state dictates load balancing output. Geometric meth-
ods partition data based on the spatial locality of data objects.
These methods use physical coordinates and weights of the
objects tomake partitioning decisions.Graph-basedmethods
represent the application as a graph with data objects as
vertices and their dependencies as edges of that graph. Par-
titioning is then performed keeping in view equal weight for
the partitioned parts. When comparing graph-based versus
geometric techniques, graph-based techniques are known to
provide good results for mesh-based applications [27] at the
cost of higher computation time and added implementa-
tion complexity. On the other hand, geometric partitioning
methods are faster and easier to implement but may result
in a higher interprocess communication. Applications not
easily expressible as connected graphs are good candidates for
geometric partitioning [27]. Particle simulation is one such
example where geometric methods are readily applicable.
Apart from these traditional approaches, some new methods
based on modifications on traditional approaches like hybrid
geometric/graph partitioners or hypergraph partitioners are
also available in literature.

For the multiphase flow simulation under consideration
in this study, the main source of load imbalance is the
distribution of work based on spatial location of bubbles
in the domain. Although both the subfront and subdomain
processes suffer from this load imbalance, this work focuses
on load balancing subfront processes and mapping resulting
communication accordingly. The subfront processes operate
on a Lagrangian grid consisting of distinct sets of intercon-
nected grid points. One such set of points constitutes one
interface or bubble and is chosen as one compute unit in our
load balancing approach. For devising load balancing strategy
for subfront processes, following objectives have been taken
into account:

(i) Equally distribute bubbles among subfront processes.

(ii) Minimize number of subdomains that a subfront
communicates with in order to reduce separate MPI
send/receive posts for subfront-subdomain commu-
nication. This will help reduce overhead associated
with posting MPI sends/receives.

(iii) Minimize subfront-subfront communication.

Keeping these requirements in view and by treating a
single bubble or interface as a particle in particle simulation,
geometric partitioning strategy seems a natural fit for balanc-
ing subfront processes. Geometric partitioning complies with
our partitioning objectives by allowing equal bubble distribu-
tion based on their spatial location and minimizing distinct
subdomain-subfrontmapping by placing closely located bub-
bles together. When closely located bubbles are assigned to a
single subfront process, it increases the probability of them
lying in the same subdomain, thus reducing the number of
distinct subdomain-subfront communications. As discussed
earlier, the bulk of subfront-subfront communication mainly
exists due to shared bubbles among subfront processes.
Irrespective of the partitioning strategy, the requirement of
reducing subfront-subfront communication can, therefore,
be met by eliminating shared bubbles.

For the purpose of this study, we leverage one of the
available load balancing tools. Several load balancing tools
supporting geometric partitioning are available. DRAMA
[28, 29] is a software library written for finite element
methods that supports both graph and geometric partitioning
methods. PLUM [30] is a framework for load balancing
adaptive unstructured meshes supporting many partitioning
algorithms. Zoltan [31] is a suite of tools from SandiaNational
Laboratories for dynamic load balancing and data migration.
It supports a variety of traditional load balancing algorithms
like geometric and graph-based as well as sophisticated
nontraditional approaches like hypergraph partitioning algo-
rithm [32]. Given application design flexibility, we decided to
use Zoltan for our application.

The load balancing procedure for subfront processes can
be described as a two-step process: (1) distributing bubbles
among subfront processes based on one of the partitioning
methods supported by Zoltan; (2) devising a new subfront-
subdomain communication strategy due to revised subfront
load assignment.

4.1. Distributing Bubbles. As described previously, geometric
methods are a good choice for partitioning bubbles among
subfront processes. Having decided the partitioning algo-
rithm, bubble distribution among subfronts is performed as
follows:

(i) Initial bubble distribution: before applying the par-
titioning process, bubbles are initially distributed
among subfront processes as per previous strategy,
that is, assigning bubbles to subfront processes based
on their spatial location in the domain. This initial
distribution is then used by the Zoltan library tomake
partitioning decision described next.

(ii) Partitioning bubbles using Zoltan: the first step
towards partitioning using Zoltan is to write callback



6 Scientific Programming

3

1

7

5

4

2

8

6

(a) Bubble distribution before load balancing. 8 bubbles dis-
tributed between two subfront processes
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(b) Bubble distribution after load balancing. Bubbles equally
distributed among the four subfront processes

Figure 4: Sample bubble distribution among four subfront processes before and after load balancing.

functions providing information about the applica-
tion to Zoltan. For geometric partitioning methods,
depending on the algorithm used, at least four call-
back functions are needed. For Recursive Coordinate
Bisection (RCB) method [12] used in this work,
Zoltan requires the following types of callback func-
tions to be provided by the programmer:

(a) ZOLTAN NUM GEOM FN returns the number of
items required to express geometry of the object.
In our case, each bubble point is expressed
as (𝑥, 𝑦, 𝑧) coordinates. Hence, this function
returns 3.

(b) ZOLTAN GEOM FN returns geometry values for
the object under consideration. In our case,
this function returns coordinates of the bubble
center.

(c) ZOLTAN NUM OBJ FN returns the number of
objects currently assigned to the processor. In
our case, it returns number of bubbles assigned
to a subfront processor (as per initial distribu-
tion).

(d) ZOLTAN OBJ LIST FN returns identifiers (IDs)
of objects assigned to a processor. It returns local
and global IDs of the assigned objects. Global
IDs are used for object identification within
Zoltan and are unique among all processes.
Local IDs are not required by Zoltan and can
be used by application as per their convenience.
In our case, global and local IDs are assigned
during input file read and subfront process
initialization, respectively.

Once callback functions are in place, the Zoltan
library is initialized using theZoltan Initialize()
function. Then Zoltan Create() is called with the
MPI communicator of subfront processes to initialize
memory for Zoltan operations.This is followed by set-
ting partitioningmethod andmapping callback func-
tions using theZoltan Set Param() function. Finally,
Zoltan LB Partition() is called to perform bal-
anced bubble distribution over subfront processes.

The output parameters of this function are then used
to redistribute bubbles as described next.

(iii) Initial bubble redistribution: for each subfront pro-
cess, the Zoltan LB Partition() function outputs
parameters like the number of bubbles to be imported
into and exported from the process, their local and
global IDs, and IDs of processes bubbles to be
imported fromor exported to.Using this information,
we redistribute bubbles among subfront processes. To
avoid MPI communication, instead of transferring
bubbles between processes, they are simply deallo-
cated from previous owner processes and allocated to
the new owners. This is possible because the initial
redistribution takes place at the beginning of the
simulation. A sample bubble redistribution scenario
is shown in Figure 4.

(iv) Dynamic bubble redistribution: as the bubbles are
movable in the domain, a new geometric partition
may be required after certain number of iterations.
We check whether the load is imbalanced after
every specified number of iterations (provided as
an input parameter to the simulation) using the
Zoltan LB Partition() function. A flag returned
by the Zoltan LB Partition() indicates whether
a new distribution is required. If so, bubble redis-
tribution is done; otherwise previous distribution is
maintained. Unlike initial distribution, the dynamic
redistribution involves subfront-subfront communi-
cation for transferring bubbles among subfronts.

The pseudocode for bubble distribution described above and
the overall load balancing strategy is depicted in Algorithm 1.

4.2. Remapping Interprocess Communication. As discussed in
Section 3.1, there are three types of interprocess communica-
tion in the fixed mapping simulation. While load balancing
strategy does not affect subdomain-subdomain communi-
cation, the other two types of communication involving
subfront processes are affected as shown in Algorithm 1.

4.2.1. Subdomain-Subfront Communication. Due to the
revised bubble assignment scheme for subfront processes, the
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! Subfront initialization functions

...

! Initialize Zoltan library

Zoltan Initialize()

Zoltan handle=Zoltan Create(Subfront Comm)

Zoltan Set Param(Zoltan handle,"LB METHOD", "RCB")

! Initialize bubbles as per fixed-mapping strategy

Initial Bubble Distribution()

! Zoltan RCB bubble partitioning, it returns

! Number of bubbles to import/export and their IDs,
! process IDs for import/export, boolean flag showing

! whether partition was updated

Zoltan LB Partition(...)

! Initial bubble redistribution and load balancing

do for each bubble to be exported

Deallocate bubble memory and data structures

end do

do for each bubble to be imported

Allocate bubble memory and initialize data structures

end do

! Subfront main loop

do for each timestep

! Subfront calculations

...

! Dynamic load balancing and bubble redistribution

if iteration==load balancing iteration

Zoltan LB Partition(...)

if partition updated

do for each bubble to be exported

Send bubble to the appropriate process

Deallocate bubble memory and data structures

end do

do for each bubble to be imported

Allocate bubble memory

Receive bubble from appropriate process

Initialize bubble data structures

end do

end if

end if

end do

Algorithm 1: Pseudocode for subfront processes emphasizing bubble distribution and load balancing.

subfront-subdomain communication requires remapping.
Previously, a subfront process was mapped to predetermined
fixed number of subdomain processes as it operates on
bubbles belonging to those subdomains only and if the
bubbles moved out of those subdomain(s), its ownership
is transferred to the corresponding subfront. In the new
scheme, the concept of subfront bubble ownership is not
based on location in the subdomain. It is instead based
on the load balancing output. As a result, bubbles owned
by a subfront may be lying in different subdomains. It is
even possible that points of a single bubble may be lying
in different subdomains with their location constantly

changing over the course of the simulation. This means
that both subdomain and subfront processes need to
dynamically identify subfronts/subdomains which they
need to communicate with. In other words, mapping
from subfronts to subdomains needs to be adaptive. This
adaptive subfront-subdomain mapping (adaptive mapping)
is achieved as explained below:

(i) Each subfront process iterates over all of its bubble
points and, based on the knowledge of subdomain
boundaries, it calculates number of points belonging
to a particular subdomain and stores this count



8 Scientific Programming

Table 1: Example subdomain communication table for subfront 𝑖.

Subdomain ID Subdomain 0 Subdomain 1 Subdomain 2 Subdomain 3
Bubble points 1428 0 13320 0

Table 2: Example overall subdomain-subfront communication table.

Subfront/subdomain ID Subfront 0 Subfront 1 Subfront 2 Subfront 3
Subdomain 0 1428 0 16768 1550
Subdomain 1 0 13320 0 1428
Subdomain 2 13320 0 0 760
Subdomain 3 0 20 13320 1350

Table 3: Example subfront communication table for subdomain 𝑖.

Subfront ID Subfront 0 Subfront 1 Subfront 2 Subfront 3
Bubble points 1428 0 16768 1550

in a communication table that we will refer to as
subdomain table. At the same time, it stores points
belonging to a particular subdomain in a separate list.
An example subdomain table for subfront i with four
subdomains is shown in Table 1. It shows that subfront
i has 1428 bubble points for subdomain 0, 13320 for
subdomain 2, and none for the rest. Subfront i can
then use this table to post-MPI send/receivemessages
for subdomains accordingly.

(ii) Like subfront processes, subdomain processes
dynamically need to know which subfront processes
they need to communicate with. For this purpose,
subdomain tables of all subfronts are combined and
updated on all subfront processes using a Gather All
operation. An example overall communication table
for four subfronts and four subdomains is shown
in Table 2. As shown, a row of Table 2 basically
constitutes the subfront table for subdomain i.
To efficiently update the table on corresponding
subdomains, each subfront sends rows of overall
communication table to respective subdomains
using fixed subdomain-subfront mapping discussed
in Section 3.1. An example of subfront table for
subdomain i is shown in Table 3.

(iii) Using respective subdomain and subfront tables,
subfront-subdomain processes post send/receive
messages to exchange bubble data.

4.2.2. Subfront-Subfront Communication. In fixed subdo-
main-subfrontmappingmultiphase flow simulation, subfront-
subfront communicationmainly exists for exchanging shared
bubble data and bubble ownership transfer among subfronts.
In the current strategy, the concept of shared bubbles has been
revoked. Instead, all points of a given bubble are owned by the
same subfront unless load balancing output demands redis-
tribution of the bubble to a different subfront.Thismeans that
subfront-subfront communication for shared bubble data

exchange does not exist anymore. Instead, subfront-subfront
communication exists for the following purposes:

(i) To update overall subdomain-subfront communica-
tion table on all subfronts

(ii) To transfer bubbles among subfront processes for
dynamic load balancing.

Unlike fixedmapping, subfront-subfront communication
in adaptive mapping approach is more predictable. In fixed
mapping approach, number of subfront-subfront messages
exchanged per time step is given by 2(𝑠 − 1)𝑏, where 𝑠
is the number of subfronts sharing bubbles and 𝑏 is the
number of shared bubbles [11]. Both 𝑠 and 𝑏 are variable
quantities depending upon the movement of bubbles during
simulation. It is, therefore, hard to predict in advance as
to how many messages will be exchanged among subfront
processes in a given iteration. Another type of subfront-
subfront communication in fixed mapping strategy is for
bubble ownership transfer. If 𝑛 subfronts need to transfer
ownership of their bubbles with each sending messages to𝑚
fronts, then total number of messages for ownership transfer
is given by ∑𝑛𝑖=1𝑚𝑖. Similarly, both 𝑛 and 𝑚 are variable
quantities and depend upon movement of bubbles during
simulation and therefore it is hard to predict when and how
many messages will be exchanged for ownership transfer.

In adaptive mapping approach, a number of subfront-
subfront messages per iteration for subdomain-subfront
communication table update are given by 𝑛𝑓(𝑛𝑓 − 1) where
𝑛𝑓 is the total number of subfront processes (Gather All oper-
ation). As 𝑛𝑓 is constant during the course of the simulation,
a number of subfront-to-subfront messages per iteration are
fixed. Like fixed mapping strategy, bubble ownership transfer
may be required after a predetermined number of iterations
based on the output of load balancing algorithm. Although
the expression for the number of messages for ownership
transfer remains the same as for fixed mapping strategy,
variation in 𝑛 and 𝑚 from one load balancing iteration to
the next is not expected to be drastic due to incremental
nature of geometric partitioning algorithm [27]. Due to fixed
number of subfront-subfront messages per iteration and a
more predictable number of messages for ownership transfer
each load balancing iteration, overall subfront-subfront com-
munication in adaptive mapping strategy is more predictable
compared with fixed mapping strategy.
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Subdomain processes

Initialize domain

Subfront processes

Initialize front and
assign bubbles

Zoltan partitioning,
bubble redistribution

Front calculations

Domain calculations

Calculate comm table
and update domains

Receive comm table
from mapped front

Send bubble data

Receive bubble data

Update bubble’s
position

Send updated bubble
data

Receive updated
bubble data

More domain
calculations More front calculations

End domain End front

Redistribute bubbles after
n iterations (if needed)

Figure 5: Simplified flowchart of modified parallel multiphase flow simulation. Black arrows indicate interprocess communication.

4.3. Load-Balanced Program Structure. Figure 5 shows the
flow chart of modified subdomain and subdomain processes
along with remapped communication. As before, the two sets
of processes perform their respective process initializations.
Bubbles are then assigned to subfront processes as per pre-
vious spatial location based approach. Initial redistribution
of bubbles based on the Zoltan load balancing output is
then performed, followed by computations on the bubbles
and update on the subdomain and subfront communication
tables. After that, we perform subfront-subdomain bubble
data exchange and position update as per new communi-
cation scheme. For subdomain processes, intrasubdomain
communication and calculations on the Eulerian grid remain
unchanged. For subfront processes, bubble distribution is
checked after a specified number of iterations and if redis-
tribution is required, bubbles are exchanged among subfront
processes accordingly. As in the fixed mapping strategy, all
the communications are nonblocking employing communi-
cation and computation overlap.

5. Results and Discussion

To carry out performance studies, we use the Cray XC40
(HazelHen) supercomputer located at theHigh-Performance
Computing Center, Stuttgart, Germany. Specifications of the
supercomputer are listed in Table 4. Details of the software
used in the study are listed in Table 5. Bubble radius is chosen
such that a bubble spans at least 20 points of the Eulerian
grid. All calculations are performed using double precision
arithmetic and periodic boundary conditions for all the three
directions. For all experiments, two OpenMP processes are
used for hyperthreading per MPI process.

Table 4: Specifications of Cray XC40 (Hazel Hen) supercomputer.

CPU Intel Xeon E5-2680 v3
Number of compute nodes 7712
Sockets per compute node/cores per socket 2/12
Threads per core 2
Clock rate (GHz) 2.5
Memory per node (GB) 128
Shared L3 Cache (MB) 30
Memory bandwidth (GB/s) 68
Interconnect Cray Aries Dragonfly
Network bandwidth (GB/s) 11.7

Table 5: Specifications of software used.

OS SUSE Linux Enterprise Server 11
Linux Kernel version 3.0.101-0.47.102-default
Fortran/C compilers Intel ifort & icc v 17.0.2.174
Cray Trilinos (for Zoltan) 12.10.1.1
PETSc (for Hypre) 3.7.6.0
Cray MPICH 7.6.0

5.1. Strong Scaling. In strong scaling study, we simulate 864
bubbles in 2×2×2 sized domain with a 512×512×512mesh
resolution for the Eulerian grid. Bubble distribution pattern is
similar to the one shown in Figure 6.The bubble distribution
is chosen such that half of the domain is empty while the
other half contains bubbles creating 50% load imbalance for
subfront processes. Our choice of number of bubbles, grid
size, and mesh resolution for Eulerian grid is driven by the
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Table 6: Strong scaling inputs and process configurations.

Domain size (𝑥 × 𝑦 × 𝑧) 2 × 2 × 2

Eulerian grid resolution 512 × 512 × 512

Number of bubbles 864

Total processors (𝑥, 𝑦, 𝑧) =
subdomain processors (𝑥 × 𝑦 × 𝑧) +
subfront processors (𝑥 × 𝑦 × 𝑧)

2 = 1 × 1 × 1 + 1 × 1 × 1

4 = 2 × 1 × 1 + 2 × 1 × 1

8 = 2 × 2 × 1 + 2 × 2 × 1

16 = 2 × 2 × 2 + 2 × 2 × 2

32 = 4 × 2 × 2 + 4 × 2 × 2

64 = 4 × 4 × 2 + 4 × 4 × 2

128 = 4 × 4 × 4 + 4 × 4 × 4

256 = 8 × 4 × 4 + 8 × 4 × 4

512 = 8 × 8 × 4 + 8 × 8 × 4

MPI processes/node 16
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Figure 6: Bubble distribution for 1 × 2 × 2 grid with 432 bubbles.
Half of the domain contains bubbles while the rest is empty creating
50% load imbalance for subfront processes.

need to have enough strong scaling configurations without
exceeding memory limits of any process or processing node
for any of the given configurations. Strong scaling inputs and
process configurations are shown in Table 6, where 6, domain
size (𝑥 × 𝑦 × 𝑧), refers to volume of the rectangular domain
with 𝑥,𝑦, and 𝑧 dimensions inmeter. Eulerian grid resolution
is number of grid points used to represent the Eulerian grid.
Speedup for our load balancing approach (adaptivemapping)
is reported against the fixed mapping simulation with the
same subdomain and subfront process configurations.

To calculate average iteration time and average speedup
for each strong scaling configuration, we performed five
experiments per configuration. The results are shown in Fig-
ures 7(a) and 7(b), respectively. In Figure 7(b), we notice that,
due to variable nature of subfront-subfront communication
in fixed mapping, speedup does not show a consistent trend
up to 16 + 16 (subdomain + subfront) process configuration.
For these process configurations, if the number of shared
bubble points is more, we observe a higher speedup for the
adaptivemapping version because of the absence of subfront-
subfront communication needed for shared bubble exchange
in fixed mapping version. On the other hand, if the number
of shared bubble points is few or none, the speedup is close

to 1. However, from 16 + 16 process configuration onward,
we observe higher speedup owing to smaller subdomains
and subfronts resulting in an increase in the number of
shared bubbles. A speedup of over 5% is achieved with
adaptive mapping over fixed mapping for 256 + 256 process
configuration.

Although the performance improvement for strong scal-
ing is not very significant, the study shows that the adaptive
mapping strategy is always either as good as or better than
the fixed mapping strategy for all chosen strong scaling
configurations.

5.2. Weak Scaling. Table 7 shows inputs and process config-
urations for the weak scaling experiment. To create a load
imbalance configuration, a number of bubbles are chosen
to be subject to the constraints that fill half of the domain;
each bubble spans 20 grid points of the domain along
each of the 𝑥, 𝑦, and 𝑧 dimensions, and initial distance
between any two bubbles is equal to the their radius. This
leaves approximately 7 bubbles per subfront processor after
load balancing. The Eulerian grid points for each of the
subdomain processors are fixed at 64 × 128 × 128 simulating
a maximum of 13824 bubbles on 2048 + 2048 processes. To
calculate average iteration time and average speedup for each
weak scaling configuration, we performed five experiments
per configuration. The results are shown in Figures 8(a)
and 8(b), respectively. As the domain size and number of
bubbles increase, iteration time increases for both fixed and
adaptive mapping configurations due to a larger number
of messages. However, because of the absence of subfront-
subfront communication in adaptive mapping version, time
per iteration increases slowly allowing better scaling. As
shown in Figure 8(b), a speedup of up to 30% is observed over
the fixed mapping at 2048 + 2048 processes simulating 13824
bubbles with a 4 × 4 × 8 domain.

Performance improvement due to the adaptive mapping
in weak scaling appears to be higher than the one in
strong scaling. However, performance improvement for weak
scaling is comparable to strong scaling at the similar process
configurations (e.g., 256 + 256). The higher performance
improvements are observed onbigger domain sizes and larger
process counts. In Section 5.1, our choice for strong scaling
configuration is based on the memory capacity requirement
in each node. As a result, strong scaling results are likely to
improve by the same order as weak scaling for bigger domain
sizes, higher number of bubbles, and Eulerian grid points.

5.3. Load Balancing Overhead. Load balancing incurs two
types of overheads. The first one includes initial load bal-
ancing overhead at the beginning of the simulation while
the second one is due to bubble redistribution for dynamic
load balancing during the course of simulation. Figure 9
shows comparison of initialization time for fixed and adaptive
mapping versions. As evident, there is negligible difference
between initialization times for the two versions for strong
scaling. This is true because although adaptive mapping
version involves bubble distribution/redistribution during
initialization, absence of shared bubble data exchange in
adaptive mapping compensates for this added overhead.
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Table 7: Weak scaling inputs and process configurations.

Domain size
(𝑥 × 𝑦 × 𝑧)

Mesh resolution Number of
bubbles

Number of
processors

Subdomain processors
(𝑥 × 𝑦 × 𝑧)

Subfront processors
(𝑥 × 𝑦 × 𝑧)

1 × 2 × 2 256 × 512 × 512 432 128 4 × 4 × 4 = 64 4 × 4 × 4 = 64

2 × 2 × 2 512 × 512 × 512 864 256 8 × 4 × 4 = 128 8 × 4 × 4 = 128

2 × 4 × 2 512 × 1024 × 512 1728 512 8 × 8 × 4 = 256 8 × 8 × 4 = 256

2 × 4 × 4 512 × 1024 × 1024 3456 1024 8 × 8 × 8 = 512 8 × 8 × 8 = 512

4 × 4 × 4 1024 × 1024 × 1024 6912 2048 16 × 8 × 8 = 1024 16 × 8 × 8 = 1024

4 × 4 × 8 1024 × 1024 × 2048 13824 4096 16 × 8 × 16 = 2048 16 × 8 × 16 = 2048
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Figure 7: Adaptive versus fixed mapping comparison for strong scaling.
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Figure 8: Adaptive versus fixed mapping comparison for weak scaling.

For weak scaling, we notice that as the number of bubbles
increases, the shared bubble data exchange overhead in fixed
mapping overtakes bubble distribution/redistribution over-
head in adaptive mapping resulting in reduced initialization
time for adaptive mapping as the problem size increases.

The second type of overhead includes both dynamically
detecting the load imbalance and redistributing the load
during the course of simulation. Figures 10(a) and 10(b)
show the overhead for strong and weak scaling, respectively.
Dynamic load balancing is performed after a user specified
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Figure 10: Average dynamic load balancing overhead (as percentage of simulation time).

number of iterations which for the purpose of this study
has been set to five. We plot the overhead as percentage
of total simulation time. Figure 10(a) shows that dynamic
load balancing overhead for strong scaling is less than 0.8%
for all process configurations. For weak scaling, maximum
dynamic load balancing overhead is a little over 3% for the
largest problem size and is 2% or less for all other problem
sizes simulated in this study. Overall, the load balancing with
adaptive mapping does not introduce too much overhead.
Even for cases where it introduces an overhead of more than
1%, the overall execution time improves as compared to the
fixed mapping.

6. Conclusions

In this work, we developed a load balancing strategy for
a front-tracking method based parallel multiphase flow
simulation. Instead of fixed load assignment of mov-
able Lagrangian grid (bubbles) to processors, we perform

dynamic and adaptive load balancing resulting in uniform
load distribution. We also remapped the interprocess com-
munication resulting in a more predictable variable mapping
compared with the existing fixed mapping strategy. Our load
balancing strategy is dynamic in nature as we dynamically
check for load imbalance during the course of simulation and
perform load balancing accordingly.

To check the effectiveness of our strategy, we performed
both strong and weak scaling studies on Cray XC40 (Hazel
Hen) supercomputer.The strong scaling experiments showed
a moderate speedup of over 5% for adaptive mapping over
the fixed mapping baseline with same process configura-
tion simulating 864 bubbles; however, considerable per-
formance improvement was observed as the problem size
was increased. For instance, in weak scaling experiment
of simulating 13824 bubbles with a total of 4096 processes
in a domain of grid size 1024 × 1024 × 2048, a speedup
of up to 30% was observed for adaptive mapping over
fixed mapping with same process configuration. Finally, we



Scientific Programming 13

performed analysis of load balancing overheads and observed
that, even in their presence, overall execution time improves
as compared to the fixed mapping.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Theauthors are supported by the Scientific and Technological
Research Council of Turkey (TUBITAK), Grant no. 215E193.
They acknowledge PRACE for awarding them access to the
Hazel Hen supercomputer in Germany.

References

[1] C. Brennen, Fundamentals of Multiphase Flow, Cambridge
University Press, Cambridge, UK, 2005.

[2] G. Tryggvason, R. Scardovelli, and S. Zaleski, Direct Numerical
Simulations of Gas-Liquid Multiphase Flows, Cambridge Uni-
versity Press, Cambridge, UK, 2011.

[3] J. Pilliod and E. G. Puckett, “Second-order accurate volume-
of-fluid algorithms for tracking material interfaces,” Journal of
Computational Physics, vol. 199, no. 2, pp. 465–502, 2004.

[4] W. J. Rider and D. B. Kothe, “Reconstructing volume tracking,”
Journal of Computational Physics, vol. 141, no. 2, pp. 112–152,
1998.

[5] V. E. Badalassi, H. D. Ceniceros, and S. Banerjee, “Computation
of multiphase systems with phase field models,” Journal of
Computational Physics, vol. 190, no. 2, pp. 371–397, 2003.

[6] D. M. Anderson, G. B. McFadden, and A. A.Wheeler, “Diffuse-
interface methods in fluid mechanics,” Annual Review of Fluid
Mechanics, vol. 30, no. 1, pp. 139–165, 1998.

[7] M. Sussman, P. Smereka, and S. Osher, “A level set approach for
computing solutions to incompressible two-phase flow,” Journal
of Computational Physics, vol. 114, no. 1, pp. 146–159, 1994.

[8] E. Olsson and G. Kreiss, “A conservative level set method for
two phase flow,” Journal of Computational Physics, vol. 210, no.
1, pp. 225–246, 2005.

[9] G. Tryggvason, B. Bunner, A. Esmaeeli et al., “A front-tracking
method for the computations of multiphase flow,” Journal of
Computational Physics, vol. 169, no. 2, pp. 708–759, 2001.

[10] J. Glimm and O. A. McBryan, “A computational model for
interfaces,” Advances in Applied Mathematics, vol. 6, no. 4, pp.
422–435, 1985.

[11] M. N. Farooqi, D. Izbassarov, M. Muradoğlu, and D. Unat,
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