
Research Article
An Enhanced Discrete Artificial Bee Colony
Algorithm to Minimize the Total Flow Time in Permutation
Flow Shop Scheduling with Limited Buffers

Guanlong Deng, Hongyong Yang, and Shuning Zhang

School of Information and Electrical Engineering, Ludong University, Yantai 264025, China

Correspondence should be addressed to Guanlong Deng; dglag@163.com

Received 25 January 2016; Accepted 18 May 2016

Academic Editor: Vladimir Turetsky

Copyright © 2016 Guanlong Deng et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents an enhanced discrete artificial bee colony algorithm for minimizing the total flow time in the flow shop
scheduling problem with buffer capacity. First, the solution in the algorithm is represented as discrete job permutation to directly
convert to active schedule. Then, we present a simple and effective scheme called best insertion for the employed bee and onlooker
bee and introduce a combined local search exploring both insertion and swap neighborhood. To validate the performance of
the presented algorithm, a computational campaign is carried out on the Taillard benchmark instances, and computations and
comparisons show that the proposed algorithm is not only capable of solving the benchmark set better than the existing discrete
differential evolution algorithm and iterated greedy algorithm, but also capable of performing better than two recently proposed
discrete artificial bee colony algorithms.

1. Introduction

In the scope of scheduling problem, the permutation flow
shop scheduling problem (PFSP) is one of themost important
and studied issues because of its theoretical complexity and
practical application. The traditional permutation flow shop
model is not concerned with the capacity for buffer between
two consecutive machines, and once its processing on a
machine is finished, a job waits till the next machine is
available to process it. However, in real production environ-
ments, the buffers are usually limited. Examples lie in the
petrochemical processing industries and cell manufacturing
[1]. In such a scheduling problem, after finishing its operation
on a machine, if the next machine is not available, a job is
allowed to store in a buffer only if the buffers are not full.
If the buffers are full, the job must wait on the incumbent
machine, which may make the machine unable to process
other jobs. One special case in the permutation flow shop
scheduling problem with limited buffers (LBPFSP) is with
no buffer, and the problem is called the blocking flow shop
scheduling problem (BPFSP). The BPFSP has gained much
attention in the past decades [2, 3] and its strong NP-hard

characteristics were validated for the case withmore than two
machines [4]. Besides, the LBPFSP is also strongly NP-hard
even for only two machines [5].

A great amount of research work has been carried out for
the BPFSP. Many heuristics were introduced or proposed for
the problem [6–9], but they are not good enough, especially
for problem instance with big size. In recent years, lots of
sophisticated metaheuristics have been developed for the
problem. For the makespan criterion, the developed meta-
heuristics include genetic algorithm (GA) [10], tabu search
(TS) algorithm [11], hybrid discrete differential evolution
(HDDE) algorithm [12], iterated greedy (IG) algorithm by
[2], hybrid modified global-best harmony search (hmgHS)
algorithm [13], and variable neighborhood search (VNS)
[14]. Recently, some researchers also proposed algorithms to
minimize the total flow time (TFT) of the BPFSP. Wang et al.
[15] developed an hmgHS algorithm and Deng et al. [16] put
forward a discrete artificial bee (DABC) algorithm.

As amore general problem, the LBPFSP received increas-
ing attention in recent years. An early overview article was
provided by Leisten [7], and the article concluded that the
NEH heuristic is competitive. Smutnicki [17] presented a TS

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 7373617, 11 pages
http://dx.doi.org/10.1155/2016/7373617



2 Mathematical Problems in Engineering

algorithm for the case with two machines, and the TS algo-
rithmwas later generalized to the casewithmoremachines by
Nowicki [18]. Also, an effective TS algorithm was developed
by Brucker et al. [19]. Later, a hybrid genetic algorithm
(HGA) by Wang et al. [20] was shown to outperform the
TS algorithm. Further, Liu et al. [21] presented a hybrid
particle swarm optimization (HPSO) algorithm that yielded
better results thanHGA. Qian et al. [22] investigated a hybrid
differential evolution (HDE) algorithm for not only the finite
buffer case but also the blocking and infinite buffer case. An
immune based approach (IA) was developed by Hsieh et al.
[23] and its superiority over the HGA was asserted. Recently,
in two papers, Pan et al. [24, 25] proposed twometaheuristics,
chaotic harmony search (CHS) andHDDE, and showed their
superiority over the HGA and HPSO algorithm, respectively.
More recent work was developed by Zhao et al. [26] and
Moslehi and Khorasanian [27]. The former proposed an
improved PSO algorithm while the latter presented a hybrid
variable neighborhood search (HVNS) hybridizing variable
neighborhood search and simulated annealing algorithm. In
the HVNS algorithm, a speed-up method was developed for
several kinds of local search methods.

In the past decades, a bunch of metaheuristics based
on swarm intelligence has been proposed and applied to
scheduling problems [28, 29]. Among them, the artificial
bee colony (ABC) algorithm [30–33] performed well in
continuous function optimization, and Pan et al. [34] firstly
proposed a discrete version of theABC (DABC) algorithm for
the lot-streaming flow shop scheduling. Then, Tasgetiren et
al. [35] andDeng et al. [16] also developed a DABC algorithm
for the PFSP and BPFSP, respectively. However, to the best
of our knowledge, there is no published study on solving the
LBPFSP using this algorithm. As for the LBPFSP, the existing
work all focused on the makespan minimization, and no
research work has been done with the TFT criterion, despite
the prominence of the TFT criterion. Therefore, this paper
aims to present a simple and effectiveDABCalgorithm for the
LBPFSP with the TFT criterion, which is not a well-studied
scheduling problem.ThedevelopedDABCalgorithm is based
on the hybridization of ABC algorithm paradigm and local
search methodology, and its performance is investigated by
extensive experiments.

The rest of the paper is organized as follows. In Sec-
tion 2, the considered problem with the TFT criterion is
introduced and formulated. The proposed DABC algorithm
is then presented as a simple and effective method for the
TFT criterion case in Section 3. Section 4 provides the
parameter calibration and performance investigation based
on computational experiments. Finally, Section 5 gives out
the conclusions and future work of the paper.

2. Problem Formulation

In the LBPFSP with the TFT criterion, there are a set of
𝑛 jobs 𝑁 = {1, 2, . . . , 𝑛} and a set of 𝑚 machines 𝑀 =

{𝑀
1
, 𝑀
2
, . . . ,𝑀

𝑚
}. The operation of job 𝑗 (𝑗 = 1, 2, . . . , 𝑛)

on machine 𝑀
𝑖
(𝑖 = 1, 2, . . . , 𝑚) requires a nonnegative

time given as 𝑝
𝑖𝑗
. Every job has to be processed consecu-

tively from the first machine 𝑀
1
to the last machine 𝑀

𝑚
.

The following traditional flow shop assumptions apply. (1)
All jobs are independent and available for processing at time
zero. (2) At any time, each job is being processed at most
on one machine and each machine is processing at most
one job. (3)There is no breaking down in machines. (4) An
operation can not be interrupted or split. (5)The setup and
release times are ignored. Besides, the “permutation” requires
that the job processing sequence must be the same on all
machines. Between two consecutive machines𝑀

𝑖
and𝑀

𝑖+1
,

there is a buffer with the capacity equal to 𝐵
𝑖
(𝐵
𝑖
≥ 0, 𝑖 =

1, 2, . . . , 𝑚−1).Therefore, the number of stored jobs between
two consecutivemachines is at most 𝐵

𝑖
. If no buffer exists and

the downstream machine is busy, a completed job has to stay
on the current machine and thus may block it. The TFT is
defined as∑𝑛

𝑗=1
𝐶
𝑗
, where𝐶

𝑗
is the timewhen job 𝑗 is finished.

The objective is to minimize the TFT.
Since the TFT belongs to regular optimality criteria, there

exists at least one active schedule that is optimal, and thus
each schedule can be represented as a job permutation 𝜋 =
(𝜋(1), 𝜋(2), . . . , 𝜋(𝑛)), where the job is processed as early as
possible with respect to the given sequence in 𝜋. Let TFT(𝜋)
denote the total flow time of𝜋 and let𝑑

𝜋(𝑗),𝑖
denote the leaving

time of job 𝜋(𝑗) frommachine𝑀
𝑖
. The values of 𝑑

𝜋(𝑗),𝑖
can be

calculated as follows [25]:

𝑑
𝜋(1),1

= 𝑝
𝜋(1),1

,

𝑑
𝜋(1),𝑖

= 𝑑
𝜋(1),𝑖−1

+ 𝑝
𝜋(1),𝑖

, 𝑖 = 2, . . . , 𝑚,

𝑑
𝜋(𝑗),1

= 𝑑
𝜋(𝑗−1),1

+ 𝑝
𝜋(𝑗),1

, 𝑗 = 2, . . . , 𝐵
1
+ 1,

𝑑
𝜋(𝑗),𝑖

= max {𝑑
𝜋(𝑗−1),𝑖

, 𝑑
𝜋(𝑗),𝑖−1

} + 𝑝
𝜋(𝑗),𝑖

,

𝑗 = 2, . . . , 𝐵
𝑖
+ 1, 𝑖 = 2, . . . , 𝑚 − 1,

𝑑
𝜋(𝑗),1

= max {𝑑
𝜋(𝑗−1),1

+ 𝑝
𝜋(𝑗),1

, 𝑑
𝜋(𝑗−𝐵

1
−1),2

} ,

𝑗 > 𝐵
1
+ 1,

𝑑
𝜋(𝑗),𝑖

= max {max {𝑑
𝜋(𝑗−1),𝑖

, 𝑑
𝜋(𝑗),𝑖−1

}

+ 𝑝
𝜋(𝑗),𝑖

, 𝑑
𝜋(𝑗−𝐵

𝑖
−1),𝑖+1

} ,

𝑗 > 𝐵
𝑖
+ 1, 𝑖 = 2, . . . , 𝑚 − 1,

𝑑
𝜋(𝑗),𝑚

= max {𝑑
𝜋(𝑗−1),𝑚

, 𝑑
𝜋(𝑗),𝑚−1

} + 𝑝
𝜋(𝑗),𝑚

,

𝑗 = 2, . . . , 𝑛.

(1)

Using the above recursion, we can calculate the TFT with
time complexity 𝑂(𝑚𝑛):

TFT (𝜋) =
𝑛

∑

𝑗=1

𝑑
𝜋(𝑗),𝑚

. (2)

If all permutations are denoted as set Π, then we have to
find a permutation 𝜋∗ in Π such that

TFT (𝜋∗) ≤ TFT (𝜋) ∀𝜋 ∈ Π. (3)

Clearly, if 𝐵
𝑖
= 0, then the problem is the same as BPFSP.

If 𝐵
𝑖
≥ 𝑛− 1, then the problem can be treated as PFSP. Due to



Mathematical Problems in Engineering 3

the extensive work carried out for the BPFSP and PFSP,
we will investigate the not-well-studied case; namely, the
problem with the buffer size is finite.

3. Discrete Artificial Bee Colony Algorithm

According to the framework of the ABC algorithm, the
algorithm includes three kinds of bees, namely, employed
bee, onlooker bee, and scout bee. The solutions (called food
sources) of the algorithm form a population with size NP.
After initialization of the population, the algorithm goes into
an iteration till the stopping criterion is satisfied. In the
iteration, the algorithm sends first each employed bee, then
each onlooker bee, and finally each scout bee to explore food
sources. Since the ABC algorithm is originally proposed for
continuous function optimization, it needs the conversion
from real domain to discrete domain if the continuous coding
solution is used. Due to the discrete characteristic of the con-
sidered problem, this paper uses job permutation as solution
representation and puts forward a discrete ABC algorithm.
To make the algorithm simple yet effective, we adopt the idea
of iterated greedy (IG) algorithm of Ruiz and Stützle [36].
The IG algorithmmainly includes two important procedures.
First, the destruction and construction procedure produce a
new solution by perturbing the incumbent solution which is
usually a local optimum. By iteratively searching the insertion
neighborhood of the new solution, a local search is imposed
on the new solution. These two procedures are modified or
improved in the newDABCalgorithm to design the operators
of the employed, onlooker, and scout bees. All the elements
are elaborated in the following subsections.

3.1. Initialization. Asmentioned above, the DABC algorithm
consists of NP food sources, where NP is a parameter
controlling population size. For each food source, we need
to generate a job sequence 𝜋 = (𝜋(1), 𝜋(2), . . . , 𝜋(𝑛)). The
NEH heuristic and its variants are developed to construct the
initial population with both quality and diversity. Wang et al.
[15] pointed out that if the jobs are sequenced in increasing
order rather than decreasing order in NEH, the obtained
heuristic performs better than NEH heuristic for BPFSP with
the TFT criterion. They denoted the variant as NEH WPT
heuristic. Besides, if the jobs are sequenced in random order
in NEH, the obtained heuristic is a randomized heuristic,
and it also works well according to our pilot experiments.
We denote this randomized heuristic NEH RAN. In our
proposed algorithm, the solutions generated by both the
NEH and NEH WPT heuristics are included in the initial
population, and the remaining NP-2 solutions of the initial
population are generated by the NEH RAN heuristic. Such
an initialization scheme gives a guarantee of the population
with good quality and diversity.

3.2. Employed Bee. For each solution in the population,
the employed bee is firstly applied. Thus there are also NP
employed bees. In the employed bee phase, a procedure,
bestinsert, is presented to find a neighboring food source
from the incumbent food source.

Suppose that a permutation is denoted as 𝜋 = (𝜋(1), 𝜋(2),
. . . , 𝜋(𝑛)) and 𝑠 = 𝜋(𝑗) is a job with position index 𝑗. By
inserting job 𝑠 into 𝑘th (𝑘 ∈ {1, . . . , 𝑛} \ {𝑗}) position, we will
get a permutation 𝜔(𝑠, 𝑘). Let 𝜋𝑠binsert denote the permutation
resulting in the minimum objective value among all 𝜔(𝑠, 𝑘)
permutations.The bestinsert procedure is illustrated in Algo-
rithm 1.

The bestinsert procedure is designed as a perturbation
operator to escape from local optima. The idea behind the
bestinsert procedure is thatmaking several compulsory insert
moves would result in a solution that is usually different from
but keeps probably the good characteristics of the incumbent
solution.The setting of parameter 𝑑 determines the degree of
perturbation.

Each employed bee employs the bestinsert procedure to
generate a new food source.This generated food source is not
directly put into the population but used by its corresponding
onlooker bee.

3.3. Onlooker Bee. Before describing the design of the
onlooker bee phase, we introduce several local search meth-
ods and present the combined local search.

For the PFSP, most of the excellent local search methods
consider the insertion neighborhood. The superiority of this
neighborhood structure has been shown in lots of papers,
such as [36–41]. In the insertion-based local search methods
embedded in IG algorithms by Ruiz and Stützle [36], a job
𝑠 is randomly chosen, and its 𝜋𝑠binsert with respect to the
incumbent solution 𝜋 is then identified. If the solution 𝜋𝑠binsert
is better than the incumbent solution, the incumbent solution
is replaced.The above process is repeated for all 𝑛 jobs, which
means that 𝑠 is randomly and unrepeated chosen for 𝑛 times.
Furthermore, once the incumbent solution is updated for a
job’s process, the processes of all 𝑛 jobs need to be performed.
The local search terminates when no improvement occurs
for the processes of all 𝑛 jobs. Pan et al. [39] improved this
local search and presented the referenced local search (RLS).
In RLS, jobs to be inserted are selected not randomly but
according to the precedence of a referenced solution. Besides,
the local search is optimized and the redundant process of
finding 𝜋𝑠binsert may be avoided. Similarly, Deng and Gu [40]
also improved this local search but used a random order in
which jobs are to be inserted. Their insertion-based local
search (ILS) is shown in Algorithm 2.

It can be seen from Algorithm 2 that the job 𝑠 to be
inserted is chosen according to a random order 𝜋

𝐷
, and

the procedure terminates once the process of finding 𝜋𝑠binsert
causes no improvement of 𝜋 for consecutive 𝑛 times. The
effectiveness of the ILS inspired us to present a swap-based
local search (SLS) with homogeneous structure.The SLS uses
the swap neighborhood, and 𝜋𝑠bswap is defined like 𝜋

𝑠

binsert. Let
𝑠 = 𝜋(𝑗) be a job scheduled in 𝜋 = (𝜋(1), 𝜋(2), . . . , 𝜋(𝑛)) and
let V(𝑠, 𝑘) denote the sequence generated by swapping job 𝑠
with the job occupying 𝑘th (𝑘 ∈ {1, . . . , 𝑛} \ {𝑗}) position of 𝜋.
𝜋
𝑠

bswap is the permutation resulting in the minimum objective
value among all V(𝑠, 𝑘) permutations.The procedure of SLS is
illustrated in Algorithm 3.

It should be pointed out that there is a possibility that a
local optimum provided by ILS is not a local optimum when



4 Mathematical Problems in Engineering

(1) choose 𝑑 unrepeated jobs 𝐽
1
, . . . , 𝐽

𝑑
randomly and let IL = {𝐽

1
, . . . , 𝐽

𝑑
}

(2) while (IL is not empty)
(3) take out the front job s from IL and delete it from IL
(4) 𝑗 = the position index of job s in 𝜋
(5) 𝑊 = ⌀

(6) for k = 1 to 𝑗 − 1
(7) add 𝜔(𝑠, 𝑘) into𝑊
(8) endfor
(9) for 𝑘 = 𝑗 + 1 to 𝑛
(10) add 𝜔(𝑠, 𝑘) intoW
(11) endfor
(12) 𝜋

𝑠

binsert = the best permutation in𝑊
(13) 𝜋 = 𝜋

𝑠

binsert
(14) endwhile

Algorithm 1: Bestinsert procedure.

(1) 𝜋
𝐷
= a permutation generated randomly

(2) 𝑖 = 0, ℎ = 1
(3) while (𝑖 < 𝑛)
(4) let 𝑠 = 𝜋

𝐷
(ℎ)

(5) j = the position index of job s in 𝜋
(6) 𝑊 = ⌀

(7) for 𝑘 = 1 to 𝑗 − 1
(8) add 𝜔(𝑠, 𝑘) into𝑊
(9) endfor
(10) for 𝑘 = 𝑗 + 1 to n
(11) add 𝜔(𝑠, 𝑘) into𝑊
(12) endfor
(13) 𝜋

𝑠

binsert = the best permutation inW
(14) if (𝜋𝑠binsert is better than 𝜋)
(15) 𝜋 = 𝜋

𝑠

binsert
(16) 𝑖 = 1

(17) else
(18) 𝑖 = 𝑖 + 1

(19) endif
(20) ℎ = (ℎ + 1)% n
(21) endwhile

Algorithm 2: Insertion-based local search.

SLS is applied. So,we present the combined local search (CLS)
by applying ILS and SLS iteratively till a local optimum is
reached. The procedure is given in Algorithm 4.

The number of onlooker bees is also NP. The onlooker
bee applies the CLS to the food source returned by the
employed bee. If the solution returned by CLS is not worse
than the corresponding food source in the population, the
corresponding food source in the population is replaced, or
else it does not change. Note that the NP food sources in
the population and the NP onlooker bees correspond one to
one, which means whether 𝑖th food source is updated only
depends on the solution found by 𝑖th onlooker bee. Setting
the number of onlooker bees as NP can keep the parallel
paradigm of the algorithm and benefit the depth and breadth

(1) 𝜋
𝐷
= a permutation generated randomly

(2) 𝑖 = 0, ℎ = 1
(3) while (𝑖 < 𝑛)
(4) let 𝑠 = 𝜋

𝐷
(ℎ)

(5) j = the position index of job s in 𝜋
(6) 𝑊 = ⌀

(7) for 𝑘 = 1 to 𝑗 − 1
(8) add V(𝑠, 𝑘) into𝑊
(9) endfor
(10) for 𝑘 = 𝑗 + 1 to n
(11) add V(𝑠, 𝑘) into𝑊
(12) endfor
(13) 𝜋

𝑠

bswap = the best permutation inW
(14) if (𝜋𝑠bswap is better than 𝜋)
(15) 𝜋 = 𝜋

𝑠

bswap
(16) 𝑖 = 1

(17) else
(18) 𝑖 = 𝑖 + 1

(19) endif
(20) ℎ = (ℎ + 1)% n
(21) endwhile

Algorithm 3: Swap-based local search.

(1) apply ILS to 𝜋
(2) while (true)
(3) apply SLS to 𝜋
(4) if (𝜋 is not improved during the previous Step)
(5) break
(6) endif
(7) apply ILS to 𝜋
(8) if (𝜋 is not improved during the previous Step)
(9) break
(10) endif
(11) endwhile

Algorithm 4: Combined local search.



Mathematical Problems in Engineering 5

(1) set parameters NP, d, ds
(2) generate the initial population
(3) 𝜋
𝑏
= the best solution in the population

(4) while (not termination)
(5) for (each employed bee)
(6) apply bestinsert to its solution in the population
(7) endfor
(8) for (each onlooker bee)
(9) apply CLS to the food source found by its employed bee
(10) update 𝜋

𝑏
if possible

(11) endfor
(12) for (each scout bee)
(13) produce a food source based on 𝜋

𝑏

(14) put the food source in the population by tournament selection
(15) update 𝜋

𝑏
if possible

(16) endfor
(17) endwhile

Algorithm 5: Procedure of the DABC algorithm.

of the algorithm’s search. Additionally, it can decrease the
number of the algorithm’s parameters to be calibrated.

3.4. Scout Bee. There are two choices for a scout bee. It
can either generate a food source randomly or produce a
food source based on the best solution 𝜋

𝑏
. The latter tends

to be more effective since the best solution in the current
population often maintains better characteristics than others
and the solution region around it could be more promising
than others. Therefore, in the proposed DABC algorithm,
the scout bee is designed to produce a food source by
performing the bestinsert procedure and the ILS on the best
solution 𝜋

𝑏
. First, the bestinsert procedure with parameter

𝑑𝑠 is performed on 𝜋
𝑏
and generates a new food source, and

then the new food source is further searched by the ILS. The
finally obtained food source by the scout bee is put in the
population through a tournament selection.The tournament
selection randomly chooses two solutions in the population,
and the worse one is replaced with the considered food
source. For simplicity of the parameter setting, the number
of the onlooker bees is set to 0.1NP.

3.5. Proposition of the DABC Algorithm. Since the details
of all components of the DABC algorithm have been given
out, the whole computational procedure is outlined in Algo-
rithm 5. Such an algorithm is expected to solve the LBPFSP
with the TFT criterion effectively and efficiently.

4. Computations and Comparisons

A large amount of computational experiments is carried out
to test the performance of the presented DABC algorithm.
The well-known Taillard benchmark instances with different
sizes are used. In this paper, Taillard benchmark instances
originally produced for the PFSP are treated as the LBPFSP
with the TFT criterion. All the tested algorithms are pro-
grammed in C++ language and the running environment is

a PC with Intel Core (TM) i5-2400 3.1 GHz processor. The
relative percentage deviation (RPD) is calculated to indicate
the amount of improvement over the reference solution.
Consider

RPD =

TFT
𝐴
− TFTref

TFTref
× 100, (4)

where TFT
𝐴
is the TFT of the solution obtained by the tested

algorithm 𝐴 and TFTref is the TFT of the reference solution.
The reference solutions are the best solutions in all of

these computational experiments for all algorithms, and they
are shown in theAppendix for all tested instances. Clearly, the
lower the RPD value is, the better results the algorithm yields.

4.1. Algorithm Calibration. In this section, we carry out
an experiment to calibrate the proposed DABC algorithm
(denoted by DABC). Since the computational efforts of the
CLS are usually more than that of the local search employing
a single neighborhood structure and the CLS is performed
for NP times in each generation of the DABC algorithm, we
suggest that the parameter NP is not too large, especially
when the allowed computational time of the algorithm is
relatively less. For all computations of the DABC algorithm
in this paper, we set NP to 10 and the stopping criterion is
elapsed CPU time not less than 3𝑛2𝑚 milliseconds. Setting
this CPU time related to the instances size allows the
algorithmmore time to solve the larger size instances that are
probably “harder.” In the calibration experiment, we perform
a large Design of Experiments [42], and the following factors
are tested: (1) the type of local search (LS), tested at three
levels: the local search by Ruiz and Stützle [36] (denoted by
LS RS), ILS, and CLS; (2) the parameter 𝑑, tested at eight
levels: 2–9; (3) the parameter 𝑑𝑠, tested at eight levels: 2–9.
Nine instances, Ta01,Ta11, . . . ,Ta81, are selected from each
problem group to avoid bias of the results, and the algorithm
is run for 10 replications with each parameter configuration
for each selected instance. For simplicity, they are treated



6 Mathematical Problems in Engineering

Table 1: ANOVA results for the experiment on the calibration of
DABC.

Source Sum of
squares Df Mean

square F value p value

Main effects
A: LS 5.37 2 2.69 62.23 <0.0001
B: d 5.81 7 0.83 19.23 <0.0001
C: ds 0.37 7 0.053 1.23 0.2836

Interactions

AB 6.192𝑒 −

005

14 4.423𝑒 −

006

1.025𝑒 − 004 1.0000

AC 6.097𝑒 −

005

14 4.435𝑒 −

006

1.009𝑒 − 004 1.0000

BC 5.59 49 0.11 2.64 <0.0001

as the LBPFSP with all buffers equal to one. In all, the
multifactor experimental design yields 3 × 8 × 8 × 10 ×
9 = 17280 results. With such a large data set, the Analysis
of Variance (ANOVA) technique is introduced to draw a
convincing conclusion of parameter calibration.TheANOVA
results are shown in Table 1.

It is concluded fromTable 1 that factor LS and factor 𝑑 are
statistically significant for the algorithm performance due to
its 𝑝 value less than 0.0001, while factor 𝑑𝑠 is not statistically
significant with a 𝑝 value equal to 0.2836. Besides, we note
that the interaction of parameters 𝑑 and 𝑑𝑠 is also significant,
which is understandable since the employed bee phase is
related to the scout bee phase.

Furthermore, to illustrate the differences of algorithm
performance with different parameter values, we reproduce
the one-factor means plots with 95% Least Significant Dif-
ference (LSD) confidence intervals of the factors LS and 𝑑,
shown in Figure 1. According to the statistical theory, it is seen
from Figure 1 that, for the local search method, the proposed
CLS is statistically better than ILS and ILS is statistically
better than LS RS. For the parameter 𝑑, the setting value 7
is statistically better than the setting values 2–6. As regards
parameter 𝑑𝑠, the differences are small and its means plot
is omitted for simplicity. Finally, we calibrate the DABC
algorithm, using combined local search, as 𝑑 = 7 and 𝑑𝑠 = 4.

4.2. Computational Comparisons. In the comparisons with
other algorithms from the literature, the proposed algorithm
uses the calibrated parameter setting. To our knowledge, the
LBPFSP with the TFT criterion has not been well studied,
so we take four well-performed algorithms from the PFSP
literature and adapt them for the considered problem in
this paper. The algorithms selected for comparisons are
the following: (1) the iterated greedy algorithm [36] (IG);
(2) the hybrid discrete differential evolution [25] (HDDE)
algorithm; (3) the discrete artificial bee colony algorithm
[35] (DABC T); and (4) the discrete artificial bee colony
algorithm [16] (DABC D). All the above compared algo-
rithms are reimplemented for the considered problem and
performed under the original algorithm’s parameter settings.
Wang et al. [20] reported that when the buffer size is equal

Table 2: ARPD of each algorithm on Taillard benchmark set (𝐵 =
1).

𝑛 × 𝑚 DABC DABC D DABC T HDDE IG RS
20 × 5 0.00 0.00 0.00 0.00 0.04
20 × 10 0.00 0.00 0.00 0.00 0.03
20 × 20 0.00 0.00 0.00 0.00 0.03
50 × 5 0.30 0.35 0.42 0.61 1.14
50 × 10 0.30 0.36 0.46 0.64 0.89
50 × 20 0.23 0.29 0.42 0.49 0.75
100 × 5 0.34 0.40 0.44 0.80 1.51
100 × 10 0.29 0.35 0.47 0.63 0.97
100 × 20 0.27 0.33 0.47 0.60 0.84
Overall mean 0.19 0.23 0.30 0.42 0.69

Table 3: ARPD of each algorithm on Taillard benchmark set (𝐵 =
2).

𝑛 × 𝑚 DABC DABC D DABC T HDDE IG RS
20 × 5 0.00 0.00 0.00 0.00 0.02
20 × 10 0.00 0.00 0.00 0.00 0.03
20 × 20 0.00 0.00 0.00 0.00 0.02
50 × 5 0.19 0.24 0.30 0.34 0.47
50 × 10 0.21 0.27 0.36 0.49 0.72
50 × 20 0.23 0.29 0.41 0.47 0.66
100 × 5 0.18 0.23 0.33 0.49 0.88
100 × 10 0.32 0.38 0.48 0.67 0.97
100 × 20 0.33 0.39 0.51 0.58 0.86
Overall mean 0.16 0.20 0.26 0.34 0.52

Table 4: ARPD of each algorithm on Taillard benchmark set (𝐵 =
3).

𝑛 × 𝑚 DABC DABC D DABC T HDDE IG RS
20 × 5 0.00 0.00 0.00 0.00 0.02
20 × 10 0.00 0.00 0.00 0.00 0.02
20 × 20 0.00 0.00 0.00 0.00 0.02
50 × 5 0.16 0.22 0.22 0.24 0.41
50 × 10 0.28 0.34 0.39 0.45 0.65
50 × 20 0.22 0.28 0.35 0.43 0.69
100 × 5 0.18 0.23 0.32 0.43 0.74
100 × 10 0.26 0.31 0.47 0.58 0.91
100 × 20 0.27 0.33 0.42 0.49 0.72
Overall mean 0.15 0.19 0.24 0.29 0.46

to 4, the problem is very close to the case with the buffers
of infinite capacity. Therefore, here, all the five algorithms
treat the problem with unitary buffer size 𝐵 equal to 1, 2, 3,
and 4. For each instance in all the 90 Taillard benchmark
instances, each algorithm is run 10 times. In total, we have
5 × 4 × 90 × 10 = 18000 data points. The average relative
percentage deviation (ARPD) values grouped in subsets of
different sizes are summarized in Tables 2–5 for each buffer
size, respectively.

Since the five algorithms are all executed in the same
computational environment with the same stopping criteria,



Mathematical Problems in Engineering 7

RP
D

LS_RS ILS CLS
LS

2 3 4 5 6 7 8 9

d

0.30

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43

0.44

0.45

Figure 1: Means plot with 95% LSD intervals for the type of local search and the parameter 𝑑 of the DABC algorithm.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

RP
D

DABC DABC_D DABC_T HDDE IG_RS
Algorithm

(a) 𝐵 = 1

0.6

0.5

0.4

0.3

0.2

0.1

RP
D

DABC DABC_D DABC_T HDDE IG_RS
Algorithm

(b) 𝐵 = 2

0.5

0.4

0.3

0.2

0.1

RP
D

DABC DABC_D DABC_T HDDE IG_RS
Algorithm

(c) 𝐵 = 3

0.5

0.4

0.3

0.2

0.1

RP
D

DABC DABC_D DABC_T HDDE IG_RS
Algorithm

(d) 𝐵 = 4

Figure 2: Means plot with 95% LSD intervals for different algorithms.



8 Mathematical Problems in Engineering

Table 5: ARPD of each algorithm on Taillard benchmark set (𝐵 =
4).

𝑛 × 𝑚 DABC DABC D DABC T HDDE IG RS
20 × 5 0.00 0.00 0.00 0.00 0.05
20 × 10 0.00 0.00 0.00 0.00 0.03
20 × 20 0.00 0.00 0.00 0.00 0.02
50 × 5 0.13 0.17 0.24 0.29 0.43
50 × 10 0.27 0.32 0.34 0.44 0.67
50 × 20 0.23 0.28 0.38 0.50 0.61
100 × 5 0.12 0.17 0.28 0.41 0.63
100 × 10 0.28 0.33 0.40 0.55 0.84
100 × 20 0.29 0.34 0.45 0.57 0.85
Overall mean 0.15 0.18 0.23 0.31 0.46

the results are fully and completely comparable. Tables 2–
5 validate the superiority of the DABC algorithm over the
other compared algorithms. The overall mean RPD values
yielded by the DABC algorithm are 0.19, 0.16, 0.15, and
0.15 when buffer size is equal to 1, 2, 3, and 4, respectively,
which are substantially lower than those (0.23, 0.20, 0.19,
and 0.18) obtained by the DABC D algorithm, those (0.30,
0.26, 0.24, and 0.23) obtained by the DABC T algorithm,
those (0.42, 0.34, 0.29, and 0.31) obtained by the HDDE
algorithm, and those (0.69, 0.52, 0.46, and 0.46) obtained
by the IG RS algorithm. Furthermore, for each buffer size,
the DABC algorithm has a lower ARPD value than all the
other algorithms for each of the nine subsets except that, for
the subsets with 20 jobs, the DABC, DABC D, DABC T, and
HDDE algorithms generate the same ARPD value equal to
zero.

While the differences of the DABC algorithm and the
other algorithms are quite clear from these tables, it is
still necessary to perform some statistical tests on the RPD
results in order to observe whether the differences in the
ARPD values are indeed statistically significant. Therefore,
we employ the 4500 data points for each buffer size and
conduct an ANOVA. The one-factor means plots with 95%
Least Significant Difference (LSD) confidence intervals of the
factor algorithm are shown in Figure 2.

FromFigure 2, it can be seen that although there are slight
differences in the means plots for different buffer sizes, the
same dominance relation between any two algorithms can be
obtained. Specifically, the LSD intervals of any two algorithms
are not overlapping, so we can conclude that the differences
between any two algorithms are statistically significant. The
statistical results also show that the DABC D algorithm is
better than the DABC T algorithm, the DABC T algorithm
is better than theHDDE algorithm, and theHDDE algorithm
is better than the IG RS algorithm.

Further, to illustrate the convergence characteristics of
these algorithms, Figures 3–6 illustrate several typical con-
vergence curves of the algorithms, for instance, Ta80. The
convergence curves show how the best found total flow time
values descended as the CPU time elapses for each algorithm,
and they reveal that in general the proposedDABC algorithm
obtained a better solution than the DABC D, DABC T,

Table 6: Best known solution values for Taillard benchmark set with
different buffer sizes.

Instance Best known solution
𝐵 = 1 𝐵 = 2 𝐵 = 3 𝐵 = 4

20 × 5

Ta01 14056 14033 14033 14033
Ta02 15159 15151 15151 15151
Ta03 13407 13301 13301 13301
Ta04 15530 15447 15447 15447
Ta05 13529 13529 13529 13529
Ta06 13329 13123 13123 13123
Ta07 13606 13548 13548 13548
Ta08 13950 13948 13948 13948
Ta09 14325 14295 14295 14295
Ta10 13019 12943 12943 12943

20 × 10

Ta11 21035 20955 20911 20911
Ta12 22532 22440 22440 22440
Ta13 19865 19833 19833 19833
Ta14 18758 18710 18710 18710
Ta15 18810 18641 18641 18641
Ta16 19245 19245 19245 19245
Ta17 18470 18363 18363 18363
Ta18 20241 20241 20241 20241
Ta19 20352 20330 20330 20330
Ta20 21335 21320 21320 21320

20 × 20

Ta21 33623 33623 33623 33623
Ta22 31675 31588 31587 31587
Ta23 33920 33920 33920 33920
Ta24 31766 31684 31661 31661
Ta25 34557 34557 34557 34557
Ta26 32565 32564 32564 32564
Ta27 32922 32922 32922 32922
Ta28 32467 32412 32412 32412
Ta29 33621 33600 33600 33600
Ta30 32269 32262 32262 32262

50 × 5

Ta31 65265 64838 64803 64803
Ta32 68791 68114 68094 68124
Ta33 64066 63365 63162 63242
Ta34 69012 68342 68360 68316
Ta35 70093 69434 69498 69414
Ta36 67815 66874 67009 66851
Ta37 66936 66271 66261 66294
Ta38 65250 64546 64420 64388
Ta39 63528 63018 62981 63047
Ta40 69603 68986 69000 69025

50 × 10

Ta41 88433 87407 87345 87286
Ta42 84164 83140 83080 82960



Mathematical Problems in Engineering 9

Table 6: Continued.

Instance Best known solution
𝐵 = 1 𝐵 = 2 𝐵 = 3 𝐵 = 4

Ta43 81658 80159 80147 79931
Ta44 87560 86664 86541 86678
Ta45 87650 86543 86448 86507

50 × 10

Ta46 87511 86645 86704 86742
Ta47 89819 89080 88831 89011
Ta48 87774 87191 86822 86727
Ta49 86629 85853 85555 85649
Ta50 89013 88121 87998 87998

50 × 20

Ta51 126856 125850 125844 125860
Ta52 120213 119284 119270 119333
Ta53 117415 116483 116653 116459
Ta54 121742 120969 121044 121033
Ta55 119708 118777 118379 118437
Ta56 121573 120638 120783 120870
Ta57 124122 123072 123018 123018
Ta58 123429 122677 122593 122576
Ta59 122997 122090 122130 121872
Ta60 125277 124436 123954 124101

100 × 5

Ta61 258193 254676 253887 254083
Ta62 247898 243949 243357 243460
Ta63 243080 238802 238732 238589
Ta64 232350 228779 228394 228200
Ta65 244990 241513 240868 241247
Ta66 238391 233936 233432 233461
Ta67 245320 241630 241148 241078
Ta68 238380 233080 231720 232039
Ta69 253553 249418 248647 248701
Ta70 248872 244979 243684 243754

100 × 10

Ta71 306450 300524 300289 299083
Ta72 286565 277464 276113 276321
Ta73 297709 290564 289191 288965
Ta74 312607 304039 303602 303495
Ta75 293860 287153 286124 286086
Ta76 280880 272115 271496 271055
Ta77 290803 282987 280778 281097
Ta78 299396 292674 292305 292774
Ta79 311321 304320 303358 303697
Ta80 300817 293468 292546 292351

100 × 20

Ta81 375319 369698 368500 367140
Ta82 384108 375688 374152 374583
Ta83 379817 373071 371560 371677
Ta84 383871 376066 375079 375180
Ta85 377848 371292 370517 370279

Table 6: Continued.

Instance Best known solution
𝐵 = 1 𝐵 = 2 𝐵 = 3 𝐵 = 4

Ta86 381872 374943 374127 373316
Ta87 386723 376675 375686 374992
Ta88 393530 386499 386371 386411
Ta89 383910 376687 377024 376929
Ta90 389725 382285 380606 380599

0 50 100 150 200 250 300
3

3.05

3.1

3.15

3.2

3.25

CPU time (s)
To

ta
l fl

ow
 ti

m
e

DABC
DABC_D
DABC_T

HDDE
IG_RS

×10
5

Figure 3: The convergence curves for instance Ta80 (𝐵 = 1).

HDDE, and IG RS algorithms and its advantages become
more andmore impressive as the computational time elapses.
After all, the convergence curves validate the superiority of
the DABC algorithm over the DABC D, DABC T, HDDE,
and IG RS algorithms.

5. Conclusions

This paper proposes a discrete artificial bee colony (DABC)
algorithm for solving the permutation flow shop schedul-
ing problem with limited buffers with the total flow time
minimization criterion. For solving this problem, the DABC
algorithm uses discrete job permutation as food source and
introduces the NEH heuristic and its variants to construct
the initial population with consideration of both quality
and diversity. Moreover, by presenting the best insertion
procedure and the combined local search, we present the
corresponding improved schemes for the employed bee,
onlooker bee, and scout bee phases, respectively. The results
of computational experiments and statistical analysis show
that the proposedDABC algorithmnot only is superior to the
existing discrete differential evolution algorithm and iterated
greedy algorithm but also performs better than two recently
proposed discrete artificial bee colony algorithms. Besides,
the DABC algorithm is technically feasible to apply in the
practical production environment because of its structural
simplicity as well as its high efficacy. In future, we will
focus on adapting the DABC algorithm for multiobjective
scheduling problems and stochastic scheduling models.



10 Mathematical Problems in Engineering

0 50 100 150 200 250 300

3

2.96
2.98

2.94
2.92

3.08
3.06
3.04
3.02

3.1

CPU time (s)

DABC
DABC_D
DABC_T

HDDE
IG_RS

×10
5

To
ta

l fl
ow

 ti
m

e

Figure 4: The convergence curves for instance Ta80 (𝐵 = 2).

0 50 100 150 200 250 300

3

2.96
2.98

2.94
2.92

3.08
3.06
3.04
3.02

3.12
3.1

CPU time (s)

DABC
DABC_D
DABC_T

×10
5

To
ta

l fl
ow

 ti
m

e

HDDE
IG_RS

Figure 5: The convergence curves for instance Ta80 (𝐵 = 3).

Appendix

The best known solution values for all tested instances are
given in terms of different buffer sizes in Table 6.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The research was partially supported by National Natural
Science Foundation of China (Grant no. 61403180), the
Project for Introducing Talents of Ludong University (Grant
no. LY2013005), National Natural Science Foundation of
China (Grant no. 61273152), the Promotive Research Fund
for Excellent Young andMiddle-Aged Scientists of Shandong
Province (Grant no. BS2015DX018), National Natural Science
Foundation of China (Grant no. 51407088), and the Project
of Shandong Province Higher Educational Science and Tech-
nology Program (Grant no. J14LN20).

0 50 100 150 200 250 300

3

2.96
2.98

2.94
2.92

3.08
3.06
3.04
3.02

3.1

CPU time (s)

DABC
DABC_D
DABC_T

×10
5

To
ta

l fl
ow

 ti
m

e

HDDE
IG_RS

Figure 6: The convergence curves for instance Ta80 (𝐵 = 4).

References

[1] H. W. Thornton and J. L. Hunsucker, “A new heuristic for
minimal makespan in flow shops with multiple processors
and no intermediate storage,” European Journal of Operational
Research, vol. 152, no. 1, pp. 96–114, 2004.

[2] I. Ribas, R. Companys, and X. Tort-Martorell, “An iterated
greedy algorithm for the flowshop scheduling problem with
blocking,” Omega, vol. 39, no. 3, pp. 293–301, 2011.

[3] Q.-K. Pan and L. Wang, “Effective heuristics for the blocking
flowshop scheduling problem with makespan minimization,”
Omega, vol. 40, no. 2, pp. 218–229, 2012.

[4] N. G. Hall and C. Sriskandarajah, “A survey of machine
scheduling problems with blocking and no-wait in process,”
Operations Research, vol. 44, no. 3, pp. 510–525, 1996.

[5] C.H. Papadimitriou and P. C. Kanellakis, “Flowshop scheduling
with limited temporary storage,” Journal of the ACM, vol. 27, no.
3, pp. 533–549, 1980.

[6] S. T. McCormick, M. L. Pinedo, S. Shenker, and B. Wolf,
“Sequencing in an assembly line with blocking to minimize
cycle time,”Operations Research, vol. 37, no. 6, pp. 925–935, 1989.

[7] R. Leisten, “Flowshop sequencing problems with limited buffer
storage,” International Journal of Production Research, vol. 28,
no. 11, pp. 2085–2100, 1990.

[8] M. Nawaz, E. E. Enscore Jr., and I. Ham, “A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem,”
Omega, vol. 11, no. 1, pp. 91–95, 1983.

[9] D. P. Ronconi, “A note on constructive heuristics for the
flowshop problem with blocking,” International Journal of
Production Economics, vol. 87, no. 1, pp. 39–48, 2004.

[10] V. Caraffa, S. Ianes, T. P. Bagchi, and C. Sriskandarajah,
“Minimizing makespan in a blocking flowshop using genetic
algorithms,” International Journal of Production Economics, vol.
70, no. 2, pp. 101–115, 2001.

[11] J. Grabowski and J. Pempera, “The permutation flow shop
problem with blocking. A tabu search approach,” Omega, vol.
35, no. 3, pp. 302–311, 2007.

[12] L. Wang, Q.-K. Pan, P. N. Suganthan, W.-H. Wang, and Y.-M.
Wang, “A novel hybrid discrete differential evolution algorithm
for blocking flow shop scheduling problems,” Computers &
Operations Research, vol. 37, no. 3, pp. 509–520, 2010.



Mathematical Problems in Engineering 11

[13] I. Ribas, R. Companys, and X. Tort-Martorell, “A competitive
variable neighbourhood search algorithm for the blocking flow
shop problem,” European Journal of Industrial Engineering, vol.
7, no. 6, pp. 729–754, 2013.

[14] L. Wang, Q.-K. Pan, and M. F. Tasgetiren, “A hybrid harmony
search algorithm for the blocking permutation flow shop
scheduling problem,” Computers & Industrial Engineering, vol.
61, no. 1, pp. 76–83, 2011.

[15] L.Wang, Q.-K. Pan, andM. F. Tasgetiren, “Minimizing the total
flow time in a flow shopwith blocking by using hybrid harmony
search algorithms,” Expert Systems with Applications, vol. 37, no.
12, pp. 7929–7936, 2010.

[16] G. Deng, Z. Xu, and X. Gu, “A discrete artificial bee colony
algorithm for minimizing the total flow time in the blocking
flow shop scheduling,”Chinese Journal of Chemical Engineering,
vol. 20, no. 6, pp. 1067–1073, 2012.

[17] C. Smutnicki, “A two-machine permutation flow shop schedul-
ing problem with buffers,” Operations-Research-Spektrum, vol.
20, no. 4, pp. 229–235, 1998.

[18] E. Nowicki, “The permutation flow shop with buffers: a tabu
search approach,”European Journal ofOperational Research, vol.
116, no. 1, pp. 205–219, 1999.

[19] P. Brucker, S. Heitmann, and J. Hurink, “Flow-shop problems
with intermediate buffers,”OR Spectrum, vol. 25, no. 4, pp. 549–
574, 2003.

[20] L. Wang, L. Zhang, and D.-Z. Zheng, “An effective hybrid
genetic algorithm for flow shop scheduling with limited
buffers,” Computers & Operations Research, vol. 33, no. 10, pp.
2960–2971, 2006.

[21] B. Liu, L. Wang, and Y.-H. Jin, “An effective hybrid PSO-
based algorithm for flow shop scheduling with limited buffers,”
Computers & Operations Research, vol. 35, no. 9, pp. 2791–2806,
2008.

[22] B. Qian, L. Wang, D. X. Huang, and X. Wang, “An effective
hybrid DE-based algorithm for flow shop scheduling with
limited buffers,” International Journal of Production Research,
vol. 47, no. 1, pp. 1–24, 2009.

[23] Y.-C. Hsieh, P.-S. You, and C.-D. Liou, “A note of using effective
immune based approach for the flow shop scheduling with
buffers,” Applied Mathematics and Computation, vol. 215, no. 5,
pp. 1984–1989, 2009.

[24] Q.-K. Pan, L. Wang, and L. Gao, “A chaotic harmony search
algorithm for the flow shop scheduling problem with limited
buffers,”Applied Soft Computing Journal, vol. 11, no. 8, pp. 5270–
5280, 2011.

[25] Q.-K. Pan, L. Wang, L. Gao, and W. D. Li, “An effective hybrid
discrete differential evolution algorithm for the flow shop
scheduling with intermediate buffers,” Information Sciences, vol.
181, no. 3, pp. 668–685, 2011.

[26] F.Q. Zhao, J. X. Tang, J. B.Wang, and J. Jonrinaldi, “An improved
particle swarm optimisation with a linearly decreasing dis-
turbance term for flow shop scheduling with limited buffers,”
International Journal of Computer Integrated Manufacturing,
vol. 27, no. 5, pp. 488–499, 2014.

[27] G. Moslehi and D. Khorasanian, “A hybrid variable neigh-
borhood search algorithm for solving the limited-buffer per-
mutation flow shop scheduling problem with the makespan
criterion,” Computers & Operations Research, vol. 52, pp. 260–
268, 2014.

[28] C. Y. Zhang, P. G. Li, Y. Q. Rao, and Z. L. Guan, “A very
fast TS/SA algorithm for the job shop scheduling problem,”

Computers & Operations Research, vol. 35, no. 1, pp. 282–294,
2008.

[29] C. Y. Zhang, P. Li, Z. Guan, and Y. Rao, “A tabu search algorithm
with a new neighborhood structure for the job shop scheduling
problem,” Computers & Operations Research, vol. 34, no. 11, pp.
3229–3242, 2007.

[30] D. Karaboga and B. Basturk, “A powerful and efficient algo-
rithm for numerical function optimization: artificial bee colony
(ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3,
pp. 459–471, 2007.

[31] D. Karaboga and B. Basturk, “On the performance of artificial
bee colony (ABC) algorithm,” Applied Soft Computing Journal,
vol. 8, no. 1, pp. 687–697, 2008.

[32] N. Karaboga, “A new design method based on artificial bee
colony algorithm for digital IIR filters,” Journal of the Franklin
Institute, vol. 346, no. 4, pp. 328–348, 2009.

[33] D. Karaboga and B. Akay, “A comparative study of artificial Bee
colony algorithm,” Applied Mathematics and Computation, vol.
214, no. 1, pp. 108–132, 2009.

[34] Q.-K. Pan, M. F. Tasgetiren, P. N. Suganthan, and T. J. Chua,
“A discrete artificial bee colony algorithm for the lot-streaming
flow shop scheduling problem,” Information Sciences, vol. 181,
no. 12, pp. 2455–2468, 2011.

[35] M. F. Tasgetiren, Q.-K. Pan, P. N. Suganthan, andA.H.-L. Chen,
“A discrete artificial bee colony algorithm for the total flowtime
minimization in permutation flow shops,” Information Sciences,
vol. 181, no. 16, pp. 3459–3475, 2011.

[36] R. Ruiz and T. Stützle, “A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem,”
European Journal of Operational Research, vol. 177, no. 3, pp.
2033–2049, 2007.

[37] J. M. Framinan and R. Leisten, “Total tardiness minimization in
permutation flow shops: a simple approach based on a variable
greedy algorithm,” International Journal of Production Research,
vol. 46, no. 22, pp. 6479–6498, 2008.

[38] E. Vallada and R. Ruiz, “Cooperative metaheuristics for the
permutation flowshop scheduling problem,” European Journal
of Operational Research, vol. 193, no. 2, pp. 365–376, 2009.

[39] Q.-K. Pan, M. F. Tasgetiren, and Y.-C. Liang, “A discrete
differential evolution algorithm for the permutation flowshop
scheduling problem,” Computers and Industrial Engineering,
vol. 55, no. 4, pp. 795–816, 2008.

[40] G. Deng and X. Gu, “A hybrid discrete differential evolution
algorithm for the no-idle permutation flow shop scheduling
problem with makespan criterion,” Computers & Operations
Research, vol. 39, no. 9, pp. 2152–2160, 2012.

[41] Q.-K. Pan and R. Ruiz, “An effective iterated greedy algorithm
for the mixed no-idle permutation flowshop scheduling prob-
lem,” Omega, vol. 44, pp. 41–50, 2014.

[42] D. C. Montgomery, Design and Analysis of Experiments, Wiley,
New York, NY, USA, 8th edition, 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


