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We study the Hyers-Ulam stability in a Banach space 𝑋 of the system of first order linear difference equations of the form x
𝑛+1
=

𝐴x
𝑛
+ d
𝑛
for 𝑛 ∈ N

0
(nonnegative integers), where 𝐴 is a given 𝑟 × 𝑟 matrix with real or complex coefficients, respectively, and

(d
𝑛
)
𝑛∈N0

is a fixed sequence in𝑋𝑟. That is, we investigate the sequences (y
𝑛
)
𝑛∈N0

in𝑋𝑟 such that 𝛿 := sup
𝑛∈N0
‖y
𝑛+1
−𝐴y
𝑛
− d
𝑛
‖ < ∞

(with the maximum norm in 𝑋𝑟) and show that, in the case where all the eigenvalues of 𝐴 are not of modulus 1, there is a positive
real constant 𝑐 (dependent only on 𝐴) such that, for each such a sequence (y

𝑛
)
𝑛∈N0

, there is a solution (x
𝑛
)
𝑛∈N0

of the system with
sup
𝑛∈N0
‖y
𝑛
− x
𝑛
‖ ≤ 𝑐𝛿.

1. Introduction

The issue of stability of a functional equation can be expressed
in the followingway.Whenmust a function satisfying an equa-
tion approximately (in some sense) be near an exact solution
to the equation? It has been motivated by a question raised
in 1940 by Ulam, concerning approximate homomorphisms
of groups (see [1, 2]). The first partial answer to Ulam’s
question (in the case of Cauchy’s functional equation in
Banach spaces) was given by Hyers in [1]. After that result,
a great number of papers on the subject have been published
(see, e.g., monographs [3–5], survey articles [6–11], and the
references given there), generalizing Ulam’s problem and
Hyers’s theorem in various directions and to other equations
(not necessarily functional) (see [12]). In particular, some
results have been proved in [13], which concern the stability
of linear difference equations of higher order of form (1). We
describe them as follows.

Let 𝑇 be either N
0
(the set of nonnegative integers) or Z

(the set of integers), let K be either the field of reals R or the
field of complex numbers C, let 𝑝 ∈ N (the set of positive
integers), let 𝑎

1
, . . . , 𝑎

𝑝
∈ K be fixed, and let (𝑏

𝑛
)
𝑛∈𝑇

be a given

sequence in a Banach space 𝑋 over K. The investigation of
the Hyers-Ulam stability in𝑋 of the difference equation

𝑥
𝑛+𝑝
= 𝑎
1
𝑥
𝑛+𝑝−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑝
𝑥
𝑛
+ 𝑏
𝑛
, 𝑛 ∈ 𝑇, (1)

actually means a study of the sequences (𝑦
𝑛
)
𝑛∈𝑇

in𝑋, satisfy-
ing the condition

𝛿 := sup
𝑛∈𝑇

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑛+𝑝
− 𝑎
1
𝑦
𝑛+𝑝−1

− ⋅ ⋅ ⋅ − 𝑎
𝑝
𝑦
𝑛
− 𝑏
𝑛

󵄩󵄩󵄩󵄩󵄩
< ∞. (2)

Let S = {𝑧 ∈ C : |𝑧| = 1} and 𝑡
1
, . . . , 𝑡

𝑝
∈ C denote

the roots of the characteristic equation of (1), which has the
following form: 𝑧𝑝 = 𝑎

1
𝑧
𝑝−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑝
. The following two

theorems have been proved in [13] (see also [14, 15]).

Theorem 1. Let 𝛿 > 0 and 𝑡
1
, . . . , 𝑡

𝑝
∈ C \ S. Suppose that

(𝑦
𝑛
)
𝑛∈𝑇

is a sequence in𝑋 such that (2) holds.Then, there exists
a sequence (𝑥

𝑛
)
𝑛∈𝑇

in𝑋 satisfying (1) such that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 ≤

𝛿

󵄨󵄨󵄨󵄨1 −
󵄨󵄨󵄨󵄨𝑡1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨 ⋅ ⋅ ⋅ ⋅ ⋅
󵄨󵄨󵄨󵄨󵄨
1 −
󵄨󵄨󵄨󵄨󵄨
𝑡
𝑝

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

, 𝑛 ∈ 𝑇. (3)
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Moreover,

(a) (𝑥
𝑛
)
𝑛∈𝑇

is unique if and only if |𝑡
𝑖
| > 1 for 𝑖 = 1, . . . , 𝑝

or 𝑇 = Z;
(b) if |𝑡

𝑖
| > 1 for 𝑖 ∈ {1, . . . , 𝑝} or 𝑇 = Z, then (𝑥

𝑛
)
𝑛∈𝑇

is the unique sequence in 𝑋 such that (1) holds and
sup
𝑛∈𝑇
‖𝑥
𝑛
− 𝑦
𝑛
‖ < ∞;

(c) if 𝑇 = N
0
and |𝑡

𝑖
| < 1 for some 𝑖 ∈ {1, . . . , 𝑝}, then the

cardinality of the set of all sequences (𝑥
𝑛
)
𝑛∈𝑇

in 𝑋,
satisfying (1) and (3), equals the cardinality of𝑋.

Theorem 2. Let |𝑡
𝑗
| = 1 for some 𝑗 ∈ {1, . . . , 𝑝}. Then, for any

𝛿 > 0, there exists a sequence (𝑦
𝑛
)
𝑛∈𝑇

in𝑋, satisfying inequality
(2), such that, for every sequence (𝑥

𝑛
)
𝑛∈𝑇

in 𝑋, fulfilling recur-
rence (1),

sup
𝑛∈𝑇

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = ∞. (4)

Moreover, if 𝑡
1
, . . . , 𝑡

𝑝
∈ K or there is a bounded sequence

(𝑥
𝑛
)
𝑛∈𝑇

in 𝑋 fulfilling (1), then (𝑦
𝑛
)
𝑛∈𝑇

can be chosen
unbounded.

We somehow complement those results in this paper by
the study of the Hyers-Ulam stability of the following system
of first order linear difference equations in 𝑋 with constant
coefficients 𝑎

𝑖𝑗
∈ K, 𝑖, 𝑗 = 1, . . . , 𝑟 (𝑟 ∈ N is fixed):

𝑥
1

𝑛+1
= 𝑎
11
𝑥
1

𝑛
+ 𝑎
12
𝑥
2

𝑛
+ ⋅ ⋅ ⋅ + 𝑎

1𝑟
𝑥
𝑟

𝑛
+ 𝑑
1

𝑛
,

𝑥
2

𝑛+1
= 𝑎
21
𝑥
1

𝑛
+ 𝑎
22
𝑥
2

𝑛
+ ⋅ ⋅ ⋅ + 𝑎

2𝑟
𝑥
𝑟

𝑛
+ 𝑑
2

𝑛
,

.

.

.

𝑥
𝑟

𝑛+1
= 𝑎
𝑟1
𝑥
1

𝑛
+ 𝑎
𝑟2
𝑥
2

𝑛
+ ⋅ ⋅ ⋅ + 𝑎

𝑟𝑟
𝑥
𝑟

𝑛
+ 𝑑
𝑟

𝑛
,

(5)

for all 𝑛 ∈ N
0
, where 𝑑1

𝑛
, . . . , 𝑑

𝑟

𝑛
∈ 𝑋 for 𝑛 ∈ N

0
are given. If

we write

𝐴 =

[
[
[
[
[

[

𝑎
11
𝑎
12
⋅ ⋅ ⋅ 𝑎
1𝑟

𝑎
21
𝑎
22
⋅ ⋅ ⋅ 𝑎
2𝑟

.

.

.
.
.
. d

.

.

.

𝑎
𝑟1
𝑎
𝑟2
⋅ ⋅ ⋅ 𝑎
𝑟𝑟

]
]
]
]
]

]

,

x
𝑛
=

[
[
[
[
[
[

[

𝑥
1

𝑛

𝑥
2

𝑛

.

.

.

𝑥
𝑟

𝑛

]
]
]
]
]
]

]

, d
𝑛
=

[
[
[
[
[
[

[

𝑑
1

𝑛

𝑑
2

𝑛

.

.

.

𝑑
𝑟

𝑛

]
]
]
]
]
]

]

,

(6)

then (5) can be expressed in the following simple form:

x
𝑛+1
= 𝐴x
𝑛
+ d
𝑛
, 𝑛 ∈ N

0
. (7)

To simplify the notations, we consider x
𝑛
and d

𝑛
to be ele-

ments of 𝑋𝑟, when it is convenient (and when this makes no
confusion); that is, we identify x

𝑛
with (𝑥1

𝑛
, . . . , 𝑥

𝑟

𝑛
) and d

𝑛

with (𝑑1
𝑛
, . . . , 𝑑

𝑟

𝑛
).

Our results correspond, in particular, not only to the
outcomes in [13], but also to those in [14, 15], where similar
problems have been studied for 𝑟 = 1.

2. Some Auxiliary Results

By an elementary induction on 𝑛, we obtain the following
simple observation.

Lemma 3. If a sequence (x
𝑛
)
𝑛∈N0

in 𝑋𝑟 satisfies (7), then

x
𝑛
= 𝐴
𝑛x
0
+

𝑛

∑

𝑘=1

𝐴
𝑛−𝑘d
𝑘−1
, 𝑛 ∈ N. (8)

In this paper,

𝐶
𝑛

𝑗
:= (

𝑛

𝑗
) =

𝑛!

(𝑛 − 𝑗)!𝑗!
, 𝑛, 𝑗 ∈ N

0
, 𝑛 ≥ 𝑗, (9)

denote the binomial coefficients and 𝐶𝑛
𝑗
:= 0 for 𝑗 > 𝑛. The

subsequent formula is well known:

∞

∑

𝑛=0

𝐶
𝑛+𝑗

𝑛
𝑤
𝑛

=
1

(1 − 𝑤)
𝑗+1
, 𝑤 ∈ [0, 1) , 𝑗 ∈ N

0
. (10)

Also, replacing 𝑤 by 1/𝑥, we easily obtain that

∞

∑

𝑛=0

𝐶
𝑛+𝑗

𝑛
𝑥
−(𝑛+𝑗+1)

=
1

(𝑥 − 1)
𝑗+1
, 𝑥 ∈ (1,∞) , 𝑗 ∈ N

0
.

(11)

Further, write

‖𝐴‖ := max
1≤𝑖≤𝑟

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
,

‖x‖ := max
1≤𝑖≤𝑟

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩 , x = (𝑥

1
, . . . , 𝑥

𝑟
) ∈ 𝑋
𝑟

.

(12)

Then, (𝑋𝑟, ‖ ⋅ ‖) is a Banach space and we have the following
result, which will be useful in the proof of the main theorem.

Theorem 4. Let 𝐽
𝜆,𝑟

be a Jordan matrix of the form

𝐽
𝜆,𝑟
=

[
[
[
[
[
[
[
[

[

𝜆 1 0 ⋅ ⋅ ⋅ 0 0

0 𝜆 1 ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
.
.
.
. d

.

.

.
.
.
.

0 0 0 ⋅ ⋅ ⋅ 𝜆 1

0 0 0 ⋅ ⋅ ⋅ 0 𝜆

]
]
]
]
]
]
]
]

]
𝑟×𝑟

, (13)

with some 𝜆 ∈ C \ S. If a sequence (y
𝑛
)
𝑛∈N0

in𝑋𝑟 satisfies

𝛿 := sup
𝑛∈N0

󵄩󵄩󵄩󵄩y𝑛+1 − 𝐽𝜆,𝑟y𝑛 − b𝑛
󵄩󵄩󵄩󵄩 < ∞, (14)

then there exists a sequence (x
𝑛
)
𝑛∈N0

in𝑋𝑟 such that

x
𝑛+1
= 𝐽
𝜆,𝑟
x
𝑛
+ b
𝑛
, 𝑛 ∈ N

0
, (15)

sup
𝑛∈N0

󵄩󵄩󵄩󵄩y𝑛 − x𝑛
󵄩󵄩󵄩󵄩 ≤ 𝛿

𝑟

∑

𝑗=1

|1 − |𝜆||
−𝑗

. (16)
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Proof. Let c
𝑛
:= y
𝑛+1
− 𝐽
𝜆,𝑟
y
𝑛
− b
𝑛
for 𝑛 ∈ N

0
. Then, by (14),

‖c
𝑛
‖ ≤ 𝛿 for 𝑛 ∈ N

0
and (see Lemma 3)

y
𝑛
= 𝐽
𝑛

𝜆,𝑟
y
0
+

𝑛

∑

𝑘=1

𝐽
𝑛−𝑘

𝜆,𝑟
(b
𝑘−1
+ c
𝑘−1
) , 𝑛 ∈ N. (17)

Case 1 (|𝜆| < 1). Define the sequence (x
𝑛
)
𝑛∈N0

by (15) with
x
0
= y
0
. Then,

󵄩󵄩󵄩󵄩y𝑛 − x𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑘=1

𝐽
𝑛−𝑘

𝜆,𝑟
c
𝑘−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝛿

𝑛

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑛−𝑘

𝜆,𝑟

󵄩󵄩󵄩󵄩󵄩
, 𝑛 ∈ N. (18)

It is easy to show by induction on 𝑛 that 𝐽𝑛
𝜆,𝑟

is an upper (right)
triangular matrix of the form

𝐽
𝑛

𝜆,𝑟
=

[
[
[
[
[
[
[
[
[

[

𝜆
𝑛

𝐶
𝑛

1
𝜆
𝑛−1

⋅ ⋅ ⋅ 𝐶
𝑛

𝑟−1
𝜆
𝑛−(𝑟−1)

0 𝜆
𝑛

⋅ ⋅ ⋅ 𝐶
𝑛

𝑟−2
𝜆
𝑛−(𝑟−2)

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ 𝐶
𝑛

1
𝜆
𝑛−1

0 0 ⋅ ⋅ ⋅ 𝜆
𝑛

]
]
]
]
]
]
]
]
]

]𝑟×𝑟

(19)

(it is enough to use thewell-known formula𝐶𝑛+1
𝑘+1
= 𝐶
𝑛

𝑘
+𝐶
𝑛

𝑘+1
)

whence we derive that ‖𝐽𝑛
𝜆,𝑟
‖ = ∑

𝑟−1

𝑗=0
𝐶
𝑛

𝑗
|𝜆|
𝑛−𝑗 for 𝑛 ∈ N

0
.

Since, in view of (10),

∞

∑

𝑛=0

𝐶
𝑛

𝑗
|𝜆|
𝑛−𝑗

=
1

(1 − |𝜆|)
𝑗+1
, 𝑗 = 0, . . . , 𝑟, (20)

we have
∞

∑

𝑛=0

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑛

𝜆,𝑟

󵄩󵄩󵄩󵄩󵄩
=

∞

∑

𝑛=0

𝑟−1

∑

𝑗=0

𝐶
𝑛

𝑗
|𝜆|
𝑛−𝑗

=

𝑟−1

∑

𝑗=0

∞

∑

𝑛=0

𝐶
𝑛

𝑗
|𝜆|
𝑛−𝑗

=

𝑟

∑

𝑗=1

1

(1 − |𝜆|)
𝑗

(21)

and, by (18),

󵄩󵄩󵄩󵄩y𝑛 − x𝑛
󵄩󵄩󵄩󵄩 ≤

∞

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
𝐽
𝑘

𝜆,𝑟

󵄩󵄩󵄩󵄩󵄩
𝛿 = 𝛿

𝑟

∑

𝑗=1

1

(1 − |𝜆|)
𝑗
, 𝑛 ∈ N

0
. (22)

That is, inequality (16) holds.

Case 2 (|𝜆| > 1). Since 𝐽−1
𝜆,𝑟

is an upper triangular matrix of the
form

𝐽
−1

𝜆,𝑟
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜆
−1
−1

𝜆2
⋅ ⋅ ⋅
(−1)
𝑟−1

𝜆𝑟

0 𝜆
−1

⋅ ⋅ ⋅
(−1)
𝑟−2

𝜆𝑟−1

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅
−1

𝜆2

0 0 ⋅ ⋅ ⋅ 𝜆
−1

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]𝑟×𝑟

, (23)

it is easy to check that 𝐽−𝑛
𝜆,𝑟

is also an upper triangular matrix
for each 𝑛 ∈ N and has the form

𝐽
−𝑛

𝜆,𝑟
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝜆
−𝑛
−𝐶
𝑛

𝑛−1

𝜆𝑛+1
⋅ ⋅ ⋅
(−1)
𝑟−1

𝐶
𝑛+𝑟−2

𝑛−1

𝜆𝑛+𝑟−1

0 𝜆
−𝑛

⋅ ⋅ ⋅
(−1)
𝑟−2

𝐶
𝑛+𝑟−3

𝑛−1

𝜆𝑛+𝑟−2

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅
−𝐶
𝑛

𝑛−1

𝜆𝑛+1

0 0 ⋅ ⋅ ⋅ 𝜆
−𝑛

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]
𝑟×𝑟

. (24)

Hence,
󵄩󵄩󵄩󵄩󵄩
𝐽
−𝑛

𝜆,𝑟

󵄩󵄩󵄩󵄩󵄩
=

𝑟−1

∑

𝑗=0

𝐶
𝑛−1+𝑗

𝑛−1
|𝜆|
−(𝑛+𝑗)

, 𝑛 ∈ N. (25)

Consequently, in view of (11),
∞

∑

𝑛=1

󵄩󵄩󵄩󵄩󵄩
𝐽
−𝑛

𝜆,𝑟

󵄩󵄩󵄩󵄩󵄩
=

∞

∑

𝑛=0

𝑟−1

∑

𝑗=0

𝐶
𝑛+𝑗

𝑛
|𝜆|
−(𝑛+𝑗+1)

=

𝑟−1

∑

𝑗=0

∞

∑

𝑛=0

𝐶
𝑛+𝑗

𝑛
|𝜆|
−(𝑛+𝑗+1)

=

𝑟

∑

𝑗=1

1

(|𝜆| − 1)
𝑗
.

(26)

Taking into account that ‖𝐽−𝑘
𝜆,𝑟
c
𝑘−1
‖ ≤ ‖𝐽

−𝑘

𝜆,𝑟
‖‖c
𝑘−1
‖ ≤ 𝛿‖𝐽

−𝑘

𝜆,𝑟
‖

for 𝑘 ∈ N, we deduce that the series ∑∞
𝑘=1
𝐽
−𝑘

𝜆,𝑟
c
𝑘−1

is con-
vergent. Take

s :=
∞

∑

𝑘=1

𝐽
−𝑘

𝜆,𝑟
c
𝑘−1

(27)

and define (x
𝑛
)
𝑛∈N0

by (15) with x
0
= y
0
+ s. Then, (see

Lemma 3)

x
𝑛
= 𝐽
𝑛

𝜆,𝑟
(y
0
+ s) +

𝑛

∑

𝑘=1

𝐽
𝑛−𝑘

𝜆,𝑟
b
𝑘−1
, 𝑛 ∈ N. (28)

Next, by (26), for every 𝑛 ∈ N, we have

󵄩󵄩󵄩󵄩y𝑛 − x𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑘=1

𝐽
𝑛−𝑘

𝜆,𝑟
c
𝑘−1
− 𝐽
𝑛

𝜆,𝑟
s
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑘=1

𝐽
𝑛−𝑘

𝜆,𝑟
c
𝑘−1
− 𝐽
𝑛

𝜆,𝑟

∞

∑

𝑘=1

𝐽
−𝑘

𝜆,𝑟
c
𝑘−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑘=1

𝐽
𝑛−𝑘

𝜆,𝑟
c
𝑘−1
−

∞

∑

𝑘=1

𝐽
𝑛−𝑘

𝜆,𝑟
c
𝑘−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑘=𝑛+1

𝐽
𝑛−𝑘

𝜆,𝑟
c
𝑘−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

,

(29)

whence
󵄩󵄩󵄩󵄩y𝑛 − x𝑛

󵄩󵄩󵄩󵄩 ≤

∞

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝐽
−𝑘

𝜆,𝑟

󵄩󵄩󵄩󵄩󵄩
𝛿 = 𝛿

𝑟

∑

𝑗=1

1

(|𝜆| − 1)
𝑗
, 𝑛 ∈ N

0
. (30)
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Let 𝜆
1
, . . . , 𝜆

𝑚
be the eigenvalues of 𝐴 with multiplicities

𝑟
1
, . . . , 𝑟

𝑚
, respectively. There exists a nonsingular matrix 𝑄

in C𝑟×𝑟 with 𝐴 = 𝑄𝐽𝑄−1, where

𝐽 = 𝐽
𝜆1 ,𝑟1
⊕ ⋅ ⋅ ⋅ ⊕ 𝐽

𝜆𝑚 ,𝑟𝑚
,

𝐽
𝜆𝑗 ,𝑟𝑗
=

[
[
[
[
[
[
[
[
[

[

𝜆
𝑗
1 0 ⋅ ⋅ ⋅ 0 0

0 𝜆
𝑗
1 ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
.
.
.
. d

.

.

.
.
.
.

0 0 0 ⋅ ⋅ ⋅ 𝜆
𝑗
1

0 0 0 ⋅ ⋅ ⋅ 0 𝜆
𝑗

]
]
]
]
]
]
]
]
]

]𝑟𝑗×𝑟𝑗

, 𝑗 = 1, . . . , 𝑚.

(31)

The next theorem is the main result of this paper.

Theorem 5. Assume that 𝜆
𝑗
∈ C \ S for 𝑗 = 1, . . . , 𝑚. For any

sequence (z
𝑛
)
𝑛∈N0

in𝑋𝑟, satisfying

𝛿 := sup
𝑛∈N0

󵄩󵄩󵄩󵄩z𝑛+1 − 𝐴z𝑛 − d𝑛
󵄩󵄩󵄩󵄩 < ∞, (32)

there exists a sequence (x
𝑛
)
𝑛∈N0

in𝑋𝑟 such that

x
𝑛+1
= 𝐴x
𝑛
+ d
𝑛
, 𝑛 ∈ N

0
, (33)

sup
𝑛∈N0

󵄩󵄩󵄩󵄩z𝑛 − x𝑛
󵄩󵄩󵄩󵄩 ≤ 𝛿 ‖𝑄‖

󵄩󵄩󵄩󵄩󵄩
𝑄
−1
󵄩󵄩󵄩󵄩󵄩
max
𝑗=1,...,𝑚

𝑟𝑗

∑

𝑘=1

1

󵄨󵄨󵄨󵄨󵄨
1 −
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

𝑘

. (34)

Proof. Let (z
𝑛
)
𝑛∈N0

be a sequence in𝑋𝑟 such that (32) holds.
First, consider the case where K = C. Write y

𝑛
:= 𝑄
−1z
𝑛

and b
𝑛
:= 𝑄
−1d
𝑛
for 𝑛 ∈ N

0
. Then,

󵄩󵄩󵄩󵄩y𝑛+1 − 𝐽y𝑛 − b𝑛
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩󵄩
𝑄
−1
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩z𝑛+1 − 𝐴z𝑛 − d𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑄
−1
󵄩󵄩󵄩󵄩󵄩
𝛿 =: 𝛿

0
, 𝑛 ∈ N

0
.

(35)

Define projections 𝑝
𝑗
: 𝑋
𝑟

→ 𝑋
𝑟𝑗 (for 𝑗 = 1, . . . , 𝑚) by

𝑝
1
(𝑤
1
, . . . , 𝑤

𝑟
) := (𝑤

1
, . . . , 𝑤

𝑟1
) ,

𝑝
2
(𝑤
1
, . . . , 𝑤

𝑟
) := (𝑤

𝑟1+1
, . . . , 𝑤

𝑟1+𝑟2
) ,

.

.

.

𝑝
𝑚−1
(𝑤
1
, . . . , 𝑤

𝑟
) := (𝑤

𝑟1+⋅⋅⋅+𝑟𝑚−2+1
, . . . , 𝑤

𝑟1+⋅⋅⋅+𝑟𝑚−1
) ,

𝑝
𝑚
(𝑤
1
, . . . , 𝑤

𝑟
) := (𝑤

𝑟1+⋅⋅⋅+𝑟𝑚−1+1
, . . . , 𝑤

𝑟1+⋅⋅⋅+𝑟𝑚
)

(36)

for (𝑤
1
, . . . , 𝑤

𝑟
) ∈ 𝑋

𝑟. For simplicity, we write y
𝑛
=

(𝑝
1
(y
𝑛
), . . . , 𝑝

𝑚
(y
𝑛
)) and b

𝑛
= (𝑝
1
(b
𝑛
), . . . , 𝑝

𝑚
(b
𝑛
)) for 𝑛 ∈

N
0
. It is easily seen that (in analogous notation)

𝐽y
𝑛
= (𝐽
𝜆1 ,𝑟1
𝑝
1
(y
𝑛
) , . . . , 𝐽

𝜆𝑚 ,𝑟𝑚
𝑝
𝑚
(y
𝑛
)) , 𝑛 ∈ N

0
,

󵄩󵄩󵄩󵄩󵄩󵄩
𝑝
𝑗
(y
𝑛+1
) − 𝐽
𝜆𝑗 ,𝑟𝑗
𝑝
𝑗
(y
𝑛
) − 𝑝
𝑗
(b
𝑛
)
󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩y𝑛+1 − 𝐽y𝑛 − b𝑛

󵄩󵄩󵄩󵄩 ≤ 𝛿0,

𝑛 ∈ N
0
, 𝑗 = 1, . . . , 𝑚.

(37)

According to Theorem 4 (applied for each 𝑗 ∈ {1, . . . , 𝑚},
separately), there exists a sequence (u

𝑛
)
𝑛∈N0

in𝑋𝑟 such that

𝑝
𝑗
(u
𝑛+1
) = 𝐽
𝜆𝑗 ,𝑟𝑗
𝑝
𝑗
(u
𝑛
) + 𝑝
𝑗
(b
𝑛
) , 𝑛 ∈ N

0
,

󵄩󵄩󵄩󵄩󵄩
𝑝
𝑗
(u
𝑛
) − 𝑝
𝑗
(y
𝑛
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝛿
0

𝑟𝑗

∑

𝑘=1

1

󵄨󵄨󵄨󵄨󵄨
1 −
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

𝑘

,

𝑛 ∈ N
0
, 𝑗 = 1, . . . , 𝑚.

(38)

Clearly,

u
𝑛+1
= 𝐽u
𝑛
+ b
𝑛
, 𝑛 ∈ N

0
,

󵄩󵄩󵄩󵄩y𝑛 − u𝑛
󵄩󵄩󵄩󵄩 ≤ 𝛿0max

{

{

{

𝑟𝑗

∑

𝑘=1

1

󵄨󵄨󵄨󵄨󵄨
1 −
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

𝑘

: 𝑗 = 1, . . . , 𝑚

}

}

}

,

𝑛 ∈ N
0
.

(39)

Let x
𝑛
:= 𝑄u

𝑛
for 𝑛 ∈ N

0
. Then,

x
𝑛+1
= 𝑄u
𝑛+1
= 𝑄𝐽u

𝑛
+ 𝑄b
𝑛
= 𝑄𝐽𝑄

−1x
𝑛
+ d
𝑛
, 𝑛 ∈ N

0
,

󵄩󵄩󵄩󵄩z𝑛 − x𝑛
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑄y𝑛 − 𝑄u𝑛

󵄩󵄩󵄩󵄩 ≤ ‖𝑄‖
󵄩󵄩󵄩󵄩y𝑛 − u𝑛

󵄩󵄩󵄩󵄩

≤ ‖𝑄‖ 𝛿
0
max
{

{

{

𝑟𝑗

∑

𝑘=1

1

󵄨󵄨󵄨󵄨󵄨
1 −
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

𝑘

: 𝑗 = 1, . . . , 𝑚

}

}

}

,

𝑛 ∈ N
0
.

(40)

Now, consider the caseK = R. Define the linear structure
in 𝑋 := 𝑋2 by (𝑥, 𝑦) + (𝑧, 𝑤) := (𝑥 + 𝑧, 𝑦 + 𝑤) and (𝛼 +
𝑖𝛽)(𝑥, 𝑦) := (𝛼𝑥 − 𝛽𝑦, 𝛽𝑥 + 𝛼𝑦) for 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋, 𝛼, 𝛽 ∈ R.
Then, 𝑋 is a complex Banach space (see, e.g., [16, page 39],
[17], or [18, 1.9.6, page 66]), when endowed with the Taylor
norm ‖ ⋅‖

𝑇
given by

󵄩󵄩󵄩󵄩(𝑥, 𝑦)
󵄩󵄩󵄩󵄩𝑇
:= sup
0≤𝜃≤2𝜋

󵄩󵄩󵄩󵄩(cos 𝜃) 𝑥 + (sin 𝜃) 𝑦
󵄩󵄩󵄩󵄩 , 𝑥, 𝑦 ∈ 𝑋.

(41)

Note that

max {‖𝑥‖ , 󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩} ≤
󵄩󵄩󵄩󵄩(𝑥, 𝑦)

󵄩󵄩󵄩󵄩𝑇
≤ ‖𝑥‖ +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 , 𝑥, 𝑦 ∈ 𝑋.

(42)
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Define 𝑝
1
: 𝑋
2

→ 𝑋 by 𝑝
1
(𝑤
1
, 𝑤
2
) := 𝑤

1
for𝑤
1
, 𝑤
2
∈ 𝑋.

Let ẑ
𝑛
:= (z
𝑛
, 0) and d̂

𝑛
:= (d
𝑛
, 0) for 𝑛 ∈ N

0
. Then, (ẑ

𝑛
)
𝑛∈N0

is
a sequence in𝑋 and
󵄩󵄩󵄩󵄩󵄩
ẑ
𝑛+1
− 𝐴ẑ
𝑛
− d̂
𝑛

󵄩󵄩󵄩󵄩󵄩𝑇
=
󵄩󵄩󵄩󵄩z𝑛+1 − 𝐴z𝑛 − d𝑛

󵄩󵄩󵄩󵄩 ≤ 𝛿, 𝑛 ∈ N0.

(43)

So, by the first part of the proof, there is a sequence (x̂
𝑛
)
𝑛∈N0

in𝑋 such that

x̂
𝑛+1
= 𝐴x̂
𝑛
+ d̂
𝑛
, 𝑛 ∈ N

0
,

sup
𝑛∈N0

󵄩󵄩󵄩󵄩ẑ𝑛 − x̂𝑛
󵄩󵄩󵄩󵄩𝑇
≤ 𝛿 ‖𝑄‖

󵄩󵄩󵄩󵄩󵄩
𝑄
−1
󵄩󵄩󵄩󵄩󵄩
max
𝑗=1,...,𝑚

𝑟𝑗

∑

𝑘=1

1

󵄨󵄨󵄨󵄨󵄨
1 −
󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨

𝑘

.

(44)

Write x
𝑛
:= 𝑝
1
(x̂
𝑛
) for 𝑛 ∈ N

0
. Then, it is easily seen that (33)

and (34) are valid (in view of (42)).

Remark 6. The assumption that |𝜆
𝑗
| ̸= 1 for 𝑗 = 1, . . . , 𝑚

cannot be omitted in the general case (at least when 𝑟 = 1),
in view of Theorem 2.

It seems that our method cannot be easily applied to
the systems of linear difference equations of higher orders,
because it is difficult in such cases to obtain a formula
analogous as (8).

Open Problems.There arises a natural question if some results
similar toTheorem 2 and statements (a)–(c) ofTheorem 1 can
be obtained for difference equation (33) with 𝑟 > 1 (also with
N
0
replaced by Z).
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