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ABSTRACT
Interaction with hypermedia documents is a required fea-
ture for new sophisticated yet flexible multimedia applica-
tions. This paper presents an innovative adaptive technique
to stream hypervideo that takes into account user behaviour.
The objective is to optimize hypervideo prefetching in order
to reduce the latency caused by the network. This technique
is based on a model provided by a Markov Decision Process
approach. The problem is solved using two methods: clas-
sical stochastic dynamic programming algorithms and rein-
forcement learning. Experimental results under stochastic
network conditions are very promising.

Categories and Subject Descriptors
G.3 [Numerical Analysis]: Probability and statistics—
Markov processes; H.5.1 [Information Interfaces and pre-
sentation]: Multimedia Information Systems

General Terms
Markov Decision Process, Reinforcement Learning

Keywords
uncertainty, optimization, simulation, streaming, hyperme-
dia, navigation, interaction, prefetching.

1. INTRODUCTION
The recent evolution of multimedia content (more complex-
ity, more interactivity) and the widespread development of
multimedia services (with interactivity, real-time constraints
and multipoint delivery requirements) make it important to
give the user a simpler and more efficient hypermedia ex-
perience by improving applications’ adaptability. Beyond
diverse technologies aiming at measuring, negotiating and
guaranteeing various levels of QoS, the actual trend is to

confront the problem of user satisfaction. Our approach is
coherent with the work of the MPEG-21 [1] group.

In order to provide always more interactivity, ease of use
and comfort, efforts need to be focused on:

• object coding, compression, content scalability,

• various levels of synchronisation (inter- or intra-media,
group logical, temporal, discrete and continuous syn-
chronisation etc.),

• specification of protocols for multimedia content and
applications

The work presented here proposes a mechanism for deal-
ing with “intelligent” multimedia content capable of learn-
ing how we make use of it or how we have just made use
of it or how we generally make use of it. This learning pro-
cess, based on the memorisation of user-content interactions,
helps solving the problems mentioned above. They also help
improving the QoS management (synchronisation, anticipa-
tion, hierarchical structuring) and provide interesting ideas
for the description, indexing, searching and retrieval of mul-
timedia content. Our approach benefits from previous works
dealing with the prediction of user behaviour for adaptive
web sites and learning video browsing behaviour (see for
example [2], [12]).

The first two sections present some guidelines and related
research. A first intuitive model of our problem is proposed
in section 4 and significantly improved by a new model, de-
scribed in section 5. The associated optimization problem
can be solved as detailed in section 6. The paper finally
presents some experiments and future work.

2. GUIDELINES
Our approach is based on the assumption that two simi-
lar users, going through a similar sequence of interactions
with hypermedia documents, might have similar browsing
intents. The system can use this to anticipate user actions
and provide a more responsive navigating experience.
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Figure 1: An elaborate hypermedia document for
teaching computer architecture as experienced in
our hypervideo player. The processor, enclosed in
a clickable zone, is linked to a video segment that
shows more details.

2.1 What interactions
Recording user interaction can be based on the observation
of some chosen variables:

• Audio/video manipulation. Actions include stop/pause,
slow motion access to certain images or sequences of
images, user requests for enhanced/increased image
quality (zoom, increased contrast), shared annotations
of areas of interest, change of viewpoint etc. [11]

• Hypermedia navigation. Actions include forward/back-
ward navigation, transfer interruption (cancel of the
intent of following a link) etc.

• 3D interaction. Actions correspond to VRML sensors
like touch, visibility, orientation etc.

• navigation inside panoramic environments. Actions
can be zooming or adjusting orientation (QuickTimeVR
[3]).

2.2 How to store the interactions
At least two different kinds of memory levels can be imag-
ined:

• Long-term memory based on a (cumulative) statistical
analysis of interactions of users from various commu-
nities or sessions. Long-term memory can also contain
influential events. An influential event can for example
be associated with a state that has never been crossed
or from where no user has ever returned to the initial
content. A link is called “influential” if, by following
it, there is no way back to the initial content. The
system can therefore refrain from preloading it and
concentrate on fully loading the present content.

• Short-term memory refers to the most recent interac-
tions of one or multiple users. For example, if one has

just followed n − 1 links on a page, it is likely that
she will also follow the nth link. Another example: it
is very likely for a user to follow the first n − 1 links
on a given hypermedia document if other similar users
(from the same virtual community or acting inside the
same session) have just followed these links.

There are two ways to let the long- and short-term memory
cooperate without redundancy:

• The short-term memory tracks apparently deviating
behaviour compared to the most probable behaviour
from the long-term memory.

• The short-term memory detects specific patterns in
the actions performed by the current user or in the
current session. The underlying intentions are to be
discovered.

As it will be shown later, in both cases, the short-term mem-
ory is used to eliminate some limitations inherent to the
long-term memory.

3. BEYOND THE WEB
3.1 Previous work
This study benefits from previous research in the field of
predictive statistical modelling [6], which tackles two tasks:
user modelling and machine learning. Most of the previous
work has only dealt with hypertext systems [8, 9, 10]. The
result of these research permits to distinguish two kinds of
web agents (leading to active web sites [13]):

• recommendation systems that presents information or
facilities to the user (they typically run off-line),

• systems that perform actions on behalf of the user (on-
or off-line).

Several models have been suggested, the most widely used
being discrete or continous Markov chains [8, 9, 10] and
sequence mining [2, 8]. The latter seem to produce the best
prediction for webpage requests.

Another interesting model using hidden Markov chains has
been proposed in [11]. In this model, the browsing behaviour
is characterized by a set of browsing states. The learning of
browsing behaviour can be transformed into the problem of
predicting the browsing by observing interaction sequences.
In the HMM approach, the browsing states of a viewer are
called “hidden states” while the sequence of user interactions
corresponds to observation sequences.

The solution of a problem for the hypertext domain is not
necessarily appropriate for hypermedia, especially if it is
streaming. As opposed to web browsing, the presentation
of streaming hypermedia must handle ressource consuming
objects under tight temporal constraints. Nowadays, many
web acces logs are available, but there are much less stream-
ing hypermedia statistics (this is changing, though, as stan-
dards like SMIL and RTSP become more accepted).



Nevertheless, predicting future actions is not enough if we
want to improve navigation smoothness. Appropriate ac-
tions should be taken as well and, in the case of streaming
contents, this of course includes prefetching.

3.2 Our approach
A user browses through a multimedia hyperspace, and we
want to predict what content she will access in the near
future in order to provide her with the most fluid navigation.
To achieve this, we must look for:

• a model that describes the use of the multimedia con-
tent (the possible interactions),

• the algorithms that will predict the future interactions
and prefetch the corresponding content.

Prefetching reduces latencies1 but also prevents bandwidth
underusage. Latency is an important QoS factor that arises
from two sources:

• network latencies, caused by the overload of servers or
networks, or propagation delays,

• multimedia treatment latencies, that include the pre-
sentation startup delays (header parsing, decoding of
the beginning of the stream, etc.)

This two types of latency cannot be fought without intro-
ducing costs. Prefetching reduces network latencies, but
doing so aggressively causes higher network loads and burst
traffic [2]. Prelaunching a hypermedia presentation lowers
latencies, but introduces a heavy load on the client machine.

This article presents an efficient mecanism to reduce laten-
cies of the first type. Further research on handling treatment
latencies will be done in the future.

3.3 Hypervideos
The hypervideo [4, 5] is a sub-class of hypermedia based on
the link-node structure of hypertext and composed of digital
video (figure 2). Due to its time-based nature, hypervideo
requires different aesthetic and rhetoric considerations than
traditional static hypermedia. Hypervideo has the potential
to be non-linear but, as opposed to text, it is non-static. Op-
portunities (represented by hyperlinks) come and go as the
video sequences play. Like static hypermedia more than one
opportunity can be presented at once, but unlike hypertext
these opportunities go away if not selected.

These opportunities are presented in the form of hyperlinks,
which can be of two types: temporal and spatio-temporal.
Temporal links are presented in the form of annotations
flowing on top of the video during a certain period of time.
Spatio-temporal links take advantage of the hierarchical struc-
ture of the video and associate opportunities to particular

1One can easily observe that waiting several seconds to be
able to play a RTSP-streamed content is not uncommon.
This latency includes the time to connect to the server, to
negotiate the transport parameters, to prefetch some of the
data, and to startup the presentation.

Figure 2: Example of a medical hypervideo contain-
ing two medium resolution sequences, and a short
high resolution sequence.
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Figure 3: Coarse-state model.

objects at a certain time. For example, figure 1 presents a
hypervideo used for teaching computer architecture and a
hyperlink visible on top of the processor.

3.4 What and when prefetching?
Let us analyse in which context prefetching is useful.

• We may want to prevent bandwidth under-usage, even
if the associated cost is a limitating factor. This is
the case, for example, when a hypervideo is made of
streams whose bitrates are lower than the bandwidth.
In this situation, it can be interesting to prefetch sub-
sequent content when the currently played stream leaves
some spare bandwidth. The observed latencies are low,
but they can nevertheless be reduced.

• When some of the streams of the document (especially
a hypervideo) have a bitrate greater than the available
bandwidth. In this case, the only way to play the
stream fluently is to bufferize an important amount
of the data before launching the player. The latency
introduced by such a process can be greatly reduced if
the prefetch begins early enough.

4. INTUITIVE MODELS
We present a first rather naive model for hypermedia navi-
gation. It is a simple way of taking into account past inter-
actions [14].

4.1 A first Markov model
Intuitively, browsing through the hypervideo in figure 2 can
be modeled with a 6-state graph. Taking into account the
long-term memory (navigation statistics) enables us to weight
each transition from a state to its successor with a given
probability. This is shown in figure 3.

Nevertheless, other kinds of states, can be imagined ranging
from finest to most rough. Coarse states (figure 3) show
the logical structure of the content. In contrast, finer states
(figure 4) better reflect the internal structure of the stream
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Figure 4: Fine-state graph for the hypervideo in
figure 2.

state (i) di (s) bri (kb/s) bi (kb)

1 30 96 32
2 60
3 70
4 10 112 64
5 40
6 5 192 96

Table 1: Bitrates (br), durations (d) and minimum
sizes to be prefetched (b) of the hypervideo of figure
2.

(typically, one state = one GOP). For simplicity reasons,
we chose a rough-states model for our experiments. Less
states means a lighter and thus more mobile content, since
the memory streams travel along with the content.

At the beginning of the navigation, only the long-term mem-
ory contains information. The short-term memory is empty.
We use markovian prediction to find the sequence of states
that are most likely to be visited.

We will take short-term memory into account by heuristi-
cally and dynamically modifying the transition probabilities.
Therefore the states will no longer be Markov states in the
strict sense (i.e. without memory).

Despite their simplicity, the use of Markov chains lets us
easily show the interest of prefetching and heuristics.

4.2 A simple example
We use the 6-state graph of figure 3, with the characteristics
presented in table 1.

Two prefetching policies are proposed:

• P* (proportionnal) policies. All states that can be
reached are prefetched from the current state. The
bandwidth allocated for each stream is proportional
to the probability of the corresponding transition.

• B* (best-first) policies. Only the most probable state
is prefetched.

Each policy has two versions:

• The *C (conservative) version tries to use as little
bandwidth as possible, and stops prefetching as soon
as the amount b (minimum size needed to begin play-
ing) of the stream has been downladed.
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Figure 5: A PC policy applied to the current state
4, where the following states have probabilities .3
and .7.

Latency No PC PA BC BA
(in sec.) prediction

prefetch 3.75 2.55 0.99 2.25 0.85
1.25+2.5 .8+1.75 .25+.74 .5+1.75 .25+.6

connexion 0.9 0.3 0.3 0.3 0.3
total 4.65 2.85 1.29 2.55 1.15

Table 2: Latencies depending on the static policy.

• The *A (agressive) version continues downloading and
tries to use all available bandwidth.

Figure 5 illustrates a proportional conservative policy. At
t = 0 is state 4, the buffers are empty, and thus, the user
must wait for the amount b4 to be downloaded. Next, while
the video plays, the remaining bandwidth is used to prefetch,
proporionnaly to their probabilities, the following states (5
and 3). Because the policy is conservative, prefetching stops
as soon as the amount b5 is available.

Table 2 shows the latencies computed for the path 1-4-5-
6, supposing that the moment at which the user choses to
follow a link is half-way the current video segment. For this
path (which is the most likely to be followed), we observe a
significant reduction of the latencies for the four policies. In
order to understand why in these circumstances one policy
gives better results than another, we present separately the
total latency for states 1, 4 and 5 and that of state 6. During
state 5, agressive policies manage to prefetch an important
part of state 6’s stream, whose bandwidth is greater than
what is available.

The connexion latencies, presented separately (connexion
row in Table 2), are not negligible2. It is worth observing
that, even without prefetching, pre-initializing connexions
alone is enough to reduce latencies significantly.

4.3 Shortcomings of the model
It is easy to observe that the example presented earlier
does not help in evaluating the relevance of the elementary
Markov model. The transition probabilities supplied by the
long-term memory (in the general sense defined in 2.2) are
not appropriate in the frequent case where the user comes
back on an already-visited video segment.

Indeed, let us imagine that a segment s1 has two successors

2Experiments realized with a QuickTime streaming server
and a JMF/RTSP client show an average connexion time of
300 ms.
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Figure 6: Example of a hypervideo containing a ta-
ble of contents (state 1) pointing to several chapters.

f heuristic PC PA BC BA

0.1 3.81 3.80 3.88 3.87
0.1 BETA 3.81 3.80 3.88 3.87
0.5 6.10 4.71 5.91 5.91
0.5 BETA 6.10 4.70 5.91 4.54

Table 3: Latencies computed for the graph in
figure 6, with different prefetching policies and
with/without the use of the BETA heuristic. The
user clicks on a link at f× the length of the current
segment.

s2 and s3 (p1→2 = p, p1→3 = 1− p).

s1

s2

s3

p

1− p

If a user follows the link to s2, and comes back to s1, the
probability that she will re-follow s2 is certainly lower than
p. The long-term memory model is thus inadequate. In
order to illustrate this and to demonstrate why it can be
improved, we show the use of heuristics.

Heuristics consist in adaptively adjusting the transition prob-
abilities and are based on the short-term memory. This
modification is done by examining the path already followed.

In a more complex example (figure 6), we can illustrate how
one of these heuristics works. For example, let’s consider
the path 0-1-2-1-5-7-1-8-1-9-10-1-11-12.

A heuristic (henceforth called “BETA”) detects exhaustive
navigation: after the user followed s1’s 3 first links (1→2,
1→5, 1→8), the links 1→9 and 1→11 are updated (multi-
plied by β > 1). This will stimulate the prefetching of states
9 and 11.

In conjunction with the PA policy, BETA introduces a small
latency reduction. This reduction is more important if the
policy BA is used (table 3).

This reduction also shows some of the weakness of the naive
model. In fact, two random parameters are not taken into
account:

• the moment the transition is made is not really con-
sidered (since the user is supposed to click at a given
fraction of the video’s duration),

• the average bandwidth is supposed to be constant.

Another drawback of this model is that it is quite difficult
to take into account cycles or back/forward actions in the
recent navigation history, even if the use of heuristics can
solve part of the problem.

5. A MORE POWERFUL MODEL
We introduce our new model by an example.

5.1 Illustrated introduction
Let us consider a segment s1 of duration d1 and bitrate br1,
followed by s2 and s3.

s1

s2 s3p(s2|s1)

p(s3|s1)

The model previously introduced weights the link s1 →
s2 (resp. s1 → s3) with the probability p(s2|s1) (resp.
p(s3|s1)), the probability to go to s2 when we are in s1 (resp
to s3 from s1). Of course, p(s2|s1) + p(s3|s1) = 1.

Based on this, we build a new kind of state, called buffer-
state, which encapsulates the current video segment, and the
fill rate of each video segment’s buffer. This fill rate depends
on the previous loading decisions. We note a buffer-state as
σ = (s, r1, ..., rn), where n is the number of video segments
and ri the fill ratio of si’s buffer.

Thus, when we start playing the entry state s1, the 3 empty
buffers show that no previous prefetching has occured:

s1

0   0   0

prefetched for s1 prefetched for s3

prefetched
quantity

for s1

prefetched
quantity
for s3

s1

0 0 0

At the entrance of the buffer-state, the hypervideo player
does the following:

• It downloads the minimum quantity of data needed to
begin playing s1 (a quantity called b1). If bw is the
average bandwidth, this causes a latency of b1/bw.

• It decides whether, while playing the current state, it
will also prefetch other video segments. In our model,
we only consider “elementary” and disjoint prefetch-
ing actions: we can only prefetch (part of) bi for one
segment i, as opposed to the more sophisticated poli-
cies seen earlier (sequential, proportional, etc.). For
our example, the possible actions are: a2 = “prefetch
s2” and a3 = “prefetch s3”.

Playing s1 lasts at most d1, and we consider here that the
user clicks on the link chosing s2 or s3 at d1/2. Thus, we
obtain the following transition graph:



s1

0 0 0

s2

b1 b′2 0

s2

b1 0 b′3

s3

b1 b′2 0

s3

b1 0 b′3

p(s2|s1, a2)

p(s2|s1, a3) p(s3|s1, a2)
p(s3|s1, a3)

Where p(s′|s, a) is the probability to go to s′ when we are
in s, and we chose action a at the start of s. In our case, we
have p(s′|s, a) = p(s′|s).

The b′is are easily computed: b′i = min(bi, (bw−bri)×di/2).
bw− bri represents the bandwidth available for prefetching
while s1 is read, that is during d1/2.

At this point, our model encapsulates in its buffer-states the
effect of all previous actions and transitions, that we could
not have taken into account with the first model. Therefore,
the buffer-state graph is closer to markovian conditions.

Now we can introduce the two random sources mentioned
before (varying transition moments and varying bandwidth)
into our model. For this, the fill-rate of each buffer is coded
as a number between 0 and B. If we consider for instance
the link s1 → s2, and action a3 (prefetch s3 while play-
ing s1), we can go to B + 1 different buffer-states where a
fraction 0, 1/B, 2/B, . . . , b/B, . . . 1 of b3 is prefetched. Each
buffer-state transition is weighted by an unknown probabil-
ity pb(s

′|s, a).

s1

0 0 0

s2

b1 0 0

s2

b1 0 b3
B

s2

b1 0 2b3
B

p0(s2|s1, a3)

p1(s2|s1, a3)

p2(s2|s1, a3)

. . .

This model indicates (approximatively, quantized on B + 1
levels) the quantity of data effectively buffered.

This model is not perfect, but:

1. it is simple,

2. back/forward navigation in the recent navigation his-
tory can be naturally considered by this model, as op-
posed to the previous one,

3. the two sources of randomness can be handled at the
same level, which is theoretically and practically (for
simulations) very appealing,

4. various other ideas could be included, especially the
SMDPs [17], which handle non-discrete click times, but
where the following state depends on the time spent
in the current state,

5. the randomness concerning the bandwidth is the trick-
iest point anyway.

5.2 A Formal Markov Decision Problem
The prefetching of hypervideo segments can be seen as a
sequencial decision problem under uncertainty, but complete
observability. Indeed:

• decisions have to be made in sequence about whether
a video segment is to be prefetched;

• the consequences of a decision are not known with cer-
tainty, because of unpredictable user behaviour and
network conditions.

Thus, the formal MDP framework (Markov Decision Process
[17]) can be used to model it. In a few words, a MDP is
defined by a quintuple (S,A, T, P,R) where:

• S is the set of all possible states of the system;

• A is the set of all the actions that can be applied to
it;

• T is the ordered set of instants at which decisions can
be made, that is the global temporal horizon;

• P defines the transition probabilities between any pair
of states in S after executing an action in A;

• r defines the local rewards associated with these tran-
sitions.

In this framework, the usual request is to compute what is
called an optimal policy, that is a function π∗ that associates
with any state σ ∈ S and any time t ∈ T an optimal action
π∗(σ, t), that is an action that maximizes the expected global
reward on the remaining temporal horizon. This global cost
or reward may be defined as the sum, the discounted sum,
or the mean value of the local costs or rewards associated
with the actual transitions. When the optimal policy does
not depend on the time t and only depends on the state s,
it is said to be stationary.

For our problem:

• S is the set of buffer-states,

• A contains the possible prefetch actions,

• T is N. The instants are given by the order of the click
in the navigation path,

• P is defined by a set of random variables associated
with the possible transitions from a buffer-state to an-
other,

• r(σ, a) is defined as the decrease in latency as com-
pared to a the dummy no-preloading policy. For in-
stance, in the example of 5.1 r((s1, r1, r2, r3), a2) =
(1− r2)b2/bw. In fact, the reward does not depend on
the action.

• the global reward is the sum of all gains that the user
benefits from while she is browsing a hypervideo.

The following figure simply resumes our model.

si sj

.., bi, ..., bj , .. .., b′i, ..., b
′
j , ..

p(sj |si, a)

r(sj , a)



At the beginning of si we decide a. Both user’s click and
bandwidth randomness influence the filling levels of buffers
corresponding to the states si and sj . These buffer changes
are contained by sj . We associate a reward with the state sj ,
reward that is naturally proportional with the buffer level
b′j .

6. OPTIMIZATION FOR MDPS
6.1 Stochastic dynamic programming
The MDP theory associates with each policy π a value func-
tion Vπ that maps a state σ ∈ S and a time t ∈ T to the ex-
pected global reward Vπ(σ, t), obtained by applying π from
σ and t. In our case, we use:

Vπ(σ) = r(σ, π(σ)) + γ
∑
σ′∈S

p(σ′|σ, a)Vπ(σ′)

where γ ≤ 1.

We can interpret this value function as the sum of two terms:
the reward associated with the current state (and action)
and the γ-weighted mean of future rewards, while following
π.

Bellman’s optimality equations (equations 1 [15]) character-
ize in a compact way the unique optimal value function V ∗

from which an optimal policy π∗ can be straightforwardly
derived. In case of a stationary policy and a global reward
defined as the discounted sum of the local rewards, these
equations become:

V ∗(σ) = max
a∈A

(r(σ, a) + γ
∑
σ′∈S

p(σ′|σ, a)V ∗(σ′)) (1)

and

∀σ ∈ S π∗(σ) = argmax
a∈A

(r(σ, a) + γ
∑
σ′∈S

p(σ′|σ, a)V ∗(σ′))

6.2 Value iteration
For MDPs with tiny finite S and A sets, value iteration or
policy iteration are dynamic programming algorithms. They
exploit efficiently the problem data and structure, in order
to compute this optimal value function and to derive an
associated optimal policy. In our case, S and A are finite,
but S is quite large.

We want to solve Bellman’s equation in V ∗(σ) with an it-
erative method that computes a series (Vn)n. We chose an
arbitrary V0, and we iterate:

∀σ Vn+1(σ) = max
a

(
r(σ, a) + γ

∑
σ′

p(σ′|σ, a)Vn(σ′)

)
If the rewards are bounded, the series converges to V ∗, and
we can deduce π∗ [17].

In brief, each iteration improves the current policy associ-
ated with Vn.

6.3 Reinforcement Learning
The Artificial Intelligence community has recently developed
reinforcement learning methods that make the optimization
of policies for large MDPs possible, by means of simulations

and approximations of the value function and/or of the pol-
icy.

The reinforcement learning approach consists in learning an
optimal policy by estimating iteratively the optimal value
function of the problem on the basis of simulations. Today,
reinforcement learning is one of the main approaches able to
solve sequential decision problems with unknown transition
probabilities and/or MDPs with large state spaces. Various
reinforcement learning algorithms exist, such as Q-learing,
R-learing, Sarsa, and others [18].

In this paper, we consider the Q-learning algorithm [16],
that can be used when the transition probabilities of the
MDP are not known, as it is the case in our problem.

Without keeping a process model, Q-learning is a reinforce-
ment algorithm allowing the resolution of Bellman’s equa-
tion for the γ-weighted criterion. It is commonly used in
practice because of its simplicity. Its principle consists in
updating iteratively the values of the V ∗ function we search,
observing the instaneous transitions and their corresponding
revenue.

The fixed-point form of Bellman’s equation is unusable to
design an adaptive resolution algorithm. Thus, Watkins [17]
introduced a value function Q that carries the same infor-
mation as V .

For a given policy π and the value-function Vπ, we define
the new function

∀σ ∈ S, a ∈ A Qπ(σ, a) = r(σ, a) + γ
∑
σ′

p(σ′|σ, a)Vπ(σ′)

Qπ’s value can be understood as the expected value of the
criterion for the process that starts in σ, executes action
a and thereafter follows policy π. It is clear that Vπ(x) =
Qπ(x, π(x)), and the Bellman equation that Q∗ verifies be-
comes:

∀σ ∈ S, a ∈ A Q∗(σ, a) = r(σ, a)+γ
∑
σ′

p(σ′|σ, a) max
b
Q∗(σ′, b)

We then have

∀σ ∈ S V ∗(σ) = max
a

Q∗(σ, a) π∗(σ) = argmax
a

Q∗(σ, a)

The principle of the Q-learning algorithm (figure 7) is to
update the current value-function Qn for the values (σn, an)
at transition (σn, an, σn+1, rn) (where σn and σn+1 are the
successive states, an is the action taken and rn the local
reward).

In this algorithm, we fix the total number of iterations Ntot

initially. The learning rate αn(σ, a) decreases towards 0 at
each iteration. The simulate function returns a new state
and the associated reward according to the system’s dyna-
mics. The initialization function initialize just sets all
Q0’s values to 0.

The choice of next state to be explored (choseState) is only
made among the states reacheable from the current state.
In the same way, only states that are within reach can be
chosen (choseAction) to be prefetched.



Initialize Q0

for n = 0 to Ntot − 1 do
σn =choseState

an =choseAction

(σ′n, rn) =simulate(σn, an)
/* update Qn+1 */

Qn+1 ← Qn
dn = rn + γmax

b
Qn(σ′n, b)−Qn(σn, an)

Qn+1(σn, an)← Qn(σn, an) + αndn
end for
return QNtot

Figure 7: The Q-learing algorithm.
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Figure 8: A more complex graph, and the associated
bitrates (br), durations (d) and minimum buffer to
be prefetched (b).

If αn decreases fast enough towards 0 and if we visit long
enough the S × A space (that is Ntot is big enough), the
Q-learning algorithm converges almost surely (with a prob-
ability of 1). By using Q-learning, we can consider much
larger models, at the expense of an increased number of it-
erations.

7. EXPERIMENTS
We have used the hypervideo described by figures 8 and 9,
in conjunction with the Value Iteration and the Q-learning
algorithms.

7.1 Experimenting with Value Iteration
The implementation of the Value Iteration algorithm re-
quires 3 steps:

Model generation The value iteration algorithm takes ad-
vantage of the transtion probabilities between buffer
states. In order to learn these probabilities, we have
simulated 100000 random navigations. In our exam-
ple there are n = 9 states, and the buffer granularity
is B = 4. Thus, there are

N = nBn

buffer states, that is approximately 2× 106 states. We
keep the transition probabilities in a three-dimensional
matrix of size N × N × n = 15 × 1013. Each element
p(σ, σ′, a) represents the probability to go to σ′ from
σ having chosen a for the duration of σ. Fortunately,
the matrix is sparse, as the number of visited states is
small (about 3300). Cycles in the macro-state graph
do not imply an explosion of the number of possibly
visited buffer-states. In fact, the buffer levels accumu-
late until the full level is reached.

Resolution Using the model described above and the value
iteration algorithm, we identified the optimal policy
for the considered hypervideo, that is, the optimal
prefetching action to be taken for each buffer state.

Validation We validate this optimal policy by comparing
it to other policies.

Buffer levels are influenced by the available bandwidth and
by the length of the buffer-state. These parameters are sim-
ulated as follows:

• The average bandwidth during the current state is uni-
formly distributed between a minimum and a maxi-
mum value. In this example, we chose bwmin = 96 kb/s
and bwmax = 128 kb/s but any other network model
could be easily integrated.

• The duration of a buffer-state is uniformly distributed
between 0 and di. We measure this duration from
the moment the video segment begins playing. This
is because, while in the buffering stage, the user is
not presented the link and thus a state change cannot
occur.

Table 4 (corresponding to figure 8) presents the results of
1000 simulated random paths, with an average length of 4.22
hops. Both the average latencies and standard deviation are
shown in three different cases: the original graph (0), when
s8 requires a large buffer (1), and when it demands an even
larger buffer (2).

The figures show an important reduction of the latencies as
well as the standard deviations if the optimal policy π∗vi is
used, compared to the best-first policy πBC. The difference
with the case with no prefetching at all (dummy π0) is even
more significant.

In fact, if we consider the sample paths chosen for case 1, π∗

tends to prefetch the heavy s8 very early. This illustrates
the shortsightedness of πBC.

Another strong quality of the optimal policy is that, even if
it did not anticipate the path the user actually chose, it is
able to provide the next optimum action at every step.

7.2 Experimenting with Q-learning
Our experiments with Q-learning consisted of only 2 steps:
the resolution and the validation, as Q-learning does not re-
quire to maintain a model. As shown in the table 4, the
results for 1000 simulated random path using the optimum



example paths latencies
no. modifications path optimal actions π∗vi πBC π0 π∗ql

0 b8 = 128 0-1-4-8 1,4,8 1.55 1.90 2.90 1.70
0-2-5-7-8 1,5,7,8 0.56 0.73 0.34 0.40

1 b8 = 360 0-1-4-8 8,4,8 2.28 3.96 5.04 2.30
0-3-6-7-8 8,6,7,8 1.11 1.59 0.42 1.11

2 b8 = 720 0-1-4-8 8,4,8 4.15 7.36 8.31 4.30
0-3-6-7-8 8,6,7,8 1.15 2.60 0.62 1.16

Table 4: This table sums up the results of 3 experiments, where the “weight” of s8 was modified. For each
situation, we apply 4 prefetching policies to 1000 random browsing paths, and indicate the average and
standard deviation (below) of the latencies.
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Figure 9: A graph with more links and the observed
latencies.

policy π∗ql are very similar to those obtained by Value Iter-
ation. We chose Ntot = 100000.

In order to better understand the quality of the optimum
policy we consider the graph from figure 9. Each histogram
of figure 10 shows a distribution of observed latencies for
10000 simulated random paths. One can easily notice the
incremental improvement from dummy policy through best-
first policy to the optimal one, as computed by the Q-
learning algorithm. The first histogram (latencies obtained
without any policy) clearly identifies the two heavy states
that have an important effect on latencies.

As expected, this shows the most important benefit of the
optimum policy: the reduction of latencies’ variability.

7.3 Implementation
We have started the implementation of HyVideo (figure 11),
a client/server for hypervideo navigation. The client is based
on a JMF/RTSP player. It uses a prediction unit that
downloads the optimum policy from the prediction sever,
instructs the buffer management unit which buffers to fill,
and the player pool which players to prestart. At the end of
each navigation, history information (path, observed band-
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Figure 10: Latencies’ distribution for three policies
(π0, πBC , π∗) for a graph in which the optimal pol-
icy performs clearly much better than the best-first
strategy.

width and latencies) is sent back to the prediction server.
The streaming is done by a RTP/RTSP server that adjusts
the bitrate of the streams according to network parameters
as computed from RTCP feedback.

7.4 Solving very large problems
Despite the sparcity of the matrix used by either the Value
Iteration or the Q-learnig algorithms, solving very large prob-
lems(tens of video segments, fine buffer granularity or com-
plex policies) requires considerable ressources, in both mem-
ory and processor power. Moreover, given the fact that the
client is supposed to download the optimum policy vector,
we cannot afford it to be very large.

An alternative approach for solving large MDPs consists in
using an a priori parametrized policy, defined by experts,
and optimizing the values of these parameters through the
use of simulated trajectories. Note that the Markovian fea-
ture of the problem is no longer exploited in this approach
and that the whole process is considered as a “black box”
that transforms input parameters (the policy parameters)
into an output criterion (the expected global cost or reward).
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Figure 11: Architecture of the HyVideo Platform

8. CONCLUSION
We have shown that reducing latencies in the context of
hypervideo navigation is possible using prefetching policies.

Optimal policies in the sense of our markovian model can
be obtained automatically. The strength of our obtained
policies is that they reduce both the latency and its variation
while dealing with stochastic network conditions.

Both theoretical and practical perspectives can be conceived.
It would be interesting to consider the other strong point of
reinforcement learning, that is value functions approxima-
tion. This would eventually help to drastically reduce the
memory requirements of the algorithm and allow us to solve
very large problems.

In the same spirit, the full implementation of our software
architecture dealing with self-adapting content raises a num-
ber of interesting issues, including:

• the quality of the prediction under special network
conditions (steep increase/decrease of the available band-
width) and TCP/IP friendliness,

• the influence of the buffer granularity over the quality
of the prediction,

• the possible use of more complex policies, similar to
the ones presented in the first intuitive model,

• the scalability of the system, in terms of both the num-
ber of simultaneous connexions and the total band-
width used by these connexions.

Finally, we are interested in further extending our model
by taking into account some other aspects of user model-
ing, such as sequence mining and intension browsing. We
have started experiments with a hypervideo used for teach-
ing computer architecture to a student population (figure
1).
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