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The output feedback controllers of stochastic nonholonomic systems under arbitrary switching are discussed.We adopt an observer
which can simplify the design process. The designed control laws cause the calculation of the gain parameter to be very convenient
since the denominator of virtual controllers does not contain the gain parameter. Finally, an example is given to show the
effectiveness of controllers.

1. Introduction

In recent years, switched system’s control, especially under
arbitrary switching, has become an active field [1–3]. The
global stabilization of switched systems based on arbitrary
switching was given [4–6]. The stabilizing controllers of
switched systems with arbitrary switching were given [7–10].
The output feedback controllers of nonlinear systems with
arbitrary switching were designed [11, 12].

In the past ten years, the problem of stabilization for
stochastic nonholonomic systems (SNSs) received much
attention. They mainly can be classified into two types. The
first is state-feedback control: stabilization [13, 14], adaptive
stabilization [15–18], finite-time stabilization [19], stabiliza-
tionwith time-varying delays [20], and stabilization ofmobile
robots [21, 22].The second is the output feedback stabilization
[23–25].

Since sometimes part of the system states are unmea-
surable, output feedback controllers are needed. Zhang et al.
discussed the output feedback stabilizing controllers of SNSs
whose virtual control 𝑏𝑖 contains gain parameter 𝐿 [25]. This
will lead to a problem where the calculation of 𝐿 is very
difficult, especially for 𝑛 ≥ 3, since the inequalities about 𝐿
were quintic. In addition, to the authors’ knowledge, there are
some results about state-feedback stabilization of SNSs with
Markovian switching [13, 14], with few available results for

the output stabilization of SNSs under arbitrary switching.
Based on the above analysis, there exists a problem, that is,
how to choose a proper observer under arbitrary switching
where the virtual control 𝑏𝑖 in controllers does not contain
gain parameter 𝐿, which causes the calculation of 𝐿 to be
easier.

Notations. R denotes the set of all real numbers. R𝑛 denotes
the real 𝑛-dimensional space. For a vector or matrix 𝑋 ∈
R𝑛×𝑚, 𝑋𝑇 denotes its transpose, ‖𝑋‖ denotes the Euclidean
norm, Tr{𝑋} is its trace when 𝑋 is square, and L is a
stochastic differential operator [26].

2. Problem Formulation

The stochastic nonholonomic nonlinear systems are given by

d𝑥0 = 𝑢0d𝑡 + 𝑔𝑇[0,𝜎(𝑡)] (𝑥0) d𝜔, (1a)

d𝑥𝑖 = 𝑢0𝑥𝑖+1d𝑡 + 𝑓[𝑖,𝜎(𝑡)] (𝑥0, 𝑥𝑖) d𝑡
+ 𝑔𝑇[𝑖,𝜎(𝑡)] (𝑥0, 𝑥𝑖) d𝜔, 𝑖 = 1, . . . , 𝑛 − 1,

d𝑥𝑛 = 𝑢d𝑡 + 𝑓[𝑛,𝜎(𝑡)] (𝑥0, 𝑥) d𝑡 + 𝑔𝑇[𝑖,𝜎(𝑡)] (𝑥0, 𝑥) d𝜔,
𝑦 = [𝑥0, 𝑥1]𝑇 ,

(1b)
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where 𝑢0 and 𝑢 ∈ R are inputs,𝑥0 ∈ R and (𝑥1, . . . , 𝑥𝑛)𝑇 ∈ R𝑛

are system states, 𝑥𝑖 = (𝑥1, . . . , 𝑥𝑖)𝑇, 𝑓𝑖 ≜ 𝑓𝑖(𝑥0, 𝑥𝑖) : R𝑖+1 →
R are smooth functions named as nonlinear drifts with𝑓𝑖(0, 0) = 0, and 𝑔0(𝑥0) : R → R𝑚 and 𝑔𝑖 ≜ 𝑔𝑖(𝑥0, 𝑥𝑖) :
R𝑖+1 → R𝑚 are smooth functions with 𝑔0(0) = 0 and𝑔𝑖(0, 0) = 0, 1 ≤ 𝑖 ≤ 𝑛. 𝜎(𝑡) : [0, +∞) → 𝑀 = {1, 2, . . . , 𝑚}
is a piecewise constant switching signal, and 𝜔 ∈ R𝑚 is an
m-dimensional independent standard Wiener process.

Assumption 1. If there exist smooth function ][0,𝜎(𝑡)](𝑥0) :
R → R𝑚 and positive constant𝑚, then

𝑔[0,𝜎(𝑡)] (𝑥0) = 𝑥0][0,𝜎(𝑡)] (𝑥0) ,][0,𝜎(𝑡)] (𝑥0) ≤ 𝑚, (2)

where ][0,𝜎(𝑡)](𝑥0) is a known bounded nonnegative function.
Assumption 2. For 𝑖 = 1, . . . , 𝑛, one has known constants
][𝑖,𝜎(𝑡)] and 𝛾[𝑖,𝜎(𝑡)] satisfying

𝑓[𝑖,𝜎(𝑡)] (𝑥0, 𝑥𝑖) ≤ (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑖) ][𝑖,𝜎(𝑡)],𝑔[𝑖,𝜎(𝑡)] (𝑥0, 𝑥𝑖) ≤ (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑖) 𝛾[𝑖,𝜎(𝑡)]. (3)

Remark 3. There are two main differences between systems
(1a) and (1b) and those in [24, 25]. The first is the arbitrary
switching mentioned in this paper. The second will be illus-
trated in Remark 7. In addition, Assumptions 1 and 2 are sim-
ilar to those in [24, 25], but in fact they hold under arbitrary
switching; for example, 𝛾[𝑖,𝜎(𝑡)] = max{𝛾[𝑖,1], 𝛾[𝑖,2], 𝛾[𝑖,3], 𝛾[𝑖,4]}
when 𝜎(𝑡) : [0, +∞) → 𝑀 = {1, 2, 3, 4}.
3. Output Feedback Stabilization

The controller design in Sections 3.1 and 3.2 is under 𝑥0(𝑡0) ̸=0. The other one is discussed in Section 3.3.

3.1. Controller 𝑢0 Design. For subsystem (1a), one obtains

L𝑉0 (𝑥0) ≤ −2𝜆𝑉0 (𝑥0) . (4)

with Lyapunov function 𝑉0(𝑥0) = (1/2)𝑥20 and controller 𝑢0
as follows:

𝑢0 = −𝜂0𝑥0,
𝜂0 = 𝜆 + 12𝑚2,

(5)

where 𝜆 > 0 is a design real number.

Theorem 4. For system (1a), the closed-loop system with
controller (4) is asymptotically stable in probability.

By (4) and (1a), one has

d𝑥0 = −𝜂0𝑥0d𝑡 + 𝑔𝑇[0,𝜎(𝑡)] (𝑥0) d𝜔. (6)

Remark 5. For any 𝑥0(𝑡0) ̸= 0, one has 𝑥0(𝑡) ̸= 0 in (6) at
the time interval 𝑡 ∈ (𝑡0, +∞) a.s. with a similar proof of
Proposition 1 in [25].

3.2. Controller 𝑢 Design. In order to design controller 𝑢, let
𝑧𝑖 = 𝑥𝑖𝑢𝑛−𝑖0 , 1 ≤ 𝑖 ≤ 𝑛. (7)

Remark 6. For any 𝑥0(𝑡0) ̸= 0, from Remark 5, we have that
(7) is meaningful a.s.

By (1b) and (7), one has

d𝑧𝑖 = 𝑧𝑖+1d𝑡 + 𝜙[𝑖,𝜎(𝑡)] (𝑥0, 𝑧𝑖) d𝑡 + 𝜓𝑇[𝑖,𝜎(𝑡)] (𝑥0, 𝑧𝑖) d𝜔,
𝑖 = 1, . . . , 𝑛 − 1,

d𝑧𝑛 = 𝑢d𝑡 + 𝜙[𝑛,𝜎(𝑡)] (𝑥0, 𝑥) d𝑡 + 𝜓𝑇[𝑛,𝜎(𝑡)] (𝑥0, 𝑥) d𝜔,
𝑦1 = 𝑧1,

(8)

where 𝑧𝑖 = [𝑧1, . . . , 𝑧𝑖]𝑇 and
𝜙[𝑖,𝜎(𝑡)] (𝑥0, 𝑧𝑖)

= 𝜂0 (𝑛 − 𝑖) 𝑧𝑖 + 𝑓[𝑖,𝜎(𝑡)]𝑢𝑛−𝑖0
+ 12 (𝑛 − 𝑖) (𝑛 − 𝑖 + 1) 𝑧𝑖 𝑔

𝑇
[0,𝜎(𝑡)]𝑔[0,𝜎(𝑡)]𝑥20

+ 𝜂0 (𝑛 − 𝑖) 𝑔𝑇[𝑖,𝜎(𝑡)]𝑔[0,𝜎(𝑡)]𝑢𝑛−𝑖+10 ,
𝜓[𝑖,𝜎(𝑡)] (𝑥0, 𝑧𝑖) = 𝑔[𝑖,𝜎(𝑡)]𝑢𝑛−𝑖0 − (𝑛 − 𝑖) 𝑧𝑖 𝑔[0,𝜎(𝑡)]𝑥0 ,

𝑖 = 1, . . . , 𝑛.

(9)

We adopt the following observer [27]:

̇̂𝑧𝑖 = �̂�𝑖+1 + 𝐿𝑖𝑎𝑖 (𝑦1 − �̂�1) , 𝑖 = 1, . . . , 𝑛 − 1,
̇̂𝑧𝑛 = 𝑢 + 𝐿𝑛𝑎𝑛 (𝑦1 − �̂�1) , (10)

where 𝐿 ≥ 1 is a gain parameter and real numbers 𝑎𝑖 > 0,𝑖 = 1, . . . , 𝑛, such that 𝑝(𝑠) = 𝑠𝑛 + 𝑎1𝑠𝑛−1 + ⋅ ⋅ ⋅ + 𝑎𝑛 is Hurwitz.
Remark 7. The second main difference between this manu-
script and [25] is that the observer (10) we choose is the same
as that in [27], but different from that in [25]. This observer
has two advantages.The first is that it can simplify the process
of designing controllers. The second is that 𝑏𝑖 in virtual
control 𝛼𝑖 that we design in the following does not contain
the gain parameter 𝐿.

Denoting

𝜉𝑖 = (𝑧𝑖 − �̂�𝑖)𝐿𝑖−1 , 𝑖 = 1, . . . , 𝑛, (11)

one has the error systems

d𝜉 = 𝐿𝐴𝜉d𝑡 + Φ𝜎(𝑡)d𝑡 + Ψ𝑇𝜎(𝑡)d𝜔, (12)
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where

𝐴 =
[[[[[[
[

−𝑎1−𝑎2 𝐼𝑛−1...
−𝑎𝑛 0

]]]]]]
]
,

Φ𝜎(𝑡) =

[[[[[[[[[[[[[
[

𝜙[1,𝜎(𝑡)]𝜙[2,𝜎(𝑡)]𝐿...𝜙[𝑛−1,𝜎(𝑡)]𝐿𝑛−2𝜙[𝑛,𝜎(𝑡)]𝐿𝑛−1

]]]]]]]]]]]]]
]

,

Ψ𝑇𝜎(𝑡) =

[[[[[[[[[[[[[[[[
[

𝜓𝑇[1,𝜎(𝑡)]
𝜓𝑇[2,𝜎(𝑡)]𝐿...
𝜓𝑇[𝑛−1,𝜎(𝑡)]𝐿𝑛−2
𝜓𝑇[𝑛,𝜎(𝑡)]𝐿𝑛−1

]]]]]]]]]]]]]]]]
]

.

(13)

Therefore, for positive definite matrix 𝑃, 𝐴 is a Hurwitz
matrix; that is, 𝐴𝑇𝑃 + 𝑃𝐴 = −𝐼. Now, one has

d𝜉 = 𝐿𝐴𝜉d𝑡 + Φ𝜎(𝑡)d𝑡 + Ψ𝑇𝜎(𝑡)d𝜔,
d𝑦1 = 𝑧2d𝑡 + 𝜙[1,𝜎(𝑡)]d𝑡 + 𝜓𝑇[1,𝜎(𝑡)]d𝜔,

̇̂𝑧𝑖 = �̂�𝑖+1 + 𝐿𝑖𝑎𝑖 (𝑦1 − �̂�1) , 𝑖 = 1, . . . , 𝑛 − 1,
̇̂𝑧𝑛 = 𝑢 + 𝐿𝑛𝑎𝑛 (𝑦1 − �̂�1) .

(14)

Proposition 8. By Assumptions 1 and 2, there exist constants𝜏1 > 0 and 𝜏2 > 0 a.s., such that
𝜙[𝑖,𝜎(𝑡)] ≤ (𝑧1 + 𝑧2 + ⋅ ⋅ ⋅ + 𝑧𝑖) 𝜏1,𝜓𝑇[𝑖,𝜎(𝑡)] ≤ (𝑧1 + 𝑧2 + ⋅ ⋅ ⋅ + 𝑧𝑖) 𝜏2, (15a)

Φ𝜎(𝑡) (𝑥0, 𝑧)2 ≤ 𝑛(𝑧1 +
𝑧2𝐿 + ⋅ ⋅ ⋅ + 𝑧𝑛𝐿𝑛−1)

2 𝜏21 ,
Ψ𝑇𝜎(𝑡) (𝑥0, 𝑧)2 ≤ 𝑛(𝑧1 +

𝑧2𝐿 + ⋅ ⋅ ⋅ + 𝑧𝑛𝐿𝑛−1)
2 𝜏22 ,

(15b)

where 𝑧 = [𝑧1, . . . , 𝑧𝑛]𝑇.
Remark 9. The proof of the above proposition is similar to
that of Proposition 2 in [25]. In fact, we only need to let V𝑖 =𝜂0 + (|𝜂0𝑚|𝑖−1 + ⋅ ⋅ ⋅ + 1)max𝜎(𝑡)V[𝑖,𝜎(𝑡)].

One can define variables 𝜀𝑖 as follows in order to utilize
the backstepping method:

𝜀1 = 𝑧1,
𝜀𝑖 (𝑧1, �̂�2, . . . , �̂�𝑖) = �̂�𝑖 − 𝛼𝑖−1 (𝑧1, �̂�2, . . . , �̂�𝑖−1) , (16)

with virtual smooth controllers 𝛼𝑖−1 (𝑖 = 2, . . . , 𝑛).
Step 1. For positive parameter 𝛿, letting 𝑉0 = 𝛿𝜉𝑇𝑃𝜉, with a
similar method in [24], one has

L𝑉0 ≤ − [𝛿 (𝐿 − 2 ‖𝑃‖2) − 2𝑛𝐶𝑒] 𝜉2

+ 2𝑛𝐶𝑒(𝑧12 +
�̂�22𝐿2 + ⋅ ⋅ ⋅ + �̂�22𝐿2𝑛−2) , (17)

where 𝐶𝑒 = 𝑛𝛿𝜏21 + 𝑛𝛿𝜆max(𝑃)𝜏22 . Defining 𝑉1 = 𝑉0 + (1/2)𝜀21 ,
we have

L𝑉1 ≤ − [𝛿 (𝐿 − 2 ‖𝑃‖2) − 2𝑛𝐶𝑒] 𝜉2

+ 2𝑛𝐶𝑒(𝑧12 +
�̂�22𝐿2 + ⋅ ⋅ ⋅ + �̂�𝑛2𝐿2𝑛−2)

+ 𝜀1 [𝜀2 + 𝛼1 + 𝐿𝜉2 + 𝜙[1,𝜎(𝑡)]]
+ 12Tr [𝜓[1,𝜎(𝑡)]𝜓𝑇[1,𝜎(𝑡)]] .

(18)

The following inequalities hold with Lemma 2.1 in [28]:

2𝑛𝐶𝑒
�̂�2𝐿2
2 ≤ 4𝑛𝐶𝑒 𝜀22𝐿 + 4𝑛𝐶𝑒 𝛼21𝐿2 ,

𝜀1𝜀2 ≤ 14𝐿𝜀22 + 𝐿𝜀21 ,
𝐿𝜀1𝜉2 ≤ 𝐿4 𝜀21 + 𝐿𝜉22 ,

𝜀1𝜙[1,𝜎(𝑡)] ≤ 𝐿𝜏21𝜀21 ,
12Tr [𝜓[1,𝜎(𝑡)]𝜓𝑇[1,𝜎(𝑡)]] ≤ 12𝐿𝜏22𝜀21 ,

2𝑛𝐶𝑒 𝑧12 ≤ 2𝑛𝐶𝑒𝐿𝜀21 ,

(19)

where, togetherwith (18), |𝑧𝑖/𝐿𝑖−1| ≤ ‖𝜉𝑖‖+|�̂�𝑖/𝐿𝑖−1|. Choosing
𝛼1 = −𝐿𝑏1𝜀1,
𝑏1 = 2𝑛 + 1 + 2𝑛𝐶𝑒 + 54 + 𝜏1 + 𝜏222 , (20)

one has

L𝑉1 ≤ − [𝛿 (𝐿 − 2 ‖𝑃‖2) − 2𝑛𝐶𝑒 − 𝐿] 𝜉2

+ 2𝑛𝐶𝑒 [
�̂�32𝐿4 + ⋅ ⋅ ⋅ + �̂�𝑛2𝐿2𝑛−2]

− [(2𝑛 + 1) 𝐿 − 4𝑛𝐶𝑒𝑏21 ] 𝜀21 + 14𝐿𝜀22 + 4𝑛𝐶𝑒 𝜀22𝐿 .
(21)
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Step 𝑖 (2 ≤ 𝑖 ≤ 𝑛 − 1). From (16), we have

𝜀𝑖 = �̂�𝑖 + 𝐿𝑏𝑖−1�̂�𝑖−1 + 𝐿2𝑏𝑖−1𝑏𝑖−2�̂�𝑖−2 + ⋅ ⋅ ⋅ + 𝐿𝑖−1𝑏𝑖−1𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1𝑧1,
d𝜀𝑖 = [�̂�𝑖+1 + 𝐿𝑖𝑑𝑖𝜉1 + 𝐿𝑖𝑑𝑖,1𝜀1 + 𝐿𝑖−1𝑑𝑖,2𝜀2 + ⋅ ⋅ ⋅ + 𝐿2𝑑𝑖,𝑖−1𝜀𝑖−1 + 𝐿𝑑𝑖,𝑖𝜀𝑖] d𝑡

+𝐿𝑖−1𝑏𝑖−1𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1 [𝐿𝜉2d𝑡 + 𝜙[1,𝜎(𝑡)]d𝑡 + 𝜓𝑇[1,𝜎(𝑡)]d𝜔] ,
(22)

where

𝑑𝑖,1 = −𝑏𝑖−1 ⋅ ⋅ ⋅ 𝑏2𝑏1𝑏1,
𝑑𝑖,𝑗 = 𝑏𝑖−1 ⋅ ⋅ ⋅ 𝑏𝑗𝑏𝑗−1 − 𝑏𝑖−1 ⋅ ⋅ ⋅ 𝑏𝑗𝑏𝑗, 2 ≤ 𝑗 ≤ 𝑖 − 1,
𝑑𝑖,𝑖 = 𝑏𝑖−1,
𝑑𝑖 = 𝑎𝑖 + 𝑏𝑖−1𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏2𝑎2 + 𝑏𝑖−1 ⋅ ⋅ ⋅ 𝑏3𝑎3 + ⋅ ⋅ ⋅

+ 𝑏𝑖−1𝑎𝑖−1.

(23)

Now, we have finished the design step 𝑖−1, and 𝛼𝑖−1 is chosen
as follows:

𝛼𝑖−1 = −𝐿𝑏𝑖−1𝜀𝑖−1,
𝑏𝑖−1 = 𝑛 + 4𝑛𝐶𝑒 + 54 + 𝑑 2𝑖−14 + 14𝑑2𝑖−1,1 + ⋅ ⋅ ⋅

+ 14𝑑2𝑖−1,𝑖−1 + 14 (𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1)2
+ 14 (𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1)2 𝜏21 + 𝑑𝑖−1,𝑖−1.

(24)

Let 𝑉𝑖−1 = 𝑉𝑖−2 + (1/2𝐿2𝑖−4)𝜀2𝑖−1, such that

L𝑉𝑖−1 ≤ − [𝛿𝐿 − 2𝛿 ‖𝑃‖2 − 2𝑛𝐶𝑒 − (𝑖 − 1) 𝐿] 𝜉2

+ 2𝑛𝐶𝑒(
�̂�𝑖+12𝐿2𝑖 + ⋅ ⋅ ⋅ + �̂�𝑛2𝐿2𝑛−2)

−{{{
[2𝑛 − 2 (𝑖 − 1) + 3] 𝐿

− 𝑖−2∑
𝑗=1

(𝑏𝑗 ⋅ ⋅ ⋅ 𝑏1)2 𝜏222 − 4𝑛𝐶𝑒𝑏21}}}
𝜀21 − 𝑖−1∑
𝑗=2

1𝐿2𝑗−2
⋅ [(𝑛 + 𝑗 − 𝑖 + 1) 𝐿 − 4𝑛𝐶𝑒𝑏2𝑗 ] 𝜀2𝑗 + 4𝑛𝑐𝑒 𝜀2𝑖𝐿2𝑖−3
+ 𝜀2𝑖4𝐿2𝑖−3 .

(25)

Defining 𝑉𝑖 = 𝑉𝑖−1 + (1/2𝐿2𝑖−2)𝜀2𝑖 , we have
L𝑉𝑖 ≤ − [𝛿𝐿 − 2𝛿 ‖𝑃‖2 − 2𝑛𝐶𝑒 − (𝑖 − 1) 𝐿] 𝜉2

+ 2𝑛𝐶𝑒(
�̂�𝑖+12𝐿2𝑖 + ⋅ ⋅ ⋅ + �̂�𝑛2𝐿2𝑛−2)

− [
[
[2𝑛 − 2 (𝑖 − 1) + 3] 𝐿 − 𝑖−2∑

𝑗=1

(𝑏𝑗 ⋅ ⋅ ⋅ 𝑏1)2 𝜏222

− 4𝑛𝐶𝑒𝑏21]]
𝜀21

− 𝑖−1∑
𝑗=2

1𝐿2𝑗−2 [(𝑛 + 𝑗 − 𝑖 + 1) 𝐿 − 4𝑛𝐶𝑒𝑏2𝑗 ] 𝜀2𝑗 + 4𝑛𝐶𝑒

⋅ 𝜀2𝑖𝐿2𝑖−3 + 14𝐿2𝑖−3 𝜀2𝑖 + 1𝐿2𝑖−2 𝜀𝑖 [𝜀𝑖+1 + 𝛼𝑖 + 𝐿𝑖𝑑𝑖𝜉1
+ 𝐿𝑖𝑑𝑖,1𝜀1 + 𝐿𝑖−1𝑑𝑖,2𝜀2 + ⋅ ⋅ ⋅ + 𝐿2𝑑𝑖,𝑖−1𝜀𝑖−1,𝑝 + 𝐿𝑑𝑖,𝑖𝜀𝑖
+ 𝐿𝑖−1𝑏𝑖−1𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1 (𝐿𝜉2 + 𝜙[1,𝜎(𝑡)])]
+ 12𝐿2𝑖−2 (𝐿𝑖−1𝑏𝑖−1𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1)2 Tr [𝜓[1,𝜎(𝑡)]𝜓𝑇[1,𝜎(𝑡)]] .

(26)

By Lemma 2.1 in [28], one gets

2𝑛𝐶𝑒
�̂�𝑖+12𝐿2𝑖 ≤ 4𝑛𝐶𝑒 𝜀2𝑖+1𝐿2𝑖−1 + 4𝑛𝐶𝑒 𝛼2𝑖𝐿2𝑖 ,

1𝐿2𝑖−2 𝜀𝑖𝜀𝑖+1 ≤ 14𝐿2𝑖−1 𝜀2𝑖+1 + 1𝐿2𝑖−3 𝜀2𝑖 ,
𝑑𝑖𝐿𝑖−2 𝜀𝑖𝜉1 ≤

𝑑 2𝑖4𝐿2𝑖−3 𝜀2𝑖 + 𝐿𝜉21 ,
𝑑𝑖,1𝐿𝑖−2 𝜀𝑖𝜀1 ≤

𝑑2𝑖,14𝐿2𝑖−3 𝜀2𝑖 + 𝐿𝜀21 ,
...

𝑑𝑖,𝑖−1𝐿2𝑖−4 𝜀𝑖𝜀𝑖−1 ≤
𝑑2𝑖,𝑖−14𝐿2𝑖−3 𝜀2𝑖 + 1𝐿2𝑖−5 𝜀2𝑖−1,

1𝐿𝑖−2 𝑏𝑖−1𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1𝜀𝑖𝜉2 ≤
(𝑏𝑖−1𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1)24𝐿2𝑖−3 𝜀2𝑖 + 𝐿𝜉22 ,
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1𝐿𝑖−1 𝑏𝑖−1𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1𝜀𝑖𝜙1𝑝 ≤ (𝑏𝑖−1𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1𝜏1)24𝐿2𝑖−3 𝜀2𝑖 + 𝐿𝜀21 ,
12𝐿2𝑖−2 (𝐿𝑖−1𝑏𝑖−1𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1)2 Tr {𝜓[1,𝜎(𝑡)]𝜓𝑇[1,𝜎(𝑡)]}
≤ (𝑏𝑖−1𝑏𝑖−2 ⋅ ⋅ ⋅ 𝑏1)22 𝜏22𝜀21 .

(27)

Choosing 𝛼𝑖 as
𝛼𝑖 = −𝐿𝑏𝑖𝜀𝑖,
𝑏𝑖 = 𝑛 + 4𝑛𝐶𝑒 + 54 + 𝑑 2𝑖4 + 14𝑑2𝑖,1 + ⋅ ⋅ ⋅ + 14𝑑2𝑖,𝑖−1

+ 14 (𝑏𝑖−1 ⋅ ⋅ ⋅ 𝑏1)2 + 14 (𝑏𝑖−1 ⋅ ⋅ ⋅ 𝑏1)2 𝜏21 + 𝑑𝑖,𝑖,
(28)

one has

L𝑉𝑖 ≤ − [𝛿𝐿 − 2𝛿 ‖𝑃‖2 − 2𝑛𝐶𝑒 − 𝑖𝐿] 𝜉2
+ 2𝑛𝐶𝑒(

�̂�𝑖+22𝐿2𝑖+2 + ⋅ ⋅ ⋅ + �̂�𝑛2𝐿2𝑛−2)

−{{{
[2𝑛 − 2𝑖 + 3] 𝐿 − 𝑖−1∑

𝑗=1

(𝑏𝑗 ⋅ ⋅ ⋅ 𝑏1)2 𝜏222 − 4𝑛𝐶𝑒𝑏21}}}
⋅ 𝜀21 − 𝑖∑

𝑗=2

1𝐿2𝑗−2 [(𝑛 + 𝑗 − 𝑖) 𝐿 − 4𝑛𝐶𝑒𝑏2𝑗 ] 𝜀2𝑗 + 4𝑛𝐶1
⋅ 𝜀2𝑖+1𝐿2𝑖−1 + 14𝐿2𝑖−1 𝜀2𝑖+1.

(29)

Step 𝑛. Letting 𝑉𝑛 = 𝑉𝑛−1 + (1/2𝐿2𝑛−2)𝜀2𝑛 and choosing

𝑢 = −𝐿𝑏𝑛𝜀𝑛,
𝑏𝑛 = 𝑛 + 4𝑛𝐶𝑒 + 54 + 𝑑 2𝑛4 + 𝑑2𝑛,14 + ⋅ ⋅ ⋅ + 𝑑2𝑛,𝑛−14

+ (𝑏𝑛−1 ⋅ ⋅ ⋅ 𝑏1)24 + (𝑏𝑛−1 ⋅ ⋅ ⋅ 𝑏1)2 𝜏214 + 𝑑𝑛,𝑛,
(30)

one gets

L𝑉𝑛 ≤ −ℎ0 𝜉2 − ℎ1𝜀21 − 𝑛−1∑
𝑗=2

ℎ𝑗 1𝐿2𝑗−2 𝜀2𝑗 − ℎ𝑛 1𝐿2𝑛−3 𝜀2𝑛
≤ −ℎ̃𝑉𝑛,

(31)

where ℎ̃ = min{ℎ0/𝛿, 2ℎ1, . . . , 2ℎ𝑛} and
ℎ0 = 𝛿𝐿 − 2𝛿 ‖𝑃‖2 − 2𝑛𝐶𝑒 − 𝑛𝐿 ≥ 0,
ℎ1 = 3𝐿 − 𝑛−1∑

𝑗=1

(𝑏𝑗 ⋅ ⋅ ⋅ 𝑏1)2 𝜏222 − 4𝑛𝐶𝑒𝑏21 ≥ 0,
ℎ𝑗 = 𝑗𝐿 − 4𝑛𝐶𝑒𝑏2𝑗 ≥ 0, 𝑗 = 2, . . . , 𝑛 − 1,
ℎ𝑛 = 𝑛 ≥ 0, 𝛿 > 𝑛.

(32)

Remark 10. From (20), one has that 𝑏1 do not contain 𝐿 under
arbitrary switching. From (28), one has that all 𝑏𝑖 do not
contain 𝐿 under the designed controllers.

Remark 11. For example, with 𝑛 = 3, by (41) in [25] and (32),
we have

ℎ0 = 𝛿 (𝐿 − 2 ‖𝑃‖2 − ‖𝐵‖2) − 6𝐶𝑒 − 3𝐿 ≥ 0,
ℎ1 = 6𝐿 − 4𝐿 − 2𝜂20𝐿 − (𝑏2𝑏1)2 𝜏222 − 12𝐶𝑒𝑏21 ≥ 0,
ℎ2 = 2𝐿 − 𝜂20𝐿 − 12𝐶𝑒𝑏22 ≥ 0,
ℎ3 = 3 ≥ 0, 𝛿 > 3,

(33)

ℎ0 = 𝛿 (𝐿 − 2 ‖𝑃‖2) − 6𝐶𝑒 − 3𝐿 ≥ 0,
ℎ1 = 7𝐿 − 4𝐿 − 2∑

𝑗=1

(𝑏𝑗 ⋅ ⋅ ⋅ 𝑏1)2 𝜏222 − 12𝐶𝑒𝑏21 ≥ 0,
ℎ2 = 3𝐿 − 12𝐶𝑒𝑏22 ≥ 0,
ℎ3 = 3 ≥ 0, 𝛿 > 3,

(34)

respectively. It is easy to see that ℎ1 and ℎ2 in (33) are all
quintic functions about 𝐿, but they are linear functions about𝐿 in (34). So, the calculation of 𝛿 and 𝐿 will be more simple
with the method in this manuscript.

Choose 𝑉 = 𝑉0 + 𝑉𝑛, which together with (5) and (31)
result in

L𝑉 ≤ −ℎ𝑉, (35)

where ℎ = min{𝜆, ℎ̃}.
Theorem 12. For system (1b), the closed-loop system with
controller (30) is asymptotically stable in probability.

3.3. Switching Control. In the above two subsections, we give
the controllers 𝑢0 and 𝑢 with 𝑥0(𝑡0) ̸= 0 as (4) and (30). Now,
we turn to the case of 𝑥0(𝑡0) = 0. If 𝑥0(𝑡0) = 0, we firstly
choose constant control 𝑢0 = 𝑢∗0 ̸= 0. Secondly, there will
exist a time 𝑡∗𝑠 > 0 such that 𝑥0(𝑡∗𝑠 ) ̸= 0. After that, controllers𝑢0 and 𝑢 as (4) and (30) can be applied.

Theorem 13. If we apply the above switching procedure,
systems (1a) and (1b) will be asymptotically stabilized in
probability.

4. A Simulation Example

Consider systems (1a) and (1b) with 𝜎 : [0, +∞) → {1, 2}
and 𝑔[0,1] = 𝑐1𝑥0 cos(𝑥0), 𝑔[0,2] = 𝑐1𝑥0 sin(𝑥0), 𝑓[1,1] =𝑐1𝑥1cos2(𝑥1), 𝑓[1,2] = 𝑐1𝑥1 cos(𝑥1), 𝑔[1,1] = 𝑐1𝑥1sin2(𝑥1),𝑔[1,2] = 𝑐1𝑥1 sin(𝑥1), 𝑓[2,1] = 𝑓[2,2] = 0, 𝑔[2,1] = 𝑐1𝑥2sin2(𝑥2),𝑔[2,2] = 𝑐1𝑥2 sin(𝑥2), and 𝑐1 = 0.001.

From (8), we have 𝜙[1,1] = 𝜂0𝑧1 + 𝑐1𝑧1cos2(𝑥1) +𝑐21𝑧1cos2(𝑥0) − 𝑐21𝑧1sin2(𝑥1) cos(𝑥0), 𝜙[2,1] = 0, 𝜓[1,1] =
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Figure 1: The responses of states 𝑥0, 𝑥1, and 𝑥2.

𝑐1𝑧1sin2(𝑥1) − 𝑐1𝑧1 cos(𝑥0), 𝜓[2,1] = 𝑐1𝑧2sin2(𝑧2), 𝜙[1,2] =𝜂0𝑧1 + 𝑐1𝑧1cos2(𝑥1) + 𝑐21𝑧1sin2(𝑥0) − 𝑐21𝑧1 sin(𝑥1) sin(𝑥0),𝜙[2,2] = 0, 𝜓[1,2] = 𝑐1𝑧1 sin(𝑥1) − 𝑐1𝑧1 sin(𝑥0), and 𝜓[2,2] =𝑐1𝑧2 sin(𝑧2).
Letting 𝜂0 = 0.3, by Proposition 8, we have 𝜏1 = 0.3023

and 𝜏2 = 0.001. Choosing 𝑎1 = 0.75 and 𝑎2 = 1.25, then𝜆max(𝑃) = 2 and ‖𝑃‖ = 2.
From (20) and (30), one gets

𝑏1 = 5 + 4𝐶𝑒 + 1 + 14 + 𝜏1 + 12𝜏22 ,
𝑏2 = 2 + 8𝐶𝑒 + 1 + 14 + (𝑎2 + 𝑏1𝑎1)24 + 𝑏214 + 𝑏1 + 𝑏214

+ 𝑏21𝜏214 ,
𝑢 = −𝐿𝑏2�̂�2 − 𝐿2𝑏2𝑏1𝑧1,

(36)

where 𝐶𝑒 = 0.4131𝛿. From (32) and (35), we have

ℎ0 = (𝛿 − 2) 𝐿 − 2𝛿 ‖𝑃‖2 − 4𝐶𝑒 ≥ 0,
ℎ1 = 2𝐿 − 𝑏21𝜏222 − 8𝐶𝑒𝑏21 ≥ 0,
ℎ2 = 2 ≥ 0, 𝛿 > 2.

(37)

Solving the above inequalities, one has 𝛿 = 2.26 and 𝐿 = 76,
which means ℎ0 = 0.0277, ℎ1 = 5.5526, andL𝑉 ≤ 0.

If we choose initial values 𝑥0(0) = 0.1, 𝑥1(0) = 0.0003,𝑥2(0) = 0.2, �̂�1(0) = −0.001, and �̂�2(0) = 7.5, responses of
systems are as in Figures 1, 2, and 3.
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Figure 2: The responses of controllers 𝑢0 and 𝑢.
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Figure 3: The responses of switching signals 𝜎(𝑡).
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Remark 14. From the above example, the observer we
adopted is the same as that in [27], but it can simplify the
calculation of 𝛿 and 𝐿 compared with the observer in [25].

5. Conclusions

The output feedback stabilization for SNSs under arbitrary
switching is discussed. We proposed an observer which is
different from that in [25]. 𝑏𝑖 of the designed output feedback
stabilizing control laws do not contain the gain parameter.
We will give some new results, for example, how to design
an adaptive controller with the method LMI based on results
in [29, 30].
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