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A statistical analysis that properly characterizes sea clutter processes is indispensable both for optimum detection algorithm design
and for performance prediction problems in maritime surveillance applications. In this paper, we present the statistical analysis of
experimental sea clutter data collected by a high-resolution coherent monopulse radar. First, we present the amplitude statistical
analyses for these clutter data. The results show that the 𝐾, Pareto, and CIG distributions can each provide good fits to the clutter
data for three channels of monopulse radar. The analyses on the variations of the 𝐾 distribution parameters with range suggest
that the scale parameter is closely associated with the clutter powers and that the shape parameter is influenced by the sea state.
Then, we focus on the correlation properties. The averaged results suggest that the temporal and spatial correlation properties are
similar for the clutter of all three channels. Moreover, the clutter between the sum and difference channels is almost completely
correlated in elevation and is lowly correlated in azimuth. Finally, we perform a spectral analysis, highlighting the temporal and
spatial variabilities of Doppler spectra. It is found that the individual Doppler spectra in all three channels can be represented by
Gaussian-shaped power spectral densities, and their centroid and width can be modeled as two separate stage linear functions of
spectrum intensity.

1. Introduction

Maritime remote sensing and surveillance are of considerable
importance. Radar has played a central role in these activities
[1]. Monopulse, which uses the sum and difference beams to
estimate the direction of arrival (DOA) of targets, is a mature
angle measurement technique. Monopulse radars are widely
used in target tracking systems because of their superior
angular accuracy and powerful antijamming performance
[2]. In recent years, combining the monopulse technology
and the wideband imaging technology has become a general
trend [3–6]. The wideband monopulse radars can synthesize
one-dimensional high-resolution range profiles and two-
dimensionalmonopulse anglemeasurements to obtain three-
dimensional imaging of the target. Based on this three-
dimensional imaging, three-dimensional location informa-
tion of scattering points of the target can be obtained. Fur-
thermore, combining the two-dimensional SAR (synthetic
aperture radar) or ISAR (inverse synthetic aperture radar)
imaging, the target classification, feature detection, and the

key part recognition of the target can be effectively achieved.
Hence, the application of wideband monopulse radars can
significantly improve the surveillance, the recognition, and
the precise location of sea surface targets.When thewideband
monopulse radar operates in a maritime environment, it will
inevitably encounter sea clutter. This sea clutter is unwanted.
It may interfere with the radar operation, irrespective of
whether the wideband monopulse radar is used for detect-
ing or tracking targets. A comprehensive understanding of
the clutter environment in which radar operates is essen-
tial for evaluating the performance of maritime wideband
monopulse radar. Moreover, to be able to optimize the
signal processing under different conditions, the radar system
designer also needs to have a detailed analysis of wideband
monopulse radar clutter properties.

Due to the interaction of the sea surface characteristics,
the geometry of acquisition, and radar parameters, there
are apparent diversities of the statistical behaviors for the
different clutter datasets recorded by different radar systems.
Over the past few decades, various types of radar sea clutter
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datasets have been collected and studied [7–21]. The publi-
cations analyzing these datasets have primarily focused on
suitable theoretical probability distribution function (PDF)
models for sea clutter amplitude or intensity, the Doppler
spectrum, the correlation characteristics, the sea spikes, and
the average normalized radar cross section. These works
can provide a thorough understanding of the statistical
characteristics of sea clutter for other radar engineers when
similar radar systems are applied to their designs. However,
relatively little information has been published onmonopulse
radar sea clutter, particularly on high-resolution coherent
monopulse radar sea clutter. This serves as the motivation to
address this topic. To study the behavior of sea clutter received
by a monopulse radar, we have constructed an experimental
Ka-band wideband coherent monopulse radar system and
conducted some pilot sea clutter trials.

A key aim of this study is to expand the knowledge of
high-resolution coherent monopulse radar clutter through
the detailed analysis of some experimental sea clutter datasets
recorded by this wideband monopulse radar system, which
has never been published in the previous literature. These
datasets contain significant elements of novelty, which can
help to provide more insights into the characteristics of
monopulse radar sea clutter. It is well known that, in the
conventional monopulse radar system, one common channel
(sum channel) is used to transmit signals and three channels
(sum channel and azimuth and elevation difference chan-
nels) are used to receive the clutter returns simultaneously.
Although both the clutter returns are the backscatter from
the same patch of ocean, the three receiver channels have
different antenna patterns. Consequently, the recorded clutter
data of the three receiver channels are neither exactly the
same nor completely independent. There are some complex
relationships among them. However, in the openly published
literature, the corresponding analysis for this issue has still
not been performed by applying the measured monopulse
radar clutter. Therefore, the main element of novelty is the
fact that the analysis presented within this work can provide
a direct comparison of the clutter characteristics of three
channels simultaneously to provide novel information on the
difference and the relationship among the clutter of three
channels of monopulse radar.

In this paper, the statistical analyses for these clutter data
focus on three main properties: the amplitude statistics, the
correlation characteristics, and the Doppler spectra analysis.
Therefore, the statistical analysis techniques resemble previ-
ous woks in this field. The aim of the amplitude statistics
is to obtain good models of the clutter amplitude by fitting
different theoretical distribution models to the empirical dis-
tribution of the observed amplitude data of sea clutter. A vari-
ety of theoretical distribution functions have been proposed
in the literature to model the amplitude probability density
function of high-resolution sea clutter. Among them, we
mention several commonly used PDFs: Weibull, 𝐾, Pareto,
and compound inverse Gamma (CIG) [22–29]. As discussed
in [1, 30, 31], the parameters of these distribution models are
influenced by the radar and environment parameters. Since
the sea surface is highly nonstationary and the three channels
of monopulse radar have different antenna patterns, when

the same distribution is used to model the clutter of three
channels, for three channels, themodel parameters within the
same range cell may be different, and, for each channel, they
vary with range. To take into account the wide acceptance
and application of the𝐾 distributionmodel, studies about the
variations of the𝐾 distributionmodel parameter estimations
with range are performed.

The correlation characteristics of sea clutter, which are
particularly important for modeling and simulating clutter
sequences and predicting detection performance involving
temporal or spatial signal processing, include the temporal
and spatial correlations [32–36]. In addition, many distri-
bution models are special cases of the compound Gaussian
model; thus, many simulations of sea clutter and target
detection are performed on the assumption of the compound
Gaussianmodel. Since the compoundGaussianmodel can be
expressed as the product of texture and speckle components,
the correlation function of clutter can also be written as
the product of the correlation functions of the texture and
speckle components. The texture and speckle components
may exhibit different correlation characteristics due to their
different physical mechanisms. In this paper, the correlation
analyses are developed for these two components. Addi-
tionally, the clutter correlation property between the sum
and difference channels may affect the angle measurement
performance in the ordinary monopulse radar and the detec-
tion performance of moving targets in the monopulse-SAR
(synthetic aperture radar). For the simulation of monopulse
radar clutter, it should also be considered. Therefore, this
correlation property is also investigated in this paper.

Modern radar systems can use coherent Doppler pro-
cessing to suppress the noise and clutter interferences or to
separate the targets from clutter in the Doppler domain. The
characteristics of the Doppler spectra of sea clutter may have
a significant effect on the results of the coherent Doppler
processing. Understanding the characteristics of the Doppler
spectra of sea clutter is critical for improvements in advanced
signal processing algorithms. In [37, 38], the characteristics
of the Doppler spectra of recorded sea clutter have been
analyzed, and a simplemethod has been proposed for charac-
terizing the temporal variation of the Doppler spectrum. To
demonstrate the characterization and modeling of Doppler
spectra of the recorded monopulse radar clutter, a similar
analysis process is adopted here. Through investigating the
key features of Doppler spectra (i.e., the shape of the Doppler
power spectrum, the mean Doppler and width of individual
spectra, and the average power of each spectrum), we want to
extend the simple method to simultaneously characterize the
temporal and spatial variabilities of Doppler spectra.

The remainder of this paper is organized as follows. In
Section 2, the characteristics of the radar system and of
the analyzed datasets are presented. Section 3 addresses the
statistical characterization of the observed clutter amplitude
by fitting different theoretical distribution models. The vari-
ations of the parameter estimations of the 𝐾 distribution
model with range are investigated. The correlation analysis
is presented in Section 4, which contains the temporal and
spatial correlation analyses of each channel and the cross-
correlation analysis between the sumanddifference channels.
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Figure 1: Sketches of the sum and difference patterns and the measurement geometry: (a) sketch of the sum and difference patterns; (b)
sketch of the measurement geometry.

In Section 5, we analyze the Doppler spectra by investigating
the key features of Doppler spectra. We explore a simple
method for simultaneously characterizing the temporal and
spatial variabilities of Doppler spectra. Finally, conclusions
and discussions are presented in Section 6.

2. Radar System and Data Description

This section provides brief overviews of this wideband coher-
entmonopulse radar system and the experimental setup.This
radar system operates at the Ka-band and is coherent. It
consists of a transmitter channel and three receiver channels:
the sum channel and the elevation and azimuth difference
channels. The three receiver channels can simultaneously
record the clutter returns scattered from the same patches
of ocean. The antenna patterns of the receiver sum channel
and of the transmitter channel are the same, but those of the
two receiver difference channels are different from that of the
transmitter channel. Figure 1(a) presents a sketch of the sum
and difference patterns for either elevation or azimuth. The
sum pattern is a pencil beam with its peak on the boresight
axis. For the two difference channels, the shapes of their
receiving antenna patterns are similar, and they have their
null on the boresight axis. Both the transmitter and receiver
channels are designed as the vertical polarization. The radar
transmits a train of chirp pulses, and its main characteristics
are listed in Table 1. The signal bandwidth is 100MHz, thus
providing a theoretical range resolution of 1.5m. This radar
system can work in two main modes: scanning and spotlight
modes. When the radar is operating in spotlight mode, ISAR
images of an unknown maneuvering marine target can be
obtained continuously.

The sea clutter data analyzed in this paper were col-
lected on 12 September 2013 in Huludao, Liaoning, China.

Table 1: Main characteristics of radar.

Property Value
Carrier frequency 35.4GHz
Transmitted signal Up linear chirp
Bandwidth 100 MHz
Pulse duration Variable
Pulse repetition frequency 500Hz
Sampling frequency 200MHz
Polarization (transmitter and receivers) Vertical
Half-power beamwidth (Transmitter) 3∘ (el.) × 3∘ (az.)
Tx. power 15W

Figure 1(b) shows the sketch of the measurement geometry.
The radar operated in spotlight mode such that the same
direction clutter data can be collected for a long time. The
radar was set on a cliff 230m above the sea. However, the
distance between the radar and the coastline is over 800m.
The radar only performed on the low grazing angle. During
the measurement trials, two fixed grazing angles (8∘ and 10∘)
were applied. To avoid confusion, the collected data under the
two fixed low grazing angles are referred to as dataset 1 (DS1)
and dataset 2 (DS2), respectively. In each file, the number of
received samples per pulse (i.e., the number of range cells) is
4000. However, the received samples in many range cells are
free of clutter due to the limitation of the antenna beamwidth.
The considered subset of range cells are where the clutter is
present. Here 1800 range cells for DS1 and 900 range cells for
DS2 are selected to analyze. The number of time samples for
each range cell is 31750, which is equal to a recorded duration
of 63.5 seconds. The main configurations of the analyzed
datasets are summarized in Table 2. During the time the data
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Table 2: Main configurations of the analyzed datasets.

Dataset name Grazing angle (deg) Slant range (m) Start range (m) Number of range samples
DS1 8 1653 1140 1800
DS2 10 1325 1042.5 900
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Figure 2: Sea clutter image in range against time format: ((a)–(c)) sum channel and elevation and azimuth difference channels for DS1.
((d)-(e)) Sum channel and elevation and azimuth difference channels for DS2.

were collected, the availablewind recorded on the day showed
a wind speed of approximately 9-10m/s blowing from the
south direction. From the information about the wind speed,
the sea state was approximately 4-5 (Beaufort scale). In the
experiments, the available wave data on the day were not
recorded. However, because of the waves close proximity to
the shore, the waves were coming towards the coast line, and
their direction can be approximately 315∘ with respect to True
North.The radar look direction was approximately 175∘ with
respect to True North. Therefore, the radar looks into the
waves at an oblique angle of approximately 50∘.
3. Amplitude Analysis

3.1. CNR. To provide a general view of the sea clutter
data, amplitude-range-time (ART) maps of the recorded
clutter samples have been obtained by considering the entire
duration of the data. Figure 2 shows the ART maps of clutter
samples in three channels for DS1 and DS2. In these maps,
the horizontal axis corresponds to the time in seconds, the

vertical one corresponds to the range cell number, and the
color scale provides the amplitude. In each ART map, many
bands of high amplitude can clearly be identified. This is
because, in high-resolution radar systems, sea waves or swells
can be resolved, and a great number of powerful scatterers can
be located on the crest of the sea waves or swells. However,
as stated by Ward et al. in [1] and by Palama et al. in [14],
the Bragg scattering component, which is associated with
resonant capillary waves, strongly influences the sea clutter
returns at vertical polarization; thus, these ART maps clearly
show the characteristic periodic variations of the underlying
mean level of clutter with range and time due to the sea wave
pattern. These wave-like modulations can contribute to the
clutter “spikiness” despite not actually being composed of
spikes [1]. They can contribute to the non-Gaussian nature
of the clutter and have a significant effect on attempts of
fitting empirical data to the theoretical distributions. This
fact is further supported by the next results of the amplitude
statistics analysis.
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Figure 3: CNRs of the experimental sea clutter datasets: (a) DS1. (b) DS2.

For high-resolution radar systems, the corresponding
illumination area of a single range cell is distributed over
the entire region of the sum and difference patterns in the
azimuth direction, but it is restricted within a small portion
of the sum and difference patterns in the elevation direction.
Consequently, in Figure 2, it can clearly be observed that
the recorded sea clutter returns occur within a successive
range cell region for both the sum and azimuth difference
channels. For the elevation difference channel, however, the
recorded sea clutter returns occur within two separate range
cell regions.

For both sea clutter datasets, no specialized measure-
ments were performed for the presence of only noise in
clutter returns. However, a subset of range cells away from
the clutter range cells can be carefully chosen to represent the
background noise.The noise level is obtained by averaging all
range cells and pulses of this subset. For each range cell, the
average power of sea clutter plus noise is derived by averaging
all powers over the full time record.The noise level is denoted
as 𝑝𝑛, and the average power of clutter plus noise is denoted
as ⟨𝑧⟩2. Then, the clutter to noise ratio (CNR) of each range
cell can be estimated by

CNR = ⟨𝑧⟩2 − 𝑝𝑛𝑝𝑛 . (1)

Figure 3 shows the CNRs of the three channels for DS1
and DS2. In Figure 3, for both DS1 and DS2, the shapes of
the CNR curves are similar between the azimuth difference
and sum channels. They resemble the shape of the one-
dimensional sum antenna gain pattern shown in Figure 1(a).
For all range cells, the CNRs of the azimuth difference
channel are always lower than those of the sum channel.
Compared with the CNR curves of the sum and azimuth
difference channels, however, theCNR curves of the elevation

difference channel are completely different. They have a deep
slot. Their shape resembles the shape of the one-dimensional
difference antenna gain pattern. Moreover, Figure 3 clearly
shows that both DS1 and DS2 have two subsets of range cells
in which the CNRs of the elevation difference channel are
higher than those of the sum channel. However, all CNR
curves are not severely symmetrical with respect to a center.
This is because the clutter power falls offwith increasing radar
distance.

3.2. Statistical Models of Clutter Amplitude. The important
step of the statistical analysis is to fit the probability density
function (PDF) of the amplitude samples of the measured
sea clutter by using the theoretical PDFs of some known
distribution models. The Weibull, 𝐾, Pareto, and compound
inverse Gamma (CIG) distributions are compared here. The
analytical expressions of these PDFs (𝑝𝑋(𝑥)) are reported as
follows, where 𝑥 = |𝑧(𝑛)| is the amplitude of sea clutter and𝑧(𝑛) is the complex envelope of clutter data.

(1) Weibull Model. The Weibull distribution model is com-
monly used in describing the non-Rayleigh clutter. Gen-
erally, the amplitude distribution of the high-resolution
low-grazing-angle sea clutter can be accurately depicted by
applying the Weibull model under the general sea condition
[22, 23]. Its PDF has the form

𝑝 (𝑥 | 𝑎, 𝑏) = 𝑏𝑎−𝑏𝑥𝑏−1exp(−(𝑥𝑎)
𝑏)𝑢 (𝑥) , (2)

where 𝑢(𝑥) is a step function, 𝑎 > 0 is a scale parameter, and𝑏 > 0 is a shape parameter. The smaller the value of 𝑏 is,
the higher the tails of the corresponding PDF are. Note that
the exponential distribution and the Rayleigh distribution are
particular cases of the Weibull distribution when the shape
parameters 𝑏 = 1 and 𝑏 = 2.
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(2) K Model. The compound 𝐾 distribution consists of two
components of the envelope amplitude of the clutter returns
[1, 24].Thefirst is termed the speckle.The speckle is described
as a complex Gaussian random variable; thus, its amplitude
obeys the Rayleigh distribution. The second is termed the
texture. The texture represents the local mean level and
obeys the Gamma distribution. The speckle component is
modulated by the texture component. The PDF of the 𝐾
distribution is given by

𝑝 (𝑥 | 𝜇, V) = ∫∞
0
𝑝 (𝑥 | 𝑦) 𝑝 (𝑦) 𝑑𝑦

= ∫∞
0

𝜋𝑥2𝑦2 exp(−𝜋𝑥
2

4𝑦2 ) 2Γ (V)𝑏2V𝑦2V−1exp (−𝑏2𝑦2)

⋅ 𝑢 (𝑥) 𝑑𝑦 = √2V
√𝜇Γ (V) 2V−1 (√

2V𝜇 𝑥)
V

⋅ 𝐾V−1(√2V𝜇 𝑥)𝑢 (𝑥) ,

(3)

where 𝑏 = √2V/𝜇𝜋. 𝜇 > 0 is the scale parameter, V > 0 is
the shape parameter, Γ(⋅) is a Gamma function, and𝐾V(⋅) is a
second-order modified Bessel function of order V. Similar to
the Weibull model, the smaller the shape parameter V is, the
higher the tails of the corresponding PDF are. The Rayleigh
distribution is obtained for V→∞.

(3) Pareto Model. The Pareto distribution is a compound
Gaussian model with a Rayleigh distribution being modu-
lated by an inverse Gamma distribution [25–27]. Its PDF is
given by

𝑝 (𝑥 | 𝛼, 𝛽) = ∫∞
0

2𝑥𝑦 exp(−𝑥2𝑦 )
⋅ 𝛽𝛼Γ (𝛼)𝑦−(𝛼+1)exp(−𝛽𝑦)𝑢 (𝑥) 𝑑𝑦 = 2𝑥𝛼𝛽𝛼

(𝑥2 + 𝛽)𝛼+1
⋅ 𝑢 (𝑥) ,

(4)

where 𝛼 > 0 is the shape parameter and 𝛽 > 0 is the
scale parameter. The power level of the Pareto-distributed
random series will be higher with a larger scale parameter 𝛽.
In addition, the smaller the shape parameter 𝛼 is, the higher
the tails of the corresponding PDF are.

(4) Compound Inverse Gaussian (CIG)Model.The compound
inverse Gaussian model is a mixture of the Rayleigh distribu-
tion and the inverse Gaussian to model the speckle and the
texture components, respectively [28]. In [29], experimental
fitting results show that the sea clutter amplitudes obey the

proposed CIG model in most cases. The PDF of the CIG
distribution is given by

𝑝 (𝑥 | 𝜆, 𝜂) = ∫∞
0

𝜋𝑥2𝑦2 exp(−𝜋𝑥
2

4𝑦2 )

⋅ 𝜆1/2√2𝜋𝑦3/2 exp(−𝜆
(𝑦 − 𝜂)22𝜂2𝑦 )𝑢 (𝑥) 𝑑𝑦,

(5)

where 𝜂 > 0 is the mean and 𝜆 > 0 is the shape parameter.
Since various theoretical distributions are involved, two

common goodness-of-fit tests have been used to assess the
suitability of each of these distributions for the measured sea
clutter data.

(1) Root-Mean-Square Error (RMSE). Assume that 𝑝(𝑥 | Θ̂) is
the theoretical distribution based on the estimated parameter
vector Θ̂ and 𝑝(𝑥) is the estimated PDF from the real sea
clutter data. Then, the RMSE for each distribution can be
defined as

RMSE = 1𝑁
𝑁∑
𝑘=1

(𝑝 (𝑥 (𝑘) | Θ̂) − 𝑝 (𝑥 (𝑘)))2 , (6)

where𝑁 is the sample length of the estimated PDF and 𝑥(𝑘)
is the value of the sample.

(2) Chi-Squared (CS) Test. The theoretical CDF and the
empirical CDF can be, respectively, expressed as 𝐹𝑋(𝑥(𝑘)) =∑𝑘𝑖=1 𝑝(𝑥 | Θ̂)𝑑𝑥 and 𝐹𝑋(𝑥(𝑘)) = ∑𝑘𝑖=1 𝑝(𝑥(𝑘))𝑑𝑥, where 𝑑𝑥
is the interval of two adjacent statistic samples. Thus, the CS
test between the theoretical CDF 𝐹𝑋(𝑥(𝑘)) and the empirical
CDF 𝐹𝑋(𝑥(𝑘)) is defined as

CS = 𝑁∑
𝑘=1

(𝐹𝑋 (𝑥 (𝑘)) − 𝐹𝑋 (𝑥 (𝑘)))2𝐹𝑋 (𝑥 (𝑘)) . (7)

The smaller the CS test value, the better the fitting result of
the theoretical distribution.

These distribution parameters are computed from the
recorded data. The four most commonly used methods for
estimating the parameters for these distribution functions
have been proposed in the literature.Themethod ofmoments
(MoM) (also known as moment matching) is to match the
moments of the data sample to those of the distribution
functions. This method is the simplest and fastest, but its
accurate estimation requires very large data samples. As
discussed in [39], the MoM is relatively inaccurate for the
Pareto distribution clutter plus noise if the shape parameter
is small. Maximum-likelihood estimators (MLEs) have been
applied to Weibull [1],𝐾 [40, 41], and Pareto [26] distributed
clutter.These estimators can provide accurate results, but they
are difficult to compute for clutter and noise because there
is no closed form for the likelihood function. The 𝑧 log(𝑧)
estimators have been applied to 𝐾 and Pareto distribution
clutter [1, 39, 42]. When noise is included, these estimators
still provide more robust and accurate estimates and are
relatively quick to compute. There is no 𝑧 log(𝑧) estimator
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Table 3: Estimated parameters for different theoretical PDFs for DS1.

Range cell Channel Weibull 𝐾 Pareto CIG𝑎 �̂� V̂ 𝜇 �̂� 𝛽 𝜂 �̂�
200th

Sum 7.91 1.84 7.68 32.31 8.7 498.19 153.46 7.08
Elevation 7.79 1.86 9.26 31.17 9 501.78 158.76 6.99
Azimuth 4.3 1.89 12.38 9.41 17 298.06 197.85 3.8

700th
Sum 15.81 1.83 5.98 130.2 7.14 1599.3 300.5 14

Elevation 1.66 1.99 395.56 1.37 30.54 82.77 126.76 1.48
Azimuth 8.49 1.85 7.86 37.36 7.57 499.2 202.46 7.57

1200th
Sum 7.2 1.82 7.14 26.57 5.47 249.81 112.38 6.45

Elevation 4.76 1.84 8.93 11.46 10.58 218.98 148.91 4.18
Azimuth 3.79 1.91 15.43 7.19 18.4 249.38 200.08 3.37

Table 4: Estimated parameters for different theoretical PDFs for DS2.

Range cell Channel Weibull 𝐾 Pareto CIG𝑎 �̂� V̂ 𝜇 �̂� 𝛽 𝜂 �̂�
200th

Sum 20.11 1.79 4.36 217.38 5.08 1799.1 345.1 17.91
Elevation 10.16 1.78 4.77 55.16 7.5 697.63 151.8 9.12
Azimuth 10.17 1.84 7.55 52.91 8.54 799.46 246.51 8.99

380th
Sum 21.34 1.71 3.38 259.56 3.25 1201.6 203.9 19.19

Elevation 1.76 2 49.64 1.56 39.63 120.69 155.97 1.57
Azimuth 12.05 1.84 8.67 74.07 6.14 799.65 253.63 10.74

700th
Sum 10.03 1.85 7.12 52.1 7.62 696.77 247.93 8.89

Elevation 7.9 1.85 7.98 32.14 7.04 397.77 200.16 7.15
Azimuth 5.48 1.9 11.74 15.47 13.94 398.7 247.56 4.87

available for the CIG distribution. The parametric curve-
fitting estimator (PCFE) ensures the estimation accuracy
through minimizing the residuals between the experimental
PDF, drawn from the recorded data intensity, and the fitted
theoretical model PDF curves with unknown parameters
[43, 44]. This PCFE method can be applied to estimate the
parameters for any sea clutter distribution.

In the high-resolution radar system, each range cell
corresponds to a unique off-axis angle in elevation.According
to the values of the corresponding off-axis angles in elevation,
the entire range cells can be approximatively divided into one
central region and two edge regions. As shown in Figure 3,
in the central region, the elevation difference channel has
a very low CNR, but the other two channels have high
CNRs. In the other two edge regions, the CNRs of the three
channels are not low, and the CNR differences between the
sum and difference channels are not large in both azimuth
and elevation. Therefore, in the experimental analysis, three
different range cells have been chosen to be representative of
the behavior for each range cell region for each dataset. In
the fit processing, theMLE is used to estimate the parameters
of the Weibull distribution, and the PCFE based on the N-
M simplex method is used to estimate the parameters of the𝐾, Pareto, and CIG distributions. In Tables 3, 4, 5, and 6,
we report the optimal estimates of the parameters and the
corresponding fitted errors (including the RMSE and the CS

test) with regard to each theoretical distribution model for
three channels’ clutter for both DS1 and DS2.

As an example, in Figure 4, the assessments of the
suitability of the different theoretical distributions to model
the sea clutter amplitude PDFs of the three channels are
depicted for the 200th and 380th range cells of DS2. To show
how the theoretical model fits the tail of the empirical sea
clutter amplitude distribution, the log 10 scale is used to plot
the curves of the PDFs.The experimental results for the other
range cells of DS2 and the other dataset are very similar.They
are therefore not depicted here.

In Figure 4, the fitting curves show that, for the three
channels and all range cells, theMLE can perform reasonably
well in estimating the Weibull distribution parameters, and
the PCFE can perform reasonably well in estimating the
model parameters of both the 𝐾, Pareto, and CIG distribu-
tions.This behavior is better illustrated by the corresponding
RMSE values, as illustrated in Table 6. In addition, visual
inspection clearly shows that the 𝐾, Pareto, and CIG PDFs
can perfectly match the tails of the empirical PDFs for the
three channels and most of the range cells. This is also
confirmed by the corresponding CS test values presented in
Table 6. For the Weibull distribution, however, the good tail
fitting of the empirical PDFs is obtained only in the case
where the clutter data are from the 380th range cell in the
elevation difference channel, as shown in Figure 4(e). In other
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Table 5: RMSE and CS test of the different theoretical PDFs for DS1 (in dB).

Range cell 200th 700th 1200th
Sum Elevation Azimuth Sum Elevation Azimuth Sum Elevation Azimuth

CNR 13.03 12.87 7.12 19.22 −9.67 13.73 12.2 8.23 5.73
Weibull RMSE −53.36 −53.16 −47.85 −57.73 −39.17 −53.02 −50.60 −46.54 −47.23

CS −21.9 −22.2 −24 −20.41 −32.86 −22.74 −19.73 −19.43 −23.65
𝐾 RMSE −59.05 −57.43 −50.56 −64.65 −39.23 −57.15 −58.75 −52.84 −51.48

CS −34.3 −34.14 −31.43 −34.46 −32.19 −33.61 −33.38 −27.88 −29.52
Pareto RMSE −58.61 −57.29 −50.31 −63.13 −39.02 −57.25 −57.87 −52.71 −51.48

CS −31.48 −34.55 −28.26 −31.88 −30.71 −32.21 −31.63 −27.92 −29.73
CIG RMSE −58.03 −55.83 −50.57 −64.4 −38.73 −57.2 −56.16 −52.92 −51.57

CS −32.22 −28.74 −30.47 −32.89 −28.46 −33.92 −27.79 −28.22 −30.2

Table 6: RMSE and CS test of the different theoretical PDFs for DS2 (in dB).

Range cell 200th 380th 700th
Sum Elevation Azimuth Sum Elevation Azimuth Sum Elevation Azimuth

CNR 21.37 15.36 15.29 22.03 −5.7 16.8 15.18 13.02 9.51
Weibull RMSE −60.31 −54.65 −53.35 −57.16 −38.79 −57.34 −54.19 −54.19 −51.92

CS −20.2 −21.4 −20.12 −16.4 −32.7 −21.97 −20.87 −21.1 −27.34
𝐾 RMSE −65.76 −58.83 −59.55 −62.25 −38.91 −65.31 −61.19 −61.2 −53.53

CS −33.84 −32.72 −31.04 −30.96 −33.2 −33.43 −30.88 −32.22 −33.1
Pareto RMSE −63.21 −55.8 −59.46 −66.57 −38.89 −63.8 −60.85 −60.76 −53.32

CS −26.7 −22.83 −31.81 −26 −32.74 −31.76 −33.48 −34.94 −30.87
CIG RMSE −63.67 −58.36 −59.77 −64.49 −38.78 −63.94 −61.1 −61.09 −53.42

CS −28.2 −28.72 −33.31 −24.97 −30.41 −32.86 −31.6 −34.41 −31.55

cases, the Weibull distribution severely underestimates the
tails of the empirical PDFs.

Since those theoretical distributions do not consider the
thermal noise and the CNRs of DS2 are higher than those
of DS1, the RMSEs of DS2 in Tables 5 and 6 are smaller
than those of DS1. In addition, in Tables 3 and 4, the
shape parameters of DS2 are smaller than those of DS1.
This means that PDFs of DS2 have longer tails than that
of DS1. The longer tails may bring the larger error between
the theoretical CDF and the empirical CDF. Thus, the CS
test values of DS2 in Tables 5 and 6 are larger than those
of DS1. As expected, Tables 3 and 4 clearly show that, in
the elevation difference channel, for both the 700th range
cell of DS1 and the 380th range cell of DS2, the estimated
Weibull distribution shape parameter is approximately equal
to 2. This means that the clutter data are now dominated by
noise. The CNR values shown in Tables 5 and 6 illustrate
this point directly. Moreover, in these cases, the values of
the RMSE and the CS test also show that the fitted results
of the Weibull distribution are almost similar to those of
other reported distributions. Additionally, as shown in Tables
3 and 4, the parameters of each distribution vary from one
range region to another range region for both DS1 and DS2.
This is because the clutter backscattering itself is spatially
heterogeneous and because the modulations of the clutter
return amplitude by the transmitter and receiver antenna gain
patterns vary with range in high-resolution radar. The results

of Tables 5 and 6 show that the different distribution models
produce different RMSE values for different range cells, and
no model can always maintain the smallest fitted errors for
all cases. Furthermore, the smallest values of RMSE and CS
test are occasionally given by different PDF fits for the same
clutter data. Nonetheless, the fitted errors of the𝐾, the Pareto,
and the CIG distributions are comparable and always quite
small. Each of these distributions can be used as an accepted
model for the three channels and all range cells.

3.3. K Distribution Parameters Analysis. According to the
above analysis results, we can readily accept that the 𝐾
distribution model can be applied to effectively fit the ampli-
tude statistical distribution of sea clutter data for the three
channels ofmonopulse radar. Additionally, the𝐾distribution
is widely used for analyzing the radar detection performance
in sea clutter. There are two main benefits to investigating
the variations of the 𝐾 distribution parameters with range
for the high-resolution monopulse radar. On the one hand,
some further information about the spikiness of clutter is
provided by the value of the 𝐾 distribution shape parameter.
On the other hand, the effects of the environmental and
radar parameters on the radar sea clutter 𝐾 distribution
shape parameter can be examined, and the relationship of𝐾 distribution shape parameters of clutter among three
channels can be obtained and generally understood. Such
information can help the maritime radar designer to set
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Figure 4: Examples of the fitted PDFs for DS2: ((a)–(c)) sum channel and the elevation and azimuth difference channels for the 200th range
cell. ((d)-(e)) Sum channel and the elevation and azimuth difference channels for the 380th range cell.

reasonable 𝐾 distribution parameters before modeling 𝐾
distribution monopulse radar clutter.

Using the PDF given by (3), the second-order moment of
the 𝐾 distribution can be represented as 𝐸{𝑋2} = 2𝜇. This
equation implies that the scale parameter of the 𝐾 distribu-
tion is determined by the clutter power. Consequently, the
same information of the 𝐾 distribution scale parameter is
contained in the CNR plots in Figure 3, and its plots do not
need to be depicted here.

For DS1 and DS2, the fitted results of the 𝐾 distribution
shape parameters in the three channels are shown in Figure 5,
where the thermal noise is ignored.The plots are obtained by
averaging the estimated parameters over a sliding range cell
segment.There are 10 range cells per segment. A 50% overlap
between adjacent segments has been used. For each range
cell, the𝐾 distribution parameters are estimated by the PCFE.
For DS1, the results of the azimuth difference channel in the
region from the 1601st to 1800th range cells are unacceptable.
The results of the three channels in this range cell region are
hence discarded.

In Figure 5, it can be observed that the estimates of the
shape parameter of the elevation difference and sum channels

are close in those range cells where the clutter powers of
both the elevation difference and sum channels are higher,
and they are smaller than those of the azimuth difference
channel, meaning that the clutter returns in the sum and
elevation difference channels have longer tails than those in
the azimuth difference channel. In addition, as mentioned
previously, the noise alone would provide an effective value
of V = ∞. From Figure 3, we can see that three channels of
DS1 at the near and far range cells, azimuth difference channel
of DS2 at far range cells, and elevation difference channel of
DS1 and DS2 at middle range cells have low CNR. Thus, it
is evidently shown in Figure 5 that the 𝐾 distribution shape
parameters at those low CNR range cells are much greater.

However, in a real environment, the data are generally
corrupted with the thermal noise. To correct the effect of
thermal noise, we again estimate the 𝐾 distribution shape
parameter by taking into account the presence of thermal
noise. Although in this case the PCFE can achieve good
estimation performance of the shape parameter of the 𝐾
distribution, it is computationally expensive. As discussed
in [1, 16], in the usual situation where the noise level is
known, the method to estimate the shape parameter of the
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Figure 5: Estimated 𝐾 distribution parameters, where the thermal noise is ignored: (a) shape parameter for DS1. (b) Shape parameter for
DS2.
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Figure 6: Estimated and fitted 𝐾 distribution shape parameter, where the thermal noise is considered: (a) DS1. (b) DS2.

𝐾 distribution by using the noise power estimate and higher-
order moments can not only ensure the estimation accuracy
but also improve the estimation speed. Therefore, this MoM
based on the estimated noise power is used here to estimate
the shape parameter. The results of the estimated shape
parameter are depicted in Figure 6.

If V̂ is the shape parameter of 𝐾 distribution clutter in
the absence of thermal noise and if V̂eff is the equivalent
estimate when thermal noise is present, then we have V̂ =
V̂eff (1+CNR−1)−2 [1]. Accordingly, for those range cells where

CNR is high, the effect of noise on the shape parameter
estimate is minimal; thus, as shown in Figures 5 and 6, the
values of the shape parameters for 𝐾 distributions in the
two cases are consistent. For those range cells where CNR
is low, the values of the 𝐾 distribution shape parameters in
the two cases are not consistent: the value of V̂eff is large, but
the value of V̂ is still small, which means that the unwanted
effects of thermal noise are very effectively removed from our
estimates of V̂. Notably, for the two cases, the values of the 𝐾
distribution shape parameters are both lower in those range
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cells where the severe banded patterns are present in the ART
maps shown in Figure 2. This means that the sea clutter is
spikier in those range cells. As stated by Ward et al. in [1],
the backscatter in our trials is predominantly due to Bragg
scattering from tilted, slightly rough surfaces and scattering
from whitecaps (which appears to arise from the very rough
surfaces of waves as they break). In our results, the presence
of spikes can be associated with the whitecap component.
Again, the plots shown in Figures 2, 5, and 6 suggest a possible
relation between the presence of bands of high power and the
occurrence of long-lasting spikes (whose duration is included
between 1 s and approximately 3 s) [1, 14].

An empirical model for the shape parameter of the 𝐾
distribution was proposed in [1, 30, 31]:

log10 (V) = 𝐵 log10 (𝜙gr) + 𝐶 log10 (𝐴𝑐) + 𝐷, (8)

where 𝜙gr is the grazing angle in degrees,𝐴𝑐 is the area of the
clutter-illuminated patch, and 𝐵, 𝐶, and 𝐷 are the constant
parameters. In our monopulse radar system, the beam width
of the sum antenna pattern is narrow and the grazing angle
is approximately 8∘ for DS1 and approximately 10∘ for DS2.
According to this empirical model, for different range cells,
the effect of the changing grazing angle on the𝐾 distribution
clutter shape parameter is small and can be ignored. The
variation of the shape parameter is now primarily dominated
by the effective area of the clutter-illuminated patch of each
channel, which is determined jointly by the transmitter and
receiver antenna patterns and can be associated with the
CNR.Thus, this model can be simply expressed as log10(V) ≈𝐶log10(CNR) + 𝐸, where 𝐶 and 𝐸 are constant parameters
and assumed to have the same dependency of the radar and
environment parameters for all range cells of each channel.

In Figure 6, the shape parameter predicted by applying
this simple empirical model is also shown. As shown, the
estimated results exhibit similar variation trends with the
predicted results in most range cells of DS1 and some range
cells of DS2. In other range cells, they appear to be completely
divergent. For example, in Figure 6(b), the values of the
estimated shape parameters for both the sum and elevation
difference channels are lower than those for the azimuth
difference channel in the region from the 100th to 200th range
cells.However, the predicted results show that they are higher.
In addition, in the region of DS2 (from the 50th to 150th
range cells), the values of the predicted shape parameters
increase with the increases of the range cells, but the values of
the estimated shape parameters do not increase for both the
elevation difference and sum channels.Thismay be caused by
the occurrence of long-lasting spikes, which can be associated
with the presence of the severe banded patterns (which are
originated from the returns of the crest of the sea waves
probably when they are about to break) in the ART maps
shown in Figure 2 [14]. Consequently, this suggests that the
variation of the shape parameter is dependent not only on the
effective illumination area but also on the sea conditions, as
discussed by Watts et al. in [31]. Due to a shortage of data,
further analysis of the effects of the sea conditions on the
shape parameter of the 𝐾 distribution cannot be performed
in this paper. Nonetheless, note that, in Figure 6(a), for each

channel, the overall shape of the curve of the estimated shape
parameter exhibits an approximately similar trend with that
of the predicted shape parameter. This result implies that,
in the homogeneous sea surface, for each range cell, the 𝐾
distribution clutter shape parameters of the three channels
of wideband monopulse radar may be determined by their
respective illumination sea area when the thermal noise is
considered.

Note that the sea-spike component, which describes the
strong and rapidly fluctuating events, causes the commonly
used𝐾 distributionmodel to break down, particularly at finer
resolutions where they result in higher levels of backscatter
and extend the tail of the distribution.The𝐾𝐴 distribution is
developed as an extension of the compound 𝐾 distribution
to include the effects of spiking events by modeling them
as discrete scatterers [45]. In [13], the 𝐾𝐴 distribution was
reported to provide the best fit for most of the datasets by
a comparative analysis of fitting five different distributions
to bistatic clutter data. However, it is perceived as being
computationally expensive to use in practice. Dong therefore
introduced the 𝐾𝐾 distribution to capture the high-valued
backscatter associated with the sea-spike component using
two discrete 𝐾 distributions [46]. Further analyses of the fits
of the 𝐾𝐴 and 𝐾𝐾 distributions to those datasets and of the
variation of their shape parameters with range go beyond the
scope of this paper and will be covered in future work.

4. Correlation Analysis

For the coherent radar system with a fine resolution, the
received sea clutter returns are correlated. The correlated
characteristics of the sea clutter include the temporal and
spatial correlations. The temporal correlation of sea clutter
refers to the correlation of multiple pulse returns within the
same range cell. The spatial correlation of sea clutter refers to
the correlation of multiple range cells returns from the same
pulse.

According to the compound Gaussian model, the
discrete-range-time expression of the complex envelope of
high-resolution sea clutter can be described as the product
of two independent components; that is,

𝑧 (𝑟, 𝑛) = 𝑠 (𝑟, 𝑛) 𝑔 (𝑟, 𝑛) = √𝜏 (𝑟, 𝑛)𝑔 (𝑟, 𝑛) ,
𝑟 = 1, 2, . . . , 𝑅, 𝑛 = 1, 2, . . . , 𝑁, (9)

where 𝑅 and 𝑁 are the numbers of discrete samples along
range and time, respectively. Factor 𝜏(𝑟, 𝑛) is the texture,
which is a slowly varying nonnegative real random pro-
cess. Factor 𝑔(𝑟, 𝑛) = 𝑔𝐼(𝑟, 𝑛) + 𝑗𝑔𝑄(𝑟, 𝑛) is the speckle,
which is a stationary zero mean complex Gaussian process;𝑔𝐼(𝑟, 𝑛) and 𝑔𝑄(𝑟, 𝑛) are the in-phase (𝐼) and quadrature (𝑄)
components of 𝑔(𝑟, 𝑛) and share the same variance. They
satisfy 𝐸{𝑔𝐼(𝑟, 𝑛)} = 𝐸{𝑔𝑄(𝑟, 𝑛)} = 0, with 𝐸{𝑔2𝐼 (𝑟, 𝑛)} =𝐸{𝑔2𝑄(𝑟, 𝑛)} = 1/2 and thus {𝑔2(𝑟, 𝑛)} = 1. 𝐸{⋅} is the expec-
tation operator.
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According to (9), the overall autocorrelation function of
sea clutter can be written as the product of two correlation
functions [10, 47]

𝑅𝑧 (𝑚) = 𝐸 {𝑧∗ (𝑙 + 𝑚) 𝑧 (𝑙)} = 𝑅𝜏 (𝑚) 𝑅𝑔 (𝑚) , (10)

where 𝑅𝑔(𝑚) and 𝑅𝜏(𝑚) are the autocorrelation functions for
the speckle and texture components, respectively. Note that
the speckle correlation 𝑅𝑔(𝑚) consists of multiple terms, that
is, the autocorrelation of the in-phase and quadrature speckle
components (real part) and the cross-correlation between
them (imaginary part). The lag number 𝑚 can be in either
the range or time direction. For instance, if the lag number𝑚
is in the time direction, 𝑧(𝑙) and 𝑧(𝑚 + 𝑙) refer to sea clutter
data collected in the 𝑙th and (𝑚 + 𝑙)th pulses from the same
range cell and 𝑅𝑧(𝑚), 𝑅𝜏(𝑚), and 𝑅𝑔(𝑚) now refer to the
temporal correlations. However, if the lag number 𝑚 is in
the range direction, 𝑧(𝑙) and 𝑧(𝑚 + 𝑙) refer to sea clutter data
collected in the 𝑙th and (𝑚 + 𝑙)th range cells from the same
pulse and 𝑅𝑧(𝑚), 𝑅𝜏(𝑚), and 𝑅𝑔(𝑚) now refer to the spatial
correlations. Equation (10) clearly shows that the correlation
of sea clutter is influenced by the correlation characteristics
of the speckle and texture components. Due to their different
physical origins, the speckle and texture components present
very different correlation lengths for both the temporal and
spatial correlations.

4.1. Estimation of Texture Sequences. The texture 𝜏(𝑟, 𝑛) can
be considered as constant within a proper time slot, which is
defined as the coherence time of the texture. Δ𝑇 denotes the
radar pulse repetition interval, and 𝐿𝑐 denotes the coherence
length of the texture; thus, the coherence time of the texture
can be denoted as Δ𝑇𝐿𝑐. In practice, Δ𝑇𝐿𝑐 satisfies thatΔ𝑇𝐿𝑔 ≪ Δ𝑇𝐿𝑐 ≪ Δ𝑇𝐿 𝑠, where Δ𝑇𝐿𝑔 and Δ𝑇𝐿 𝑠 are the
speckle and texture correlation times, respectively. During
each 𝐿𝑐 sample time, 𝑧(𝑟, 𝑛) can be represented as the product
of a random constant times a Gaussian process. Assuming
that the thermal noise is negligible, the texture sequence𝜏(𝑟, 𝑙) can be then estimated using a moving-window (MW)
filter of length 𝐿𝑐 as [47–50]
𝜏 (𝑟, 𝑙) = 1𝐿𝑐

(𝑙+1)𝐿𝑐/2∑
𝑛=1+(𝑙−1)𝐿𝑐/2

|𝑧 (𝑟, 𝑛)|2

≅ 𝜏 (𝑟, 𝑙) 1𝐿𝑐
(𝑙+1)𝐿𝑐/2∑
𝑛=1+(𝑙−1)𝐿𝑐/2

𝑔 (𝑟, 𝑛)2 ,
𝑙 = 1, 2, . . . , 𝑁𝑏,

(11)

where 𝑁𝑏 is the number of bursts in which the entire time
sequence of each range cell data has been divided. Note that,
with 50% of overlap, we obtain the estimation of texture
sequence only every 𝐿𝑐/2 steps. Through the approach of
one-dimensional interpolation, the approximate estimation
of texture sequence 𝜏𝑎(𝑟, 𝑛) for all discrete time samples can
be obtained. The hypothetical speckle time sequence is then
estimated as

𝑔 (𝑟, 𝑛) = 𝑧 (𝑟, 𝑛)√𝜏𝑎 (𝑟, 𝑛) . (12)

To estimate the sea texture and speckle sequences, the
coherence length of the texture needs to be measured first
for each dataset. In this paper, the coherence length of the
texture can be estimated by employing a similar procedure
based on the Jarque-Bera test, as given in [11]. However, in
our procedure, the real and imaginary parts of 𝑔[𝑟, 𝑛; �̂�𝑐] are
used together to perform a Gaussian statistical test on the
null hypotheses, where 𝑔[𝑟, 𝑛; �̂�𝑐] is the estimated complex
speckle sequence for the hypotheses coherence length �̂�𝑐.

The estimated coherence length of the texture for DS1
is 200 and that for DS2 is 160. Therefore, MW filters with
coherence lengths of 200 samples and of 160 samples are,
respectively, used to estimate the clutter texture sequences of
all range cells in the three channels for DS1 and DS2. A 50%
overlap between two adjacent MW filters is used. Figure 7
shows the range-time maps for the estimated texture results.
It can be clearly observed from Figure 7 that the banded
patterns of high magnitude also occur in all range-time maps
of the estimated texture. In the compound Gaussian model,
the texture component describes the underlying power of the
data and is associated with long waves and swells. Due to the
periodic structure of the sea waves and swells, the estimated
textures exhibit periodic behavior with range and time in
a similar manner to the data in Figure 2. As documented
theoretically by Conte and Longo in [51] and empirically by
Haykin and Thomson in [52], it is an acceptable assumption
that the sea clutter is cyclostationary in the three channels for
both DS1 and DS2. The texture component of the clutter can
therefore be modeled as a sum of real cosinusoid terms with
unknown frequencies, amplitudes, and phases. The detailed
estimation methods for this cyclostationary texture model
and its model parameters have been proposed by Gini and
Greco in [48] and by Ing et al. in [49].

4.2. Estimation of the Temporal Correlation Functions of
Sea Clutter. The speckle component is often described as
resulting from a uniform field of many random scatterers
of the clutter in any range cell. After removing the texture
component from sea clutter data, the estimated speckle can
be assumed to be homogeneous. Using the estimated speckle
results, the temporal autocorrelation function for the speckle
can be estimated by employing the following estimator with𝑁𝑔 = 256 data samples and𝑀𝑔 = 100 data blocks:
𝑅𝑡,𝑔 (𝑚) = 1𝑀𝑔

𝑀𝑎∑
𝑛=1

[
[
1𝑁𝑔

⋅ (𝑛+1)𝑁𝑎/2−𝑚∑
𝑙=1+(𝑛−1)𝑁𝑎/2

[𝑔∗ (𝑟, 𝑙 + 𝑚) − 𝑔∗𝑛 ] [𝑔 (𝑟, 𝑙) − 𝑔𝑛]]]
,

(13)

where |𝑔𝑛| = (1/𝑁𝑔) ∑(𝑛+1)𝑁𝑎/2𝑙=1+(𝑛−1)𝑁𝑎/2
𝑔(𝑟, 𝑙) is the statistical

expectation of 𝑁𝑔 time samples of the estimated complex
speckle within the same range cell.

Figure 8 shows the results of this correlation analysis
for DS2. In Figure 8, the real and the imaginary parts of
the temporal correlation coefficients (𝜌𝑡,𝑔 = 𝑅𝑡,𝑔(𝑚)/𝑅𝑡,𝑔(0))
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Figure 7: The images of estimated texture components in range against time format: (a) sum channel and elevation and azimuth difference
channels for DS1. ((d)–(f)) Sum channel and elevation and azimuth difference channels for DS2.

of the speckle are plotted. Two representative range cells
(e.g., the 200th and 380th range cells) are carefully chosen
to illustrate the different behaviors of the three channels
for the entire dataset. In the 200th range cell, the three
channels of both have middle clutter intensity. The temporal
correlation coefficient estimations of the speckle for the three
channels do not show apparent differences. In the 380th range
cell, the azimuth difference and sum channels have high
clutter intensity, but the elevation difference channel has low
clutter intensity. Thus, the temporal correlation coefficient
estimations of the speckle for the elevation difference channel
are lower than those for both the azimuth difference and
sum channels. Additionally, for the estimations in both the
azimuth difference and sum channels, there are also no
apparent differences between the 200th and 380th range
cells. Due to the rapidly varying nature of the speckle
component, the correlation time of the speckle component
is around milliseconds, and here, the overall results indicate
that it is approximately 7ms for all channels in the range
cells of middle and high clutter intensity. Furthermore, the
imaginary parts of the temporal correlation coefficient of
the speckle components are nonnegligible. These terms are
closely associated with the Doppler frequency shift of the
clutter. If we show the results of the temporal correlation coef-
ficient estimations of the speckle for DS1, the above similar
behaviors would also be observed. Note that the temporal
correlation characteristics of the coherent sea clutter are
dominated by the speckle component; thus, its decorrelation
time is equal to that of the speckle component.

For the clutter of each range cell, the temporal autocor-
relation function of the texture component can be estimated
by using the𝑁𝑏 = 256 estimates of 𝜏(𝑟, 𝑙) obtained from (11);
that is,

𝑅𝑡,𝜏 (𝐿𝑐𝑚/2)
= 1𝑁𝑏

𝑁𝑏−𝑚∑
𝑙=0

[𝜏 (𝑟, 𝑙 + 𝑚) − 𝜏𝑛] [𝜏 (𝑟, 𝑙) − 𝜏𝑛] , (14)

where 𝜏𝑛 = (1/𝑁𝑏) ∑𝑁𝑏𝑙=1 𝜏(𝑟, 𝑙). In fact, the temporal correla-
tion estimation of the texture, 𝑅𝑡,𝜏(𝑚), is obtained only every𝐿𝑐/2 lags because the estimates of 𝜏(𝑟, 𝑙) are obtained by aver-
aging𝐿𝑐 pulse samples with a 50%overlap. Figure 9 shows the
estimated results of the temporal correlation coefficient of the
texture in the three channels for each range cell for both DS1
and DS2. As discussed previously, the texture estimates have
sinusoidal characteristics, and, thus, the temporal correlation
of the texture defined in (14) may also present sinusoidal
characteristics [34]. In Figure 9, the estimated correlation
coefficients exhibit a drop-off at the origin, and then it slowly
decays in a periodic manner. For all cases, the initial drop-off
trends are similar. For each channel, the periodically decaying
trends of the temporal correlations of the texture are broadly
similar within a particular range interval (e.g., the interval
of 1–200 range cells, the sum channel of DS2), but they
are different among different particular range intervals (e.g.,
between the intervals of 1–200 range cells and of 450–550
range cells, the sum channel for DS2). In addition, for both
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Figure 8: The temporal correlations of the speckle for DS2: ((a)–(c)) sum channel and elevation and azimuth difference channels for the
200th range cell. ((d)–(f)) Sum channel and elevation and azimuth difference channels for the 380th range cell.

DS1 and DS2, these range-time maps show that the temporal
correlations of the texture between the elevation difference
and sum channels are clearly similar, but there are some
differences for those between the azimuth difference and sum
channels.

In practice, the correlation operation is often applied as
a filter to filter the uncorrelated components and to enhance
the periodic components. Because the structures of sea waves
and swells appear sinusoidal, the temporal correlations of
the texture can be applied to reveal the periodic nature
of sea waves and swells. To further examine the dominant
periods of sea waves and swells in the three channels, we
calculate the absolute value of the Fourier transform (i.e., the
power spectra) of the temporal correlations of the texture
for each range cell. Figure 10 reports the results of this
spectral analysis for DS2. Similar analysis results can also be
acquired for DS1.The texture correlation is a real component;
thus, its Fourier transform is a real frequency symmetric
quantity. It can be observed that, for the three channels,
the dominant frequency components can be split into two
frequency bands (despite the fact that low frequency band
is not comparatively evident), whose frequencies are in the
range of 0.035–0.045Hz and 0.15–0.35Hz, respectively. It is

believed that the swell contribution is related to the band of
low frequencies and the sea wave contribution is related to
the high frequencies. Hence, the corresponding periods are
approximately 22.2–28.6 s for the swell and are approximately
2.9–6.7 s for the sea waves. It is evident that, for each
channel, the dominant frequencies of sea waves are nearly
similar within a particular range interval (e.g., the interval
of 1–200 range cells, the sum channel), but they are different
among different particular range intervals (e.g., between the
intervals of 1–200 range cells and of 450–550 range cells,
the sum channel). This phenomenon coincides with the
variational characteristics of the temporal correlations of the
texture shown in Figure 9. Moreover, the dominant periodic
characteristics of the temporal correlations of the texture
component are quite similar for the elevation difference and
sum channels, but they are partly different between the
azimuth difference and sum channels.

To investigate the overall behavior of each channel, the
temporal correlations of the texture and their power spectra
are averaged over all range cells. The results are shown
in Figures 11 and 12 for DS1 and DS2. It is evident that
the averaged power spectra also show two peaks. Although
there are some faint differences, both the averages of the
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Figure 9: The temporal correlations of the texture: ((a)–(c)) sum channel and elevation and azimuth difference channels for DS1. ((d)–(f))
Sum channel and elevation and azimuth difference channels for DS2.
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Figure 10: Power spectra of the temporal correlations of the texture for DS2: (a) sum channel. (b) Elevation difference channel. (c) Azimuth
difference channel.

temporal correlations of the texture and of their power
spectra maintain overall consistency for all channels of each
dataset. However, for these two datasets, their illumined sea
patches were quite close, their recording times were nearly
consecutive, and the differences of their grazing angles are not
great enough to cause the significant differences between the
temporal correlations of their texture. Therefore, in Figures
11 and 12, for DS1 and DS2, the plots of the averages of
the temporal correlations of the texture appear similar, and
the closely dominated frequencies are presented in the plots
of the averaged power spectra. The dominated frequencies

can be approximately 0.03Hz, 0.25Hz, and 0.3Hz; thus the
corresponding periods of the dominated swell and waves are
approximately 33.3 s, 4 s, and 3.33 s.

4.3. Estimation of the Spatial Correlation Functions of Sea
Clutter. As described in previous subsections, the clutter
exhibits a periodic varying nature with range and time.
We can extend the calculating methods of the temporal
correlations to estimate the spatial correlations for the speckle
and texture components.There are no apparent differences in
the estimations between DS1 and DS2; thus, we report here
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Figure 11: The averages of the temporal correlations of the texture for DS1 and DS2: (a) DS1. (b) DS2.
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Figure 12: The averages of the power spectra of the temporal correlations of the texture for DS1 and DS2: (a) DS1. (b) DS2.

only the results forDS2. In Figure 13, we present the results for
the spatial correlation of the speckle. For each pulse, the entire
range sequence of the estimated speckle is divided into 7
bursts of 256 samples each, with an overlap between adjacent
bursts of 50%. The final results are obtained by averaging the
estimation results over 1024 successive pulses. It is evident
that, for the high-resolution radar, the speckle component is
spatially correlated in a short range. The imaginary parts of
the spatial correlation coefficients of the speckle are low, and

thus, they can be neglected. This indicates that the in-phase
and quadrature components of the clutter are uncorrelated in
range [35]. Additionally, note that, for three-channel clutter,
the real parts of the estimates are very similar.

It can be easily realized from the previous discussions
that, for different range cells, the intensities of the texture
estimates are modulated nonuniformly by the gains of the
transmitter and receiver antennas. This may strongly affect
the analysis results of the spatial correlation of the texture.



International Journal of Antennas and Propagation 17

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
lat

io
n 

co
e�

ci
en

t e
sti

m
at

e

Range lag number

Real part 
Imaginary part

0 5 10 15 20 25 30

−0.2

(a)

Real part 
Imaginary part

Range lag number
0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
lat

io
n 

co
e�

ci
en

t e
sti

m
at

e

−0.2

(b)

Real part 
Imaginary part

Range lag number
0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
lat

io
n 

co
e�

ci
en

t e
sti

m
at

e

−0.2

(c)

Figure 13:The spatial correlations of the speckle for DS2: (a) Sum channel. (b) Elevation difference channel. (c) Azimuth difference channel.

0
8

16
24
32
40
48
56

63.2

Ti
m

e (
s)

Range lag number

0.07
0.17
0.26
0.35
0.44
0.54
0.63
0.72
0.81
0.91
1.00

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

−0.39
−0.30
−0.20
−0.11
−0.02

(a)

0.07
0.16
0.25
0.35
0.44
0.53
0.63
0.72
0.81
0.91
1.000

8
16
24
32
40
48
56

63.2

Ti
m

e (
s)

Range lag number

0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

−0.40
−0.31
−0.21
−0.12
−0.03

(b)

0.05
0.15
0.24
0.34
0.43
0.53
0.62
0.72
0.81
0.91
1.000

8
16
24
32
40
48
56

63.2

Ti
m

e (
s)

Range lag number
0

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

1
8
0

2
0
0

−0.42
−0.33
−0.23
−0.14
−0.04

(c)

Figure 14: The spatial correlations of the texture for DS2: (a) Sum channel. (b) Elevation difference channel. (c) Azimuth difference channel.

Therefore, to reduce this effect, for each range cell, the texture
estimates of the three channels are, respectively, normalized
by the clutter powers of the respective channels in the
corresponding range cell. The spatial correlation function
for the texture components at different range lags is then
calculated via the formula given in (14). Figure 14 shows the
results of this spatial correlation analysis. These estimations
are obtained from range cells 51 to 307 of DS2 (equivalent
to a range interval of 192m). As shown in the figures,
for all estimated correlation coefficients, there is initially
a similar drop-off, which is followed by a slowly decaying
process. The periodic behavior of the spatial correlation of
the texture in the decaying process is clearly visible for the
three channels for both datasets. However, note that, for the
spatial correlation of the texture of each channel, the form
of the periodic behavior is not constant but has a changing
period. Clearly, for the elevation difference and sumchannels,
their spatial correlations of the texture components are very
similar, but compared to them, there is some difference for
that of the azimuth difference channel.

To further investigate the periodic behavior, a similar
analysis approach for the temporal correlation is used to
obtain the power spectra of the spatial correlations of the

texture. Figure 15 shows the analysis results of the data
in Figure 14. Here, the dominant frequencies refer to the
periodic lag numbers of the spatial correlation. They are
closely associated with the wavelengths of the sea waves
and swells. It is very evident that, between approximately 32
and 45 s into the time history, a very large variation in the
dominant periodic components is apparent: the preexisting
dominant components with close frequencies and large wave
energy disappear, and other dominant components with
dispersive frequencies and relatively small wave energies
subsequently appear. This variation is thought to be a result
of the occurrence of wave breaking events. The occurrence
of the wave breaking events can redistribute the wave energy
further; thus, the structure of the sea surface experiences
huge variations, which are reflected in the temporal variations
of the spatial correlation of the texture shown in Figure 14.
However, for the elevation difference and sum channels,
the dominant periodic components of the texture are quite
similar. Although there are some different periodic compo-
nents between the azimuth difference and sum channels, the
overall variation trends of the structures of sea surface area
illuminated by them are similar. For the three channels, the
frequencies of the dominant components are in the range of
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Figure 15: Power spectra of the spatial correlations of the texture: (a) Sum channel. (b) Elevation difference channel. (c) Azimuth difference
channel.
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Figure 16: The averages of the spatial correlations of the texture for DS1 and DS2: (a) DS1. (b) DS2.

30–70. According to the viewing geometry (i.e., the grazing
angle and the aspect angle with respect to thewind direction),
we can obtain that the estimatedwavelengths of the dominant
waves are approximately in the range of 17.5–40.8m.

Similarly, Figures 16 and 17 report the averages of the
spatial correlations of the texture and of their power spectra
for DS1 and DS2 to investigate the overall behavior of
each channel. It can be observed that although there are
some differences for the individual spatial correlations of
the texture among the three channels, the averages of the
spatial correlation coefficients of the texture and of their
power spectramaintain overall consistency for all channels of
each dataset. As demonstrated in [34], the wavelengths of the
sea waves are closely related to their periods. Consequently,
for the spatial correlation of the texture, Figures 16 and 17
display similar behaviors with the temporal correlations of
the texture; that is, the averages of the spatial correlation

coefficients of the texture and of their power spectra are very
similar for these two datasets. We can see that the dominant
frequencies for DS1 are approximately 35.6 and 53.5 and those
for DS2 are approximately 33.1 and 53.5. Accordingly, the
corresponding wavelengths of the dominant waves for DS1
are approximately 20.5m and 31m, and those for DS2 are
approximately 19.3m and 31.2m. It is very evident that the
wavelengths of the dominant waves estimated from these two
datasets are coincident.

Although the overall behaviors of both the temporal
and spatial correlations are similar for DS1 and DS2, some
subtle differences can still be observed in their plots after
a meticulous comparison. However, it is very difficult to
determine that these differences are caused by the dynamic
nature of the sea surface, by the different measurement
parameters of grazing angle, or by both of them. The effects
of the grazing angle on the correlation characteristics of sea
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Figure 17: The averages of the power spectra of the spatial correlations of the texture for DS1 and DS2: (a) DS1. (b) DS2.

clutter can therefore not be deduced from these above results.
As stated by Dong in [34], the sea surface may be modeled as
a combination of correlated scatterers (periodic undulating
surfaces) and randomand uncorrelated scatterers (whitecaps,
breaking waves, and so forth). In practice, the correlation
characteristics of sea clutter are dominated by the correlated
scatterers. It is well known that the dominant radar backscat-
ter varies with the variation of the grazing angle, which may
cause the variation of the correlation characteristics of sea
clutter. For the same sea patch, however, the power spectra of
the correlationsmay occasionally exhibit similarly dominated
frequencies even if in the different grazing angles.

4.4. Estimation of the Cross-Correlation Functions of Sea
Clutter between the Sum and Difference Channels. It is neces-
sary to investigate the clutter cross-correlation characteristics
between the sum and difference channels by amethod similar
to that above. For each range cell, the cross-correlation
coefficient is calculated via the following formula:

𝜌𝑐 = ∑𝑁𝑛=1 (𝑥𝑑 (𝑛) − 𝑥𝑑) (𝑥𝑠 (𝑛) − 𝑥𝑠)∗
√∑𝑁𝑛=1 (𝑥𝑑 (𝑛) − 𝑥𝑑)2√∑𝑁𝑛=1 (𝑥𝑠 (𝑛) − 𝑥𝑠)2

, (15)

where 𝑥𝑑(𝑛) and 𝑥𝑠(𝑛) denote the texture or speckle compo-
nents in the difference and sum channels, respectively, and 𝑥𝑑
and 𝑥𝑠 are the mean values of 𝑥𝑑(𝑛) and 𝑥𝑠(𝑛), respectively.

Figures 18 and 19 report the cross-correlation results
for the texture and speckle, respectively. It is very evident
from visual inspection of these figures that, between the
elevation difference and sum channels, the cross-correlation
coefficients of both the texture and speckle are close to
0.95 in the range cells where the CNRs of two channel are
higher than 5 dB. The clutter returns in these two channels
can be considered to be completely correlated. Between the

azimuth difference and sum channels, however, the cross-
correlation coefficients of the speckle are very low, and the
texture components are also only partly correlated.Therefore,
the clutter returns in these two channels are partly correlated
or uncorrelated. The results in Figure 18 go a long way in
explaining the presences of the similarities and differences
among the preceding texture correlations of the three chan-
nels.

The texture cross-correlations between the difference and
sum channels are affected by both the proportions of the
common effective illumination area of the receiver antennas
and the channel CNRs. In the high-resolution monopulse
radar system, the corresponding elevation off-boresight angle
of each range cell is bounded due to the range sampling.
Thus, the proportions and the channel CNRs vary with
range. In elevation direction, as the range cells gradually
approach the range region corresponding to the boresight
axis, the effective illumination area of individual range cell
of sum channel increases but that of difference channel
decreases. As a consequence, the proportion of their common
effective illumination areas reduces sharply. Moreover, the
elevation difference channel has lowCNR in themiddle range
region corresponding to the boresight axis. Consequently, in
Figure 18, there is a sharp drop in the correlation coefficients
for elevation direction.

5. Spectral Analysis

In the coherent radar system, Doppler processing is widely
applied not only as a coherent accumulation technique to
improve the SCNR (signal to clutter plus noise ratio) but also
as a coherent filter to obtain the Doppler frequency informa-
tion. In particular, if the target’s radial velocity is sufficiently
high and if the clutter Doppler spectrum is centered at low
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Figure 18: The texture cross-correlations between the difference and the sum channels for DS1 and DS2: (a) DS1. (b) DS2.

frequencies, the targets can be distinguished from clutter in
the Doppler domain. However, some targets of interest will
have Doppler shifts that are not significantly different from
the Doppler spectrum of the clutter. The Doppler spectrum
of the target and that of clutter are now mixed together. In
these cases, having a comprehensive understanding for the
characteristic of the clutter Doppler spectrum is very helpful
in designing specific signal processing algorithms for clutter
suppression and for target detection [53–56]. Moreover, the
proper model of the clutter Doppler spectrum is essential
for the accurate simulation of the coherent clutter returns
[32, 33, 37]. In this section, the Doppler spectrum properties
of the recorded sea clutter are discussed.

For each range cell, the Doppler spectra are estimated
by computing the 512-point fast Fourier transform (FFT)
over a sliding window of 256 pulse samples with an overlap
of 50%. A −55 dB Dolph-Chebyshev weighting function is
used in the time domain. The 512-point FFT provides the
Doppler spectrum in the frequency interval −250–250Hz.
In this frequency interval, the Doppler spectra suffer from
aliasing, that is, the edges of the spectra as the aliased com-
ponents wrap into the sampled frequencies. Hence, before the
Doppler spectra are analyzed, the unaliased Doppler spectra
need to first be obtained by shifting the aliased frequency
components to the correct positions in the spectra. It is well
known that theDoppler spectrumof cluttermay exhibit time-
varying and range-varying behaviors. A contemporary study
of the Doppler spectrum evolution along range and time is
therefore conducted. The data in this section are primarily
illustrated using DS2, and similar results can be obtained
from DS1.

The clutter spectra contain three-dimensional informa-
tion, namely, the range, time, and frequency information.
Generally, the two-dimensional range Doppler and time

Doppler maps are applied to illustrate the spectra char-
acteristics. They can be, respectively, rebuilt from three-
dimensional spectra by squeezing the spectra within one
same time interval and within one same range cell. Figures
20 and 21 show examples of them for the three channels. It
can clearly be observed that the Doppler centroids (mean
Doppler frequencies) of individual spectra are nonzero due to
the internal motion of the sea. As described in [37, 38, 50, 57],
for the three channels of both, the range- or time-varying
natures of the spectra are very evident. Furthermore, these
varying natures aremainly reflected in two aspects: the clutter
intensity varies periodically with range in the integrated
range Doppler spectra or with time in the integrated time
Doppler spectra, and the form of the individual spectrum
varies in range or time with a changing Doppler centroid
and a fluctuating spectrum width (the standard deviation of
the individual spectrum). As observed empirically in [37, 38,
50], the varying behavior of the individual spectrum shape
appears to be associated with the underlying modulation of
clutter mean intensity. Thus, the entire spectra are further
analyzed to investigate the variations in spectrum shape,
Doppler centroid, and spectrum width and to discuss the
dependencies of them on the average spectrum intensity in
more detail.

In the foregoing analysis, it is empirically shown that
the local clutter power can be approximately constant within
several neighboring range cells along the range dimension
and during the short time intervals along the time dimension.
The spectra of sea clutter within the neighboring range cells
and during the short time intervals can also be considered to
exhibit similar behavior. To obtain a more stable observation
of the underlying tendency for clutter data, the spectra are
averaged twice; that is, the first estimated spectra are achieved
by averaging over the groups of six successive spectra with an
overlap of 50% along time, and then they are averaged over
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Figure 19: The speckle cross-correlations between the difference and the sum channel for DS1 and DS2: (a) Azimuth direction for DS1. (b)
Elevation direction for DS1. (c) Azimuth direction for DS2. (d) Elevation direction for DS2.
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Figure 20: Examples of range Doppler maps, the first time burst: (a) sum channel. (b) Elevation difference channel. (c) Azimuth difference
channel.
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Figure 21: Examples of time Doppler maps, the 202nd range cell: (a) sum channel. (b) Elevation difference channel. (c) Azimuth difference
channel.

the groups of three successive spectra with an overlap of one
spectrum along range. This would smooth local fluctuations
of the spectrum without affecting the measurement of the
longer-term trends. Consequently, for each range cell, the
entire time sequence of the spectra has been divided into 81
time bursts.

The shape of an individual spectrum is an essential
parameter required to model the clutter spectrum. In the
open literature, it has been experimentally confirmed that a
spectrum model with a Gaussian shape can provide a good
fit to the estimated clutter spectra. Similarly, this Gaussian-
shaped spectrum model is used here to fit the estimated
normalized PSDs. The normalized PSDs are achieved by
normalizing the spectrum intensity to a peak value of unity.
The form of this Gaussian-shaped PSD can be expressed as
[33, 37, 38, 58]

𝐺(𝑓,𝑚𝑓, 𝑠) = 𝑥√2𝜋𝑠exp[[
−(𝑓 − 𝑚𝑓)

2

2𝑠2 ]
]
, (16)

where 𝑥 is the underlying intensity of the sea clutter,𝑚𝑓 is the
mean Doppler frequency, and 𝑠 is the spectrum width.

Figure 22 shows some representative examples of indi-
vidual spectra fitted by this Gaussian-shaped PSD for three
channels. The unknown parameters have been estimated by
employing a nonlinear least squares method to solve the
optimization of the RMSE of the fit to the theoretical spectral
model. It can be observed that theGaussian-shaped spectrum
can provide a good qualitative fit for all individual spectra
and for all channels. Similar results can be obtained for other
spectra and for another dataset. As expected, the spectra
forms of the same channel in different range cells and/or in
different time bursts appear to be different. In the foregoing
correlation analysis, we know that the texture components
are intermediately correlated between the azimuth difference
and sum channels and that they are highly correlated between
the elevation difference and sum channels. Therefore, in
these representative examples, for the same range cell and
the same time burst, the spectra shapes are apparently
different between the azimuth difference and sum channels,

but they are very similar between the elevation difference
and sum channels. These features highlight again that the
spectra forms have a strong dependence on the underlying
intensity. Furthermore, a common Gaussian-shaped fit can
be used to approximately model the spectra in the sum
and elevation difference channels. To further investigate the
range- and time-varying natures of this Gaussian-shaped
spectrum model, its unknown parameters (i.e., the mean
Doppler and the width of individual spectrum) are estimated
for all individual spectra over entire range and time intervals.

As already suggested in [37, 38, 50], there is a strong
correlation between the Doppler centroid and the average
spectrum intensity. Moreover, the width of the Doppler
spectra also appears to display a nonelected correlation
with the average spectrum intensity. To further quantify the
dependency relationships, the centroid and width of the
Doppler spectra are considered as functions of the average
spectrum intensity. A linear relationship between the average
intensity and the Doppler centroid has been proposed to
describe either the time-varying or range-varying natures
of the spectra in [37, 38]. It is of considerable interest to
further extend this model to represent the time-varying and
range-varying natures of the Doppler spectra simultaneously.
The parameter estimates of Doppler spectra evolutions along
range are first analyzed for each time burst in a similar
manner to [37]. Figure 23 shows the results of this analysis
for the spectra taken from the 1st, 20th, and 50th time bursts
over entire range cells for the sum channel. Figure 24 shows
the equivalent plots for the azimuth difference channel. The
least-mean-square error straight-line fits to these parameter
estimates are also shown in the figures.

It can be qualitatively observed from Figures 23 and
24 that both the centroid and the width of the Doppler
spectra are correlated with the average spectrum intensity
in both channels. As suggested in [37, 38], although there
is the presence of a quite large fit error in the fit results,
the approximately linear relationships between the average
intensity and these spectra parameters may still be valid
to reproduce many of the features of the Doppler spectra,
and this will be shown in the following. The original model
proposed in [37] can therefore be extended to represent the
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Figure 22: Examples of individual spectra for the different range and time bursts: ((a)–(c)) sum channel and elevation and azimuth difference
channels for the 178th range cell within the first time burst. ((d)–(f)) Sum channel and elevation and azimuth difference channels for the 286th
range cell within the first time burst. ((g)–(i)) Sum channel and elevation and azimuth difference channels for the 286th range cell within the
45th time burst.

centroid and the width of the Doppler spectra within a time
burst for each channel; namely,

𝑚𝑓 = 𝑃1𝑐𝑥 + 𝑃2𝑐 + 𝑟𝑐
𝑠 = 𝑃1𝑠𝑥 + 𝑃2𝑠 + 𝑟𝑠, (17)

where 𝑟𝑐 and 𝑟𝑠 are Gaussian random variables with zero
means and standard deviations, 𝜎𝑟𝑐 and 𝜎𝑟𝑠, 𝑃1𝑐 and 𝑃2𝑐 are
the coefficients of the linear model for the centroid of the
Doppler spectra, and 𝑃1𝑠 and 𝑃2𝑠 are those for the spectrum
width. As expected, the results show that the linear fits are
different between the two channels. This result agrees well
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Figure 23: Spectra parameters versus intensity for the sum channel, with least-mean-square error straight-line fit: blue, data; red, model fit.

with the results in Figure 21. Note that these linear fits are
not constant over entire time bursts for the same channel due
to the time-varying nature of the spectra. To further analyze
this behavior, a similar process is applied again; that is, the
coefficients of the linearmodels are plotted as functions of the
mean of all average spectrum intensities of each time burst.
The processing results are shown in Figure 25 for the sum and
azimuth difference channels.

From this figure, we observe that there appears to be
an evident correlation between the coefficients of the linear
models and the mean of all average spectrum intensities
of each time burst. Similarly, the fit results indicate that a
similar linear model can also be applicable for the prediction
of the linear model coefficients (i.e., 𝑃1 and 𝑃2 in (17)) of
both the centroid and the width of the Doppler spectra.
Summarizing the above analyses, it is possible to conclude
that the Doppler centroid and the spectrum width can be
fundamentally represented by applying the underlying sea
clutter intensity for the two-stage linear predictions. The
Doppler spectrum can then be reproduced by substituting
these predicted Doppler centroids and the spectrum widths
into the Gaussian-shaped model. Therefore, this modeling
method can be applied for the simulation of successive
coherent Doppler spectra. As an example, Figure 26 shows
the simulated Doppler PSDs with model parameters taken

from the measured sea clutter by exploiting this modeling
method. Qualitatively, although there are some differences,
these spectra have similar general properties as those in
Figures 20 and 21. Again, it is particularly evident that the
Doppler centroid and thewidth of the power spectra fluctuate
over range and time. Additionally, in Figure 25, the fit results
of the linear model coefficients of the centroid and width
of the Doppler spectra are different between the azimuth
difference and sum channels. This means that at least two
different sets of coefficients are required to represent the
linearmodels of the parameters of the clutter Doppler spectra
for all channels of the monopulse radar.

6. Conclusions and Discussions

When radar is designed for maritime remote sensing and
surveillance, knowledge of sea clutter properties is of great
importance for the radar engineer. The main contribution
of this paper is providing comprehensive knowledge of
the behavior of wideband monopulse clutter by presenting
a comparative analysis of the datasets of Ka-band high-
resolution coherent monopulse radar sea clutter. The lack of
studies covering this particular sea clutter data serves as the
motivation for addressing this topic.
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The amplitude statistics of the recorded clutter data were
studied first. Four different distributions, namely, theWeibull,𝐾, Pareto, and compound inverse Gaussian (CIG) distribu-
tions, were applied to fit the clutter observed amplitudes.The
fitted results revealed that each of the 𝐾, Pareto, and CIG
distributions can simultaneously provide good fits to the data
inmost range cells for the three channels of monopulse radar.
Considering the widespread applications of the 𝐾 distribu-
tion, the variation of its model parameters with range was
investigated further. The results of the estimated parameters
show that the scale parameter of the 𝐾 distribution is closely
associated with the clutter powers, which are dominated by
the transmitter and receiver antenna gains of the respective
channels, and the shape parameter is influenced by the sea
state. Moreover, the results indicate that, in the homogeneous
sea surface, the 𝐾 distribution clutter shape parameters of
the three channels in each range cell may vary with their
respective illumination sea area when the noise is considered.

Additional information about the high-resolution
monopulse radar sea clutter was obtained by analyzing
the correlation characteristics. Both temporal and spatial
analyses were performed for the texture and speckle
components of clutter. The results of the correlation analysis
suggest that both the temporal and spatial correlation
functions of the speckle component are almost unchanged.
Moreover, for any one of the temporal and spatial correlation
functions, the speckle components of the three channels
exhibit similar behavior. Conversely, the temporal correlation
function of the texture shows range-varying behavior, and
the spatial correlation function also shows time-varying
behavior. Additionally, for both the individual temporal
and spatial correlations of the texture component, there are
apparently similar variations between the elevation difference
and sum channels, but there are some differences between
the azimuth difference and sum channels. Nonetheless,
the averaged results of the correlation coefficients and

of the power spectra of the correlation functions exhibit
similar behaviors for the three channels and for the two
clutter datasets. Meanwhile, regarding the cross-correlations
between the sum and difference channels, based on our
results, we can conclude that, for the high-resolution
radar, both the texture and speckle components are almost
completely correlated in elevation, but, in azimuth, the
texture component is partly correlated and the speckle
component is lowly correlated.

Special attention has been focused on the spectral anal-
ysis. The time-varying and range-varying natures of the
spectra are very evident for our datasets. For all channels,
the individual spectra can be represented by a Gaussian-
shaped power spectral density with a changing Doppler
centroid and a fluctuating spectrum width. Moreover, the
spectrum form in the sum channel is similar to that in
elevation difference channel but different from that in the
azimuth difference channel. Further analysis suggests that
the Doppler centroid and the width of the local spectra
show a distinct correlation with local spectrum intensity.The
modeling method presented by Guan et al. in [35] has been
extended here to capture the time-varying and range-varying
natures of the Doppler centroid and the width of the local
spectra. First, they can be modeled as two linear functions
of the mean spectrum intensity along range within a short
time interval. The coefficients of the linear models are also
correlated with the overall mean of the average spectrum
intensities of each time burst. Similarly, the coefficients of the
linear models can then be modeled as linear functions of the
overall mean of the average spectrum intensities along time.

In summary, the analyses presented in this paper improve
the understanding of high-resolution coherent monopulse
radar sea clutter. However, more advanced analyses of these
data are still necessary in future works. The statistical and
spectral properties of the sea clutter spikes, which are helpful
for the radar detector in distinguishing between sea clutter
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and true targets, may be studied in a similar way to [17–19],
and a detailed analysis about the average radar cross section
of sea clutter returns will be presented [20, 21]. Moreover,
according to the above analysis results of the statistical prop-
erties of wideband monopulse clutter, it will be interesting
to study the performance of the detection algorithms using
both three-channel return signals, the effects of sea clutter
on monopulse angle estimation, and the simulation of high-
resolution coherent monopulse radar sea clutter data. In
addition, sea clutter presents various statistical characteristics
depending on the different environmental conditions. We
will try our best to design more measurements to collect the
sea clutter datasets in various environmental conditions for
analyzing.
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