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Fuzzy based CPU scheduler has become of great interest by operating system because of its ability to handle imprecise information
associated with task. This paper introduces an extension to the fuzzy based round robin scheduler to a Vague Logic Based Round
Robin (VBRR) scheduler. VBRR scheduler works on 2-layered framework. At the first layer, scheduler has a vague inference system
which has the ability to handle the impreciseness of task using vague logic. At the second layer, Vague Logic Based Round Robin
(VBRR) scheduling algorithm works to schedule the tasks. VBRR scheduler has the learning capability based on which scheduler
adapts intelligently an optimum length for time quantum. An optimum time quantum reduces the overhead on scheduler by
reducing the unnecessary context switches which lead to improve the overall performance of system. The work is simulated using
MATLAB and compared with the conventional round robin scheduler and the other two fuzzy based approaches to CPU scheduler.

Given simulation analysis and results prove the effectiveness and efficiency of VBRR scheduler.

1. Introduction

Multitasking environment of a computer system defines the
role of CPU scheduler. The scheduler uses a scheduling
algorithm to decide when to schedule the task and for how
long. The goal of system designer is to design the CPU
scheduler in such a way that it gives users more effective and
efficient throughput [1-3]. In this paper, the author discusses
the round robin (RR) CPU scheduler.

Traditional RR CPU scheduler is not able enough to know
the exact attributes of task like burst time, length of time
quantum, arrival time, and so forth which affect the perfor-
mance of system. Recent research works handle the uncer-
tainty of attributes using fuzzy logic [4]. These developments
undoubtedly improve the performance of system. The pro-
posed work extends the fuzzy based RR scheduler to vague
logic based RR scheduler. The author calls it VBRR CPU
scheduler. Vague set theory over fuzzy set theory improves
the modelling of real world and becomes a promising tool to
handle the impreciseness [5].

VBRR scheduler functions are fourfold. First, it addresses
the impreciseness and uncertainty using vague logic. Second,

it dynamically provides an optimum length of time quantum.
Third, it reduces the unnecessary context switches which
further reduce the scheduler overhead. Fourth, and the last,
it improves the overall performance of system in terms
of average response time, average waiting time, average
turnaround time, and average normalized turnaround time.

VBRR scheduler works on 2-layered framework. First
layer is of vague inference system which itself contains four
units: Vague Logic Unit, Grade Function Unit, Data Base
Unit, and D-Vague Logic Unit. First two functions of VBRR
are performed at this layer only. Second layer runs scheduling
algorithm to schedule the tasks. The latter two functions are
performed at this particular layer.

The rest of paper is organized as follows. Section 2
outlines the related work with RR scheduler. Section 3 briefly
describes the vague set theory and how it is a better tool
over fuzzy set theory. Section 4 introduces the 2-layered
framework for RR CPU scheduler. Section 5 presents the
simulation and results to analyze the performance of VBRR
scheduler with the traditional RR scheduler and two other
fuzzy based CPU schedulers. Finally, Section 6 concludes the
proposed work.
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FIGURE 1: Round robin scheduling.

2. State of the Art

Round robin (RR) scheduling is specially designed for
multitasking systems where users get an impression that
multiple tasks are simultaneously running. It is the simplest,
fairest, and most widely used scheduling algorithm by CPU
scheduler [6]. A fixed size time quantum is assigned to each
task in a ready queue and each task is treated equally as
shown in Figure 1. Fixed size time quantum is a small portion
of CPU time. Round robin scheduling is based on the First
Come First Served (FCFS) scheduling. But FCFS scheduling
is nonpreemptive type of scheduling whereas round robin is
a preemptive scheduling. Therefore, the tasks are interrupted
by the system after the completion of assigned time quantum
and the system forces the task to temporarily suspend the
execution. Later, task resumes its execution when it gets a
time quantum.

RR scheduling algorithm improves the response time of
tasks as compared to other scheduling algorithms. Racu et al.
have analyzed the RR scheduling algorithm with respect to
response time in 2007. They have derived a best case response
time algorithm from the worst case response time algorithm
[7].

RR scheduling algorithm provides an effective response
time but with increased waiting time and turnaround time
due to the fixed size time quantum. In 2008, Park et al. gave
an approach of quantum based fixed priority scheduling [8].
They combined the concept of quantum with priority of tasks
[9]in 2009; they further integrated the concept of preemption
threshold with quantum based approach. Every time a task is
dispatched to the CPU, a context switch occurs, which adds
overhead to the task execution and increases the execution
time. However, context switching is an essential feature of any
multitasking system; it is the process of loading the states of
one task in main memory and storing the states of another
task. In RR scheduling, the context switch is the important
concern as each task is preempted after the time quantum.
It is intensive in computation as well as having the ability
to increase the monetary value of the system in terms of
processor time. Moreover, it can be costlier operation on an
operating system [10]. Hence, there should be a focus on
the designing of scheduling algorithm to avoid unnecessary
context switches to the possible extent.

Number of context switches depends on the size of
time quantum used. The smaller size quantum increases
the context switches which will degrade the performance of
system [6]. Matarneh in 2009 proposed a solution for the
fixed size of time quantum. The proposed solution (SARR)
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adjusts the size of time quantum, based on the CPU burst
value of each task [11]. The operating system is not able to
adapt this solution immediately as system takes some time
to observe the user behaviour, as the needed burst time
for user is analyzed initially by operating system. Behera
et al. have discussed the problem of high waiting time and
turnaround time with RR scheduling algorithm due to the
usage of static time quantum [12]. In 2010, they proposed
a new version of RR scheduling and had given it the name
Dynamic Time Quantum with Readjusted RR (DQRRR)
scheduling algorithm. Mostafa et al. have also looked inside
the problem of size of time quantum. In the same year,
they introduced a method based on integer programming
to decide the length of time quantum so that each task gets
fair response time and also increases the throughput of the
system by reducing unnecessarily context switches [13]. In
2011, Noon et al. provided a solution for fixed time quantum
and called this new algorithm AN. The idea of AN algorithm
was the same; the operating system itself adjusts the size of
time quantum depending on the burst time of all tasks waiting
in ready queue [14].

Thus, the system designer has an option to decide the size
of time quantum by making it not too long and not too short.
For example, consider a process whose CPU burst time is
6.2 ms and the fixed time quantum is 2 ms. After execution of
3 cycles, this task will be preempted and assigned to the ready
queue. Task needs 0.2ms more and if before preemption
0.2 ms is given to the process, it will complete its execution.
Consequently, its waiting time may be reduced and a chance
for another process to be in the queue [15]. The size of time
quantum varies with respect to different parameters, namely,
burst time, number of tasks present in ready queue, and
so forth. These parameters can have imprecise or uncertain
values. In order for intellect in a real world where things
are not absolutely true, we need a different logic. To keep
in line, Professor Zadeh has given fuzzy logic [16] during
second half of the last century. Raheja et al. in 2012 have
explored the fuzzy approach with RR scheduling. The authors
have provided a fuzzy based solution to generate an optimum
value for time quantum. The author calls this approach FBRR
scheduling algorithm [15]. Alam in 2013 has also explored
the option of using fuzzy logic with round robin scheduling
algorithm to deal with imprecise values. He designed a
Fuzzy Inference System (FIS) that decides the length of time
quantum which is optimal for the system, so that each task
receives a fair response time and throughput of the system.
Otherwise, with fixed time quantum, the throughput of the
system decreases due to the unnecessary context switches.
The author calls this approach BFRR scheduling algorithm
[10].

Fuzzy logic uses a concept of single membership value
which cannot consider both the evidences of user: evidence in
favor and evidence in against. Vague logic effectively handles
the impreciseness using both the evidences which fuzzy logic
cannot handle [5,17]. This paper presents a new RR scheduler
using the vague set theory. I have called this scheduler “Vague
Logic Based Round Robin Scheduler” or VBRR scheduler.
VBRR scheduler adapts dynamically the size of time quantum
based on the current state of ready queue; thus it is a
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kind of an intelligent scheduler which further improves
the larger waiting time, turnaround time, and normalized
turnaround time for tasks. VBRR scheduler also reduces
the scheduling overhead by reducing the number of context
switches. Finally, this work compares the performance of
VBRR with traditional RR, FBRR, and BFRR approaches.

3. Vague Set Theory

A number of mathematicians and researchers have been pro-
viding a solution to deal with vagueness and impreciseness
of knowledge. Professor Zadeh [16] had introduced a novel
approach, that is, fuzzy logic. In fuzzy logic, each element
has a single grade of membership in interval [0,1] [18].
There are a number of generalized forms of fuzzy set theory
discussed in the literature by different authors. Atanassov [19]
has introduced intuitionistic fuzzy set theory. He extended
the fuzzy membership into two functions: membership and
nonmembership in the same interval [19, 20]. Pawlak [21] had
described another approach to impreciseness called rough
set. In this approach, impreciseness is not expressed by
single membership but expressed as a pair of sets which
provides the lower and upper approximation of the set. Lower
and upper approximations give the information about the
elements undoubtedly belonging to set and the elements
which possibly belong to set, respectively. Professor Gau and
Buehrer [5] had introduced another approach over fuzzy
set theory and called it vague set theory. They partitions
the concept of single membership value pup(x) into two
values: one represents favor value and another represents
against value. They pointed out that fuzzy set theory cannot
consider both against and favor values individually and even
cannot use them at the same time. To differentiate the fuzzy
set theory from vague set theory, let us consider X =
{xy,x,,...,x,} is the universe of discourse.

Definition 1 (fuzzy set). A fuzzy set F in X is defined as a pair
where {x, pp(x)} where pp(x) — [0, 1]. For each object x €
F, the value pp(x) represents the degree of membership of
object x in F as shown in Figure 2. If the value of pp(x) is
more towards 1, the object x belongs more to the set [16].

Definition 2 (vague set). A vague set V in X is characterized
by two membership functions: a truth membership function
t, : X € [0,1] and a false-membership function f, :
X € [0,1], where f,(x) is a lower bound of the grade of
membership of x derived from the “evidence for x” and f,(x)
is a lower bound on the opposition of x derived from the
“evidence against x” as shown in Figure 3, and the total of
these two independent membership values cannot exceed 1;

thatis, t,(x) + f,(x) < 1.

Definition 3 (vague value). The grade of membership of x in
the vague set V' is bounded by a subinterval [¢,(x), 1 - £, (x)]
of [0, 1], where the interval [t,(x),1 — f,(x)] represents the
“vague value” of x in V' [5].

3.1. How Are Both Set Theories Different from Each Other? Let
X be the universe of discourse, say, the collection of burst

pr(xo)

0 X0 X

FIGURE 2: Fuzzy membership function.

1= £, (xo)

t,(xg)

0 X X

FIGURE 3: Vague membership functions.

time of active tasks in operating system. Let V be a vague
set of all “high burst time tasks” of the universe X, and let
F be a fuzzy set of “high burst time tasks” of X. Suppose an
intelligent agent I1 suggests the membership value yp(x) for
the element x in the fuzzy set F by his expert intellectual
potentiality. On the contrary, another intelligent agent 12
suggests independently two membership values t,(x) and
f,(x) for the same element x in the vague set V' by his own
expert intellectual potentiality. The ¢, (x) is degree of the true-
membership value of x and f,(x) is the false-membership
value of x in the vague set V. Both human agents I1 and I2
have their limitation of perception, assessment, and working
power with real life situations. In the case of fuzzy set F, there
is no further check for membership value pip(x). In the second
case, the agent 12 suggests independently the membership
values t,(x) and f,(x) and makes a further check by keeping
the constraint, t,(x) + f,(x) < 1. Ifit is not satisfied, the agent
can rethink and reshuffle his assessment.

4. VBRR CPU Scheduler

VBRR CPU scheduler works with 2-layered framework as
shown in Figure 4. At the first layer, scheduler has vague infer-
ence system [22-25] which has further four modules. This
layer basically handles the impreciseness and uncertainty of
active tasks in a system. Moreover, it provides an optimum
value for time quantum to the second layer of scheduler
where scheduling algorithm works. VBRR scheduling algo-
rithm schedules the tasks for a given time quantum and uses
this time quantum to improve the performance of system.
Next sections describe both the layers in detail.
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FIGURE 5: Vague inference system for optimum time quantum.

4.1. Vague Inference System (VIS). Our VIS contains four
units as shown in Figure 5 as follows:

(i) Vague Logic Unit.
(ii) Grade Function Unit.
(iii) Data Base Unit.

(iv) D-Vague Logic Unit.

4.1.1. Vague Logic Unit (VLU). VLU takes the input burst time
(B) from the database and performs the vaguification process
[22]. Vaguification process maps the input parameters to the
vague value: true-membership (t,) and false-membership
(fq)- It considers the present state of ready queue to deal with
the uncertainty and impreciseness of tasks. When task arrives
in the system, system is not able to exactly know the actual
attributes of task; therefore, the VLU considers the maximum
B,.x and minimum B, ;, values of burst time present in
ready queue to handle the exact deviation in current values.
Moreover, VLU is also considering the static time quantum
(ts) which is initially assigned by the system. Based on all
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these values, our Vague Logic Unit computes ¢, using (1) and
fq using (2):

Ban
to= ————, ¢))
Q" By + Ts+ By
Ban
fo=m7—7—F—F"——. 2)
< Bavg + TS + Bmin

Both t4 and f, must satisfy the following axioms:

Axiom L: f < 1.

Axiom 2: fo < 1.

Axiom 3:tg + fo < 1.
Axiom4:0<to<1- fo <1

4.1.2. Grade Function Unit (GFU). GFU evaluates the degree
of accuracy of vague value. The Grade Function is applied to
the membership values 4 and f, which are received from the
VLU, as given in

Gq =to+ for 3)

Here G, represents the grade value. Since, in vague set theory,
the sum of these two functions cannot be greater than 1, grade
value should also satisfy the following axiom as shown in
Figure 6:

Axiom 5: GQ <1.

4.1.3. Data Base Unit. It stores all the related information
about the tasks like burst time, arrival time, number of
currently active tasks, maximum and minimum value of burst
time, average burst time, and so forth. All other units extract
the current required information from the database.

4.14. D-Vague Logic Unit. D-Vague Logic Unit finally maps
the grade value to the output value, that is, optimum value of
time quantum. The size of time quantum can be calculated
using

(N+T)
)XT.

Ty = (Gq (4)
This dynamic time quantum depends on the grade value,
static time quantum, and number of active tasks present in
ready queue. It extracts the data from the database. In the
next section, the author discusses how the 2nd layer uses this
dynamic time quantum.

4.2. VBRR Scheduling Algorithm. In our proposed VBRR
scheduling algorithm, the tasks are sorted according to
their burst time, so that task with shortest burst time will
be removed earlier from the ready queue. Optimum time
quantum is calculated from the VIS defined in previous
section and is used by all active tasks until the complete
execution of them. The author discusses the algorithm in
Algorithm 4 and the respective pseudocode for the algorithm
in Pseudocode 1 and Boxes 1, 2, and 3.



Advances in Fuzzy Systems

fa Gq

FIGURE 6: Grade value.

Begin
Initialize the variables
N = number of ready tasks
T = Static Time Quantum
Do Loop
Initialize the variables
B[N] = Burst Time of task
A[N] = Arrival Time of task
Until (N == 0)
Initialize sum = 0
Do Loop
sum = sum + B[N]
Until (N == 0)
Calculate B

avg

B, =sum/N

for (i :g 1toN)
B,..x = max(Bl[i])
B, = min(B[i])
endfor

tq = True_membership (B, Ts, Bynx)
fq = False_membership (B, Byyin» T5)
Go=to+ fq
Calculate T,
(N +Ts)
Tp = (Go) x ———3~
p=( Q) X >
Do Loop

Schedule the task with CPU for T, time
if a new task has arrived

Recalculate the T},
else
continue with execution
endif
Until (N == 0)
Calculate waiting time Wy,,,,., response time Ry,
Avg_Calc()

End

Calculate G, using true-membership and false-membership function

turnaround time T,

time and normalized turnaround time Ny,...

PSEUDOCODE 1

Algorithm 4. (1) Initialize the variables B,y;, By and By,
with the average burst time, maximum burst time, and
minimum burst time present in ready queue.

(2) Initialize the variables N and Tj.

(3) Sort the ready queue in increasing order of burst time.

(4) Compute the time quantum T}, from the VIS (Sec-
tion 4.1).

(5) Dispatch and execute the tasks according to the round
robin scheduling algorithm using the computed T, until the
ready queue is empty.



True-membership (B, Ts, Binx)
Calculate true-membership value ¢,

avg

o= — 8
Q (Bavg + TS + Bmax)
return (t,)
endfunction
Box 1

False_membership (B, Byyin> Ts)
Calculate false-membership value f,

avg

fQ - (Bavg + TS + Bmin)
return (f,)
endfunction
Box 2

(6) If a new task arrived, repeat steps from (1) to (5).

(7) Calculate the waiting time, response time, turnaround
time, and normalized turnaround time for each task.

(8) Finally calculate the average waiting time (AWT),
average response time (ART), average turnaround time
(ATT), average normalized turnaround time (ATT), and the
total context switches (NCS).

5. Simulation and Results

The author has analyzed the performance of proposed work
with the RR, FBRR, and BFRR scheduling algorithms. For
each comparison, selected sets of tasks were considered and
for each case the performance metrics are computed. Results
prove that VBRR has better performance as compared to
other three algorithms. She presents a Sample Task Set to
show the detailed performance analyses of all scheduling
algorithms with the help of Gantt chart.

5.1. Sample Task Set. Assume a set of five tasks with burst time
(T'1=20,T2 =20,T3 =5,T4 = 3, T5 = 1). For simplicity,
the arrival time of all tasks is considered as 0 ms.

5.11. Using RR Scheduling. Assume the static time quantum
Ty assigned by system as 2 ms. The scheduling order of tasks
using T = 2 ms is shown in Figure 7(a).

5.1.2. Using FBRR Scheduling Algorithm. Similarly, the size
of time quantum for the Sample Task Set after applying the
FBRR scheduling approach is TQ = 2.6 ms. The scheduling
order of tasks with FBRR algorithm is shown in Figure 7(b).

5.1.3. Using BFRR Scheduling Algorithm. After applying
BFRR scheduling algorithm, the size of time quantum for the
Sample Task Set is TQ = 2.5 ms. The scheduling order of tasks
with BFRR algorithm is shown in Figure 7(c).
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5.1.4. Using VBRR Scheduling Algorithm. VBRR algorithm
firstly initializes the following variables:

B, = 20,
Bmin = 1’ (5)
B, =98

Then, VIS returns the true- and false-membership functions
as given below:

9.8
to=—— =03
31.8
08 (6)
=" =07.
fa 12.8

After that, it computes G, as shown in Figure 8 by using ¢,
and fq:

Then, the time quantum ¢, is calculated as

5+2
th=1% (2—) = 3.5ms. (8)

The tasks are scheduled with ¢, = 3.5 ms. Scheduling order
of tasks is shown in Figure 9.

5.2. Performance Metrics. To evaluate the performance of
VBRR scheduler, the author has chosen all the major perfor-
mance metrics as discussed below.

Definition 5 (average waiting time). Waiting time is the total
time a task waits in ready queue for its turn of execution. Let
us consider the time, when task has arrived in the system as
arrival time and when task has got the CPU as start time.
Waiting time can be calculated as

Wiime = start time — arrival time. 9)

For RR scheduling, the task has preempted and resumed
the execution multiple times until the task has completed
its execution. Then, for further turns, start time acts as next
starting time and arrival time as the last time when the task
has been executed. The total waiting time is calculated by
adding all the waiting times of a task using (9):
Wiime = (start time — arrival time)
(10)
+ (start time — last execution time) + - - - .

Average waiting time is calculated as the waiting time of all
the active tasks in ready queue using (10). It is calculated as

(Zf\;l ‘/Vvtime) ) (11)
N

AWT =

Here, N is the number of active tasks. The performance of
CPU scheduler depends on the average waiting time. The
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Avg_Calc ()
Calculate average waiting time (AWT)

AWT = i‘/vtime
o N
Calculate average response time (ART)
N
R..
ART — time
2N
Calculate average turnaround time (ATT)
N
T.
ATT — time
2N
Calculate average normalized turnaround time (ANT)

N
Ny
ANT — time
g; N

endfunction
Box 3
(i mo|n|s|n]e|n]n]n]
0 2 4 6 8 9 11 13 15 16 18
o oo e|n|n]n|n] o] o] o]
18 20 21 23 25 27 29 31 33 35 37 39
o n o n]n)
39 41 43 45 47 49
(a)
m m o n|e|n]e|n]a]n]
0 1 3.6 6.2 8.8 11.4 11.8 14.2 16.8 194 22
n [ m n|n|nn|nln[n]ne]n]
22 246 27.2 29.8 32.4 35 37.6 40.2 428 454 47.2 49
(b)
(n[m o n|nn|n]n6|u]o]
0 2.5 5 7.5 10 11 13.5 16 18.5 19 21.5
(=0 n|n|n|n|a|o|a|o]]
21.5 24 26.5 29 31.5 34 36.5 39 41.5 44 46.5 49
(c)

FIGURE 7: (a) Gantt chart using RR approach. (b) Gantt chart using FBRR scheduling algorithm. (c) Gantt chart using BFRR scheduling

algorithm.

reduction in AWT is considered as performance improve-

ment of scheduler.

Definition 6 (average response time). Response time is the
first start time of task from its arrival to the system. It

Average response time is calculated as the response time of
all the active tasks using (12). It is calculated as

ART = (21]\:]1 Rtime) ) (13)
N

represents the time when first time task has got the CPU. It

is calculated as

R = start time — arrival time.

time

For the nonpreemptive scheduling algorithms, both the
waiting time and response time return the same results.

Definition 7 (average turnaround time). Turnaround time is
the total life time of a task which means the total time a task

(12) takes to finish its execution. It can be calculated as

Time = burst time + waiting time. (14)

ime
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FIGURE 8: Vaguification to degree of accuracy (Sample Task Set).
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FIGURE 9: Gantt chart using VBRR scheduling algorithm.

Here, burst time represents the time task needs CPU and
waiting time is calculated using (9).

Average turnaround time is calculated as the turnaround
time of all the active tasks in ready queue using (14). It is
calculated as
time)

(15)

N
ATf:ggEii——
N

Definition 8 (average normalized turnaround time). Normal-
ized turnaround time represents the relative delay of a task.
It is simply a ratio of turnaround time to burst time. It is
calculated as

T
burst time’

Ntime = e (16)
Average normalized turnaround time is calculated as the
normalized turnaround time of all the active tasks in ready
queue using (16). It is calculated as

(Zzl\:jl Ntime)

ANT = (17)

Definition 9 (context switch). Context switch is a mechanism
that is followed by the CPU to switch from one task to
another task in a multitasking system. It saves and loads the
computer registers. It allows multiple tasks to run; basically
it shares a CPU among multiple tasks. Context switching is
computationally intensive and does not perform any useful
task, so the focus of designers is to optimize the number of
context switches.

From the Gantt charts shown in Figures 7 and 9, the
performance metrics of each scheduling algorithms are cal-
culated using (11), (13), (15), and (17).

All the graphs for Sample Task Set shown in Figure 10
illustrate the reduction in the values of performance metrics
from the RR to VBRR scheduling. In Figure 10(f), on the
x axis of graph, “1” represents RR scheduler, “2” represents
BFRR scheduler, “3” represents FBRR scheduler, and “4” rep-
resents VBRR scheduler. From the graph, we can compare the
performance of these four algorithms. There is a reduction in
performance values at “4” which proves the improvement in
performance of VBRR as compared to other three algorithms.
Hence, VBRR scheduler has better performance.

This paper considers multiple task sets to better eval-
uate the performance of VBRR scheduler over other three
approaches. In this work, the author is illustrating the
performance with the help of results of 15 task sets.

Figures 11, 12, 13, 14, and 15 show average waiting time,
average response time, average turnaround time, average nor-
malized turnaround time, and number of context switches,
respectively. VBRR algorihm is having lowest values in case
of all performance metrices. From these graphs, we can
conclude that the VBRR algorithm has better performance
over the other three algorithms: RR, FBRR, and BFRR
algorithms.

VBRR scheduler improves the performance of CPU
scheduler mainly by three reasons. Firstly, it deals with
the associated impreciseness and uncertainity with task.
Secondly, it provides a dynamic environment of execution
for tasks by assigning a dynamic time quantum. Thirdly, it
improves the performance of system by reducing the average
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FIGURE 10: (a) Waiting time (Sample Task Set). (b) Turnaround time (Sample Task Set). (c) Response time (Sample Task Set). (d) Normalized
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FIGURE 14: Average normalized turnaround time.
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FIGURE 15: Number of context switches.

waiting time, average turnaround time, average normalized
turn aroound time, and number of context switches.

6. Conclusion

As discussed above, round robin scheduling algorithm
improves the response time of the tasks, but with increased
waiting time and turnaround time. Moreover, the size of
time quantum plays the key role in the performance of RR
algorithm. Smaller size can increase the number of context
switches that makes the performance of scheduler even
worse. There must be a technique inside CPU scheduler,
which allows it to dynamically calculate the size of time
quantum rather than a fixed size time quantum. This work
provides a solution to all the above issues with RR scheduling.
The author has introduced a Vague Logic Based Round Robin
CPU scheduler. At first layer of VBRR, a vague inference
system is designed which dealt with the imprecise parameters
of task like burst time, static time quantum by considering
the current state of active tasks. Based on the current
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situation, this vague inference system finally generated an
optimum value for time quantum which makes the scheduler
work in a dynamic environment. At the second layer, a
Vague Logic Based Round Robin scheduling algorithm is
introduced to schedule the tasks. The author has evaluated
the performance of VBRR algorithm over multiple task sets
and compared the performance with RR, BFRR, and FBRR
scheduling algorithms. Simulation results illustrate that the
VBRR scheduler improves the performance in terms of
average waiting time, average turnaround time, and average
normalized turnaround time by maintaining the average
response time. It consequently improves the performance of
the system by reducing the number of context switches.
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