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Some properties of the weak subdifferential are considered in this paper. By using the definition
and properties of the weak subdifferential which are described in the papers (Azimov and
Gasimov, 1999; Kasimbeyli and Mammadov, 2009; Kasimbeyli and Inceoglu, 2010), the author
proves some theorems connecting weak subdifferential in nonsmooth and nonconvex analysis.
It is also obtained necessary optimality condition by using the weak subdifferential in this paper.

1. Introduction

Nonsmooth analysis had its origins in the early 1970s when control theorists and nonlinear
programmers attempted to deal with necessary optimality conditions for problems with
nonsmooth data or with nonsmooth functions (such as the pointwise maximum of several
smooth functions) that arise even in many problems with smooth data, convex functions,
and max-type functions.

For this reason, it is necessary to extend the classical gradient for the smooth function
to nonsmooth functions.

The first such canonical generalized gradient was the generalized gradient introduced
by Clarke in his work [1]. He applied this generalized gradient systematically to nonsmooth
problems in a variety of problems. But the nonconvex basic or limiting normal cone to closed
sets and the corresponding subdifferential of lower semicontinuous extended-real-valued
functions satisfying these requirements were introduced by Mordukhovich at the beginning
of 1975. The corresponding subdifferential is called Morduchovich subdifferential. The initial
motivation came from the intention to derive necessary optimality conditions for optimal
control problems with endpoint geometric constraints by passing to the limit from free
endpoint control problems, which are much easier to handle. This was published in [2]. Let
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us remark also that Clarke’s normal cone is the closed convex closure of Mordukhovich normal
cone [2].

Multifunctions (set-valued maps) naturally appear in various areas of nonlinear anal-
ysis, optimization, control theory, and mathematical economics. In Aubin and Frankowska’s
book [3] and in Mordukhovich’s book is an excellent introduction to the theory of
multifunctions. Coderivatives are convenient derivative-like objects for multifunctions and
were introduced by Mordukhovich [2] motivated by applications to optimal control (see [4]
for more discussions on the motivations and the relationship among coderivatives and other
derivative-like objects for multifunctions). They are defined via “normal cones” to the graph
of the multifunctions. Approximate and geometric subdifferentials are introduced by Ioffe in [5].
These subdifferentials are infinite-dimensional extensional of Mordukhovich subdifferential
which may be different only in non-Asplund spaces. Michel and Penot’s derivatives can be
discussed in [6]. Rockafellar and Wets [7] provide a comprehensive overview of the field.
The more information about the subdifferentials and coderivatives in nonsmooth analysis
can be found also in [8]. The notion of the weak subdifferential,which is a generalization of the
classic subdifferential, was introduced by [9].

In this paper, we investigate the relationships between the Frechet lower subdifferential
and weak subdifferentia and we prove some theorems related to the weak subdifferential.

The paper is organized as follows. The definition of the weak subdifferential,
strict differentiability, and the Frechet lower subdifferential are provided in the following
section. In Section 2, the principal necessary theorems related to the properties of the weak
subdifferential are also proved. In the third section, the necessary optimality conditions are
proved. The final section presents some conclusions.

2. Main Results

To start, we provide some definitions which will be useful for some parts of the current paper.
Let (X, ‖ · ‖X) be a real normed space, and let X∗ be a topological dual of X.

Definition 2.1 (strictly differentiable functions). F is called strictly differentiable at x (with a
strict derivative ΔF(x)) if

Lim
u→x,u′ →x

F(u′) − F(u) − (ΔF(x), u′ − u)
‖u′ − u‖ = 0. (2.1)

Definition 2.2 (weak subdifferential). Let F : X → R be a single-valued function, and let
x ∈ X be a given point where F(x) is finite. A pair (x∗, c) ∈ X∗ × R+ is called the weak
subgradient of F at x if

F(x) − F(x) ≥ (x∗, x − x) − c‖x − x‖, ∀x ∈ X, (2.2)

where R+ is defined as a set of nonnegative real numbers.

The reader can find more information about the strict differentiable and the weak
subdifferential, respectively, in [10, page 19] and [11, 12].
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The set

∂wF(x) = {(x∗, c) ∈ X∗ × R+ : F(x) − F(x) ≥ (x∗, x − x) − c‖x − x‖}, ∀x ∈ X, (2.3)

is called the weak subdifferential for the F at the point x ∈ X.
It is noted in [11, Remark 2.3, page 844] by the authors that when F is subdifferentiable

at x (in the classical sense, for the convex functions), then F is also weakly subdifferentiable
at x, that is, if x∗ ∈ ∂F(x), then by definition (x∗, c) ∈ ∂wF(x) for every c ≥ 0. It follows from
the definition of the weak subdifferential that the pair (x∗, c) ∈ X∗ ×R+ is a weak subgradient
of F at x ∈ X, if there is a continuous (superlinear) concave function g(x),

g(x) = (x∗, x − x) + F(x) − c‖x − x‖, (2.4)

such that g(x) ≤ F(x) for all x ∈ X and g(x) = F(x).
But the authors do not note the boundedness of the gradient of the functional g(x)

which will be useful in estimating the subgradients for the finding extremum points for the
nonsmooth functions. The following proof shows that the gradient of the functional g(x) is
also bounded. Let us prove this.

In fact, if we evaluate the gradient of the functional g(x) = (x∗, x−x)+F(x)−c‖x−x‖, we
can obtain ∇g(x) = x∗−c((x−x)/‖x−x‖). Then, if we calculate the norm of the gradient∇g(x)
of the functional g(x), we get ‖∇g(x)‖ = ‖x∗−c((x−x)/‖x−x‖)‖ ≤ ‖x∗‖+‖c((x−x)/‖x−x‖)‖ =
‖x∗‖ + c(‖x − x‖/‖x − x‖) = ‖x∗‖ + c ⇒ ‖∇g(x)‖ ≤ ‖x∗‖ + c for all x ∈ X, and x /=x. Then
we can add an extra useful and interesting property to Remark 2.3 in article [11, page 844]
for the gradient of functional g(x), namely, that is bounded by the nonnegative real number
‖x∗‖ + c.

Definition 2.3. The set

∂F(x) =
{
x∗ ∈ X∗ : Lim

x→x
inf

F(x) − F(x) − (x∗, x − x)
‖x − x‖ ≥ 0

}
(2.5)

is called a Frechet lower subdifferential of the function F at x. Any element x∗ ∈ ∂F(x) is
called the Frechet lower subgradient of the function F(x).

Remark 2.4. In different books, the definition of Frechet lower subdifferential is given different
names by the authors, such as presubdifferential or the Frechet subdifferential in [10, page 90,
I volume] and the Frechet lower subdifferential in [7]. More information about Frechet upper
and lower subdifferential can be found in [10, volume 1].

Let us note that the Frechet subdifferential may be empty for some functions.

Example 2.5. Take F : R → R : F(x) = −|x|, x ∈ R. Easy calculation shows that the Frechet
subdifferential for above example at the point zero is empty, that is, ∂F(0) = ∅.

Note that there is also a symmetric counterpart of the Frechet lower subdifferential,
which is the Frechet upper subdifferential, described as ∂F+(x) = {x∗ ∈ X∗ :
Limx→x inf((F(x) − F(x) − (x∗, x − x))/‖x − x‖) ≤ 0}.
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The Frechet lower subdifferential and Frechet upper subdifferential are not empty for
the function F if and only if the function F is Frechet differentiable. For more information
about the Frechet subdifferentials (upper and lower), the reader can consult [10, page 90]
and [13] and its applications to the necessary optimality conditions in [14, Chapters 5 and 6].

Theorem 2.6. If x∗ is a Frechet lower subgradient (Definition 2.3) for the functional F : X → R
at the point x, then the couple (x∗, c) is a weak subdifferential for the functional F(x) at x for any
nonnegative c ∈ R+.

Proof. Let x∗ be a Frechet subgradient for the functional F : X → R at the point x, that is,
x∗ ∈ ∂F(x). Then by using the definition (Definition 2.3) of the Frechet lower subdifferential
provided above, we can write

F(x) − F(x) − (x∗, x − x)
‖x − x‖ ≥ 0, (2.6)

(due to, Definition 2.3, Limx→x inf(·) ≥ 0). Then it reduces easily to the inequality

F(x) − F(x) − (x∗, x − x) ≥ o‖x − x‖. (2.7)

It is easy to show that the right side o‖x − x‖ of the last inequality is not less than −c‖x − x‖
for any nonnegative c. Then it follows that

F(x) − F(x) − (x∗, x − x) ≥ o‖x − x‖ ≥ −c‖x − x‖. (2.8)

By using the definition of the weak subdifferential (Definition 2.2), we can say that
(x∗, c) is a weak subdifferential for the functional F(x) at the point x.

Theorem 2.7. Let F(x) be a finite at x, h(x) ∈ C1 (continuously differentiable function) in a
neighborhood of x. Then if (x∗, c) ∈ ∂w(F + h)(x), then (x∗ − h′(x),−2c) ∈ ∂wF(x), that is,
(x∗ − h′(x), 2c) is the weak subdifferential of the function F(x) at the point x.

Proof. The inequality (2.2) applied to the function −h(x) implies the existence of the constant
c such that

−h(x) + h(x) + c‖x − x‖ ≥ (−h′(x), x − x
)
, ∀x ∈ X. (2.9)

(It is easy to check that, for the differentiable functions, the weak subgradient and its
derivative coincide, i.e., x∗ = h′.)

Since (x∗, c) ∈ ∂w(F + h)(x), if we imply the inequality (2.2) for the function F + h, we
can obtain

(F(x) + h(x)) − (F(x) + h(x)) + c‖x − x‖ ≥ (x∗, x − x), (2.10)

for all x ∈ X near x.
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Upon adding the inequalities (2.9) and (2.10) side-by-side, we arrive with

F(x) − F(x) + 2c‖x − x‖ ≥ (
x∗ − h′(x), x − x

)
=⇒ F(x) − F(x)

≥ (
x∗ − h′(x), x − x

) − 2c‖x − x‖.
(2.11)

The last inequalitymeans that (x∗−h′(x), 2c) ∈ ∂wF(x) that is, the couple (x∗−h′(x), 2c)
is the weak subdifferential of the function F(x) at the point x.

Theorem 2.8. Let F(x) be finite at x, and (x∗, c) the weak subdifferential for F(x) at x provided that
‖x∗‖ ≥ c, and let one take any real number l which satisfying c ≤ l ≤ ‖x∗‖. Then, for any x, where
x = (x∗/l) + x, the inequality F(x) ≥ F(x) holds.

Proof. By using the definition of the weak subdifferential (Definition 2.2), it is easy check that
if the couple (x∗, c) is the weak subdifferential for the function F, then, for any real l ≥ c, the
pair (l, c) is also the weak subdifferential for the function F. Then we can write

F(x) − F(x) ≥ (x∗, x − x) − c‖x − x‖ ≥ (x∗, x − x) − l‖x − x‖. (2.12)

From the relation x = (x∗/l) +x, it is easy to define x∗ = l(x−x). If, in the right side of the last
inequality, we substitute x∗ with l(x − x), then we get

F(x) − F(x) ≥ l‖x − x‖2 − l‖x − x‖ = l‖x − x‖(‖x − x‖ − 1). (2.13)

Since c ≤ l ≤ ‖x∗‖ and x = (x∗/l) + x, then ‖x − x‖ = ‖x∗/l‖ ≥ 1. If we consider the estimate
‖x − x‖ ≥ 1 in the inequality

F(x) − F(x) ≥ l‖x − x‖2 − l‖x − x‖ = l‖x − x‖(‖x − x‖ − 1), (2.14)

we can obtain F(x) ≥ F(x).

Theorem 2.9. If F is strictly differentiable at x with a derivative ΔF(x), then, for any (x∗, c) ∈
∂wF(u), there exists δ > 0 such that x∗ ∈ ΔF(x) + 2cB∗, where u ∈ Bδ(x)-sphere with radius δ and
B∗-unit sphere, provided that ∂wF(u)/= 0 for any u ∈ Bδ(x).

Proof. It follows from the definition of the strict differentiable (Definition 2.1) that for any
ε > 0 there exist δ > 0 such that

|F(u) − F(u) − (ΔF(x), u − u)| ≤ ε‖u − u‖, ∀u, u ∈ Bδ(x). (2.15)

Let us take u ∈ Bδ(x) and assume that (x∗, c) ∈ ∂wF(u). Then it follows from the definition of
the weak subdifferential that

F(u) − F(u) − (x∗, u − u) ≥ −c‖u − u‖. (2.16)

Let us substitute ε with the c in the inequality (2.15), that is, put ε = c in (2.15). Then (2.15)
can be formulated as follows.
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For c > 0, there exists δ > 0 with the condition that

|F(u) − F(u) − (ΔF(x), u − u)| ≤ c‖u − u‖, ∀u, u ∈ Bδ(x). (2.17)

If we estimate the absolute value in (2.17) using the above, we can get for such c there exists
δ > 0 which satisfies the following inequality

F(u) − F(u) − (ΔF(x), u − u) ≤ c‖u − u‖, ∀u, u ∈ Bδ(x). (2.18)

Let us multiply both sides of the inequality (2.16) by “minus”. Then we obtain

−F(u) + F(u) + (x∗, u − u) ≤ c‖u − u‖, ∀u, u ∈ Bδ(x). (2.19)

Adding up the inequalities (2.18) and (2.19) side-by-sides, we get the following
estimate:

(ΔF(x) − x∗, u − u) ≤ c‖u − u‖ + c‖u − u‖ = 2c‖u − u‖. (2.20)

Dividing both sides of the relations (2.2) by ‖u − u‖, we get

(
ΔF(x) − x∗,

u − u

‖u − u‖
)

≤ 2c, for ∀u, u ∈ Bδ(x). (2.21)

If we take the supremumwith the respect to the variables u and u in the last inequality,
then (2.21) reduces to

sup
(
ΔF(x) − x∗,

u − u

‖u − u‖
)

≤ 2c, for ∀u, u ∈ Bδ(x). (2.22)

If we consider the norm of the functional or operator [7], then we get

‖ΔF(x) − x∗‖ ≤ 2c, (2.23)

which can be reduced to the following form:

x∗ ∈ ΔF(x) + 2c. (2.24)

This is the end of the proof.

3. Necessary Optimality Conditions via the Weak Subdifferential

In this section, we present the necessary optimality condition for the weakly differentiable
function.
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Given a function F : X → R finite at the reference point and nonempty subset S of the
normed space X, we consider the following minimization problem:

minimize F(x) subject to x ∈ S ⊂ X. (3.1)

The following is a well-known optimality condition in nonsmooth convex analysis
(see [15, Proposition 1.8.1, page 168]) which states that if F : Rn → R is a convex function,
then vector x minimizes F over a convex set S ∈ Rn if and only if there exists a subgradient
x∗ ∈ ∂F(x) such that

(x∗, x − x) ≥ 0, ∀x ∈ S, (3.2)

where

0 ∈ ∂F(x) = {x∗ ∈ Rn : F(x) − F(x) ≥ (x∗, x − x)}, ∀x ∈ Rn. (3.3)

But the optimality conditions in [16, Proposition 1.8.1, page 168] are proved for convex
functions.

Let us formulate the necessary optimality conditions for problem (3.1) by using weak
subdifferential in the case where the minimizing functional is nonconvex. In fact, the weak
subdifferential is given for nonconvex functions, while the classical subgradient does not
enable us to find the minimum point in cases where the minimizing function is nonconvex
[11, 12].

The interested reader can find out more about the convex function and the
subdifferential for convex functions in [1, 7].

Theorem 3.1. Let the function F(x) have a minimum at the point x ∈ S in problem (3.1). If the
function F(x) is weakly subdifferentiable at x, that is, ∂wF(x)/= 0, then the couple (0, c) belongs to
the ∂wF(x), for any nonnegative real number c.

Proof. Let the function F(x) take minimum value at the point x. If F(x) is weakly
subdifferentiable at the point x, then, by using Definition 2.2, we can write that

0/= ∂wF(x) = {(x∗, c) ∈ X∗ × R+ : F(x) − F(x) ≥ (x∗, x − x) − c‖x − x‖}, ∀x ∈ S. (3.4)

Since F(x) takes its minimum at the point x over the set S ∈ X, then we can write that

F(x) ≥ F(x), ∀x ∈ S. (3.5)

We can reduce last inequality to the following form:

F(x) − F(x) ≥ 0 = (0, x − x) ≥ (0, x − x) − c‖x − x‖, (3.6)

for all x ∈ S and nonnegative real number c ≥ 0.
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Comparing the definition of the weak subdifferential (Definition 2.2) with the
inequality (3.6), we can say that

(0, c) ∈ ∂Fw(x). (3.7)

4. Conclusion

Comparison of the current status of smooth subdifferential theory and the corresponding
smooth theory reveals a glaring lack of a second order theory. In finite dimensional space a
beautiful sum rule for a second-order derivative-like object close to the fuzzy sum rule was
derived in [17]. There are many other approaches and results in nonsmooth optimizations
and variational analysis in infnite-dimensional spaces. In infinite dimensions the field is little
developed. Applications in optimal control, mathematical programming, and other related
problems are critical for the healthy development of further nonsmooth analysis theory.

A further research topic is also the development of methods for obtaining the
optimality condition for the nonsmooth optimal control problem by using the weak
subdifferential. Open problems, including the existence of the solution, the exploration of
the necessary conditions in the nonsmooth case, the solution of the HJB (Hamilton-Jacobi-
Belmann) equation, and the use of numerical methods, still present considerable challenges.
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