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We analyze the density distribution of marine sediments using density samples taken from 716 drill sites of the Deep Sea Drilling
Project (DSDP). The samples taken within the upper stratigraphic layer exhibit a prevailing trend of the decreasing density
with the increasing ocean depth (at a rate of −0.05 g/cm3 per 1 km). Our results confirm findings of published studies that the
density nonlinearly increases with the increasing sediment depth due to compaction. We further establish a 3D density model of
marine sediments and propose theoretical models of the ocean-sediment and sediment-bedrock density contrasts. The sediment
density-depth equation approximates density samples with an average uncertainty of about 10% and better represents the density
distribution especially at deeper sections of basin sediments than a uniform density model. The analysis of DSDP density data also
reveals that the average density of marine sediments is 1.70 g/cm3 and the average density of the ocean bedrock is 2.9 g/cm3.

1. Introduction

The understanding of a structural density composition of
marine sediments plays an important role in several mul-
tidisciplinary research areas. In marine gravimetric studies,
sediment corrections have been often calculated by adopting
a uniform density distribution, irrespective of physical prop-
erties and mineral composition of marine sediments. Some
authors developed more complex density-depth equations
based on the analysis of specific sediment types and their
physical properties.The gross density structure and thickness
of basin sediments were obtained from either ocean drilling
data or seismic surveys. These data were incorporated in
gravimetric marine (or coastal) profile models by Donato
and Tully [1], Dimitropoulos and Donato [2], Foucher et al.
[3], Zervos [4], Holliger and Klemperer [5], Thorne and
Watts [6], and others. The sediment density models are also
required inmodeling and subsequent removing of the crustal
loading caused by sedimentary accumulations. Examples of
the applied sediment isostatic compensation include, but
are not limited to, studies of paleobathymetry (e.g., [7–
12]), evolution of sedimentary basins (e.g., [13–17]), thermal

structure of the oceanic lithosphere (e.g., [18]), continental
shelf basins (e.g., [19, 20]), and historical sea level (e.g., [21]).

The uniform density distribution has been often assumed
in gravimetric studies of marine sediments. Estimates of the
average sediment density can be found, for instance, in Sclater
et al. [22–24], Crough [25], Renkin and Sclater [9], Hayes [8],
Kane and Hayes [11], and Coffin [26].These authors provided
the average density estimates between 1.7 and 1.95 g/cm3;
for summary, see also Sykes [27]. Large density variations
within marine sediment basins depend on their physical
properties and mineral composition (cf. [28–32]). Several
authors developed and appliedmore complex density models
taking into consideration a particular sediment type and its
specific physical properties (e.g., porosity and compaction).
Hamilton and Menard [33] studied the density and porosity
of sea-floor sediments. Hamilton [34] investigated how the
density and porosity of deep sea sediments vary with depth.
His study focused on four types of sediments, namely,
calcareous and siliceous oozes, pelagic clay, and terrigenous
sediments. He then derived a regression function for each
sediment type, but he emphasized that these density models
should not be used for sediment depths greater than those
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indicated in his tables and figures (500m for calcareous ooze,
250m for radiolarian ooze, 300m for pelagic clay, 500m for
diatomaceous ooze, and 1300m for terrigenous sediments).
He also stated that there is no universal curve of density
or porosity with depth in sediments or rocks even if sepa-
rated into various sediment types. Granser [35] applied an
exponential density-depth function for a gravimetric inter-
pretation of sedimentary basins.Mienert and Schultheiss [36]
compared physical properties of marine sediments at two
(near coastal) drill sites in oceanic high and low biogenic
productivity zones. They concluded that increased biogenic
silica concentrations in sediments beneath the upwelling area
cause a low average grain density (<2.4 g/cm3), low wet-
bulk density (<1.6 g/cm3), and low shear strength (<60 kPa).
The sediments present in the nonupwelling area were found
to have higher average carbonate concentrations (40–90%)
and reflect a steady increase in wet-bulk density (decrease
in porosity) with depth (0.12 g/cm3 per 100m). Cowie and
Karner [37] established an exponential function of porosity
to describe the depth-dependent density change due to com-
paction.They used the regional sediment data from theNorth
Sea and the Rhine Graben. Sykes [27] calculated the isostatic
correction for the sediment load on oceanic basements, using
a uniform density structure. He then applied an alternative
method in which the sediment density was calculated based
on applying Hamilton’s [34] depth-dependent equations
for calcareous, clay, and terrigenous sediment sequences.
This alternative method takes into consideration the ocean
depth and the total sediment thickness. For example, deep
ocean sediments (>4 km) are typically formed from clay,
and thick sediment sequences (>2 km) usually have a high
terrigenous component, while shallow sequences are likely
to be calcareous rich. He compared the density estimates of
both theoretical models with measurements taken from 10
drill sites and from densities derived from seismic interval
velocities. He demonstrated that Hamilton’s [34] equations
produced isostatic corrections similar to those derived by
published methods for sediment sequences less than 1 km,
but compensated better for thicker sediment deposits. Wang
et al. [38] applied the stepwise linearly approximated density-
depth function of Cowie and Karner [37] to estimate the
crust thickness anomalies in the North Atlantic Ocean
basin, using gravimetric methods. Accurate sediment density
models are also required in continental studies. Artemjev
et al. [39], for instance, applied a depth-dependent sediment
density model in the gravimetric study of subcrustal density
inhomogeneities of the Northern Eurasia.

In this study, we derive the sediment density-depth
equations that define the density distribution as a function
of the ocean and sediment depths. Since global datasets
of the ocean depths and the total sediment thickness are
currently provided with a relatively high resolution, the 3D
density model of marine sediments can be readily applied in
gravimetric marine studies. The application of more specific
density distribution models in global studies is currently
restricted by the fact that the geographical distribution of
marine sediment types (and their physical properties) is
poorly documented. Moreover, the information on sediment
type and its physical properties is not provided in datasets
used for the analysis in this study.

2. Marine Sediment Data

The gravimetric forwardmodeling of marine sediment struc-
tures requires accurate data of the ocean depth, the total sed-
iment thickness, and the sediment density distribution. The
global bathymetric models currently available are provided
with a relatively high resolution. The National Geophysical
Data Center (NGDC) of the U.S. National Oceanic and
Atmospheric Administration (NOAA) contains a 1 arc min
global model ETOPO1 that integrates land topography and
ocean bathymetry [40]. The NGDC includes a 5 arc min
data of the total sediment thickness for the world’s oceans
and marginal seas [41]. This database was compiled using
previously published isopach maps [42–46], ocean drilling
results, and seismic reflection profiles archived in the NGDC
as well as seismic data and isopach maps available as a
part of the International Geological-Geophysical Atlas of
the Pacific Ocean [47]. We note that the NGDC data of
the total sediment thickness are not provided in the Arctic
Ocean and some other parts of the oceans. The NGDC
database also contains density files of marine sediments.
These records were prepared from core data collected during
the Deep Sea Drilling Project (DSDP) produced in 2000 by
the U.S. Department of Commerce, NOAA, National Envi-
ronmental Satellite, Data, and Information Service, National
Geophysical Data Center, and collocated World Data Center
for Marine Geology and Geophysics, Boulder. These records
were prepared in cooperation with the U.S. Science Support
Program, the Joint Oceanographic Institutions Inc., and
the U.S. National Science Foundation. The DSDP was an
international study of the global oceans supported by the
U.S. National Science Foundation and the governments of
the former Federal Republic of Germany, France, Japan, the
United Kingdom, and the former Soviet Union. The data
were collected and compiled within the DSDP framework
from 1968 through to 1987 under the auspices of the Scripps
Institution of Oceanography, the science operator of the
DSDP. We note that core data from the Ocean Drilling
Program, also included in the DSDP database, were not used
due to existing errors and inconsistencies.

The density water content, porosity, density, and grain
density of marine sediments were measured aboard the
Glomar Challenger (which is deep sea research and scientific
drilling vessel for oceanography and marine geology studies)
on core samples. Several different techniques were applied to
measure the sediment density such as syringe, chunk, and
cylinder techniques [48, 49]. In this study, we used the wet-
bulk density measurements, including the ocean depth of
drill sites and drilling depths of the taken density samples.
It is worth mentioning that the error estimates of the NGDC
measurements were not specified.Themost significant factor
affecting the accuracy of density measurements is likely
changing physical conditions of the measured core samples
aboard compared to their deposit location.

The DSDP files contain total of 21937 density samples
collected at 716 drilling sites (as retrieved from the DSDP
database at 20/05/2013).We note here that theDSDPdatabase
contains also additional 49 files, which have the density
column empty. Majority of these drill sites are located in
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Figure 1: Location map of the 716 DSDP drill sites.
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Figure 2: Histogram of the DSDP density samples.

the northern hemisphere, while there is no sufficient cover
in large parts of the southern hemisphere and almost total
absence of drilling sites in the Arctic Ocean (see Figure 1).

3. Data Acquisition

The DSDP densities range between 0.95 and 4.42 g/cm3. As
seen from the histogram in Figure 2, the density distribution
exhibits two distinctive picks, with two local maxima roughly
at 1.7 and 2.9 g/cm3. The DSDP files thus comprise not only
sediment but also bedrock density samples. Since the analysis
here is limited to marine sediments, we separated sediments
from bedrock samples using the selection criterion based on
the assumption that the sediment density should not exceed
2.60 g/cm3. This selection criterion is verified in Section 5.
The 20347 selected samples have densities between 0.95 and
2.60 g/cm3, with a mean of 1.70 g/cm3and a standard devia-
tion of 0.29 g/cm3. The ocean depths of the DSDP drill sites
range from 193m to 7034m.The maximum drilling depth of
these samples is at 1737m. It is thus worth mentioning that
density models developed in this study are applicable to a
maximum ocean depth of 7 km and a maximum sediment
thickness of 1.7 km. Their validity beyond these limits has to
be further verified when data become available.

We applied a linear regression model to examine den-
sity changes within sediment and bedrock samples selected
according to a criterion that the maximum sediment density

is 2.60 g/cm3. The linear regression trends, which approxi-
mate the density distributions within the marine sediments
and the ocean bedrock, are shown in Figure 3.The sediments
exhibited the expected trend of a depth-increasing density.
In contrast, the bedrock densities are without an apparent
systematic trend.

4. Numerical Analysis and Results

The selected DSDP density samples were used to analyze a
density change with respect to ocean and sediment depths.
In both cases, we applied functional relations for describing
the actual density distribution, which can be readily used in
gravimetric methods based on solving Newton’s volumetric
integral.

4.1. Lateral Density Variation. We first inspected a lateral
density variation within the upper sediment layer. For this
purpose, we selected the shallowest density sample at each
site for drilling depths no greater than 50m. This selection
criterion is verified in Section 5. We then applied the least-
squares analysis to fit a linear regression function to the
selected 457 DSDP density samples.The following regression
parameters were found

𝜌

0
(𝐷) = [1.66 ± 0.02] − 𝐷 [(5.1 ± 0.5) × 10

−5
] , (1)

where 𝜌
0
defines a lateral density distribution within the

upper sedimentary layer (in g/cm3) and 𝐷 is the ocean
depth (in m). The approximation of density samples by a
higher-order regression model was found to be stochastically
insignificant.

The upper sediment density equation in (1) defines the
lateral density change as a function of the ocean depth.
The estimated (nominal) sediment density of 1.66 g/cm3
is attributed to the upper sedimentary layer at sea level.
The density proportionally decreases (with respect to this
nominal value) at a rate of −0.051 g/cm3 per 1 km of the ocean
depth (see Figure 4).

4.2. Depth Density Variation. For the analysis of a depth-
dependent density distribution, we first calculated the resid-
ual values for each drill site relative to a theoretical (upper
layer) density of 𝜌

0
(see (1)). These residual density values

were then fitted using the following power function:

̃

𝛿𝜌 (𝑑s) = 𝜌 (𝑑s) − 𝜌0 (𝐷) = [0.0037 ± 0.0002] 𝑑
[0.766 ± 0.007]

s ,

(2)

where 𝑑s is the drilling (sediment) depth (in m). The relation
between the residual sediment density and the sediment
depth is plotted in Figure 5. The density increases towards
deeper stratigraphic units. The density-depth gradient has a
decreasing tendency with the increasing sediment depth.

The density change with the sediment depth can also be
fitted by the following logarithmic function:

̃

𝛿𝜌 (𝑑s) = [0.74 ± 0.03] ln (1.0 + 𝑑s [0.00163 ± 0.00009]) .
(3)
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Figure 3: Scatter plot of the DSDP sediment density samples with
respect to the drilling depths. The linear regression functions were
used to approximate density trends within marine sediments (lower
line) and bedrock samples (upper line). The chosen maximum
sediment density is 2.60 g/cm3.
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Figure 4: Relation between the marine sediment density and the
ocean depth. The density samples were taken within the upper
sediment layer (the sediment depth is <50m). Theoretical density
values (red line) were calculated using the upper sediment density
equation in (1).

As will be shown in Section 5, the power function in
(2) provides a slightly better fit (by means of a standard
deviation of the least-squares residuals between themeasured
and predicted density values) than the logarithmic function
in (3). Since, the density-depth gradient attenuates with the
increasing sediment depth, the exponential function is not
appropriate for the approximation.

4.3. 3D Density Model. Combining (1) and (2), the 3D
sediment density model is found to be

𝜌 (𝑑s, 𝐷) = [1.66 ± 0.02] − 𝐷 [(5.1 ± 0.5) × 10
−5
]

+ [0.0037 ± 0.0002] 𝑑

[0.766±0.007]

s .

(4)

Alternatively, the 3D sediment density model can be
obtained from (1) and (3) in the following form:

𝜌 (𝑑s, 𝐷) = [1.66 ± 0.02] − 𝐷 [(5.1 ± 0.5) × 10
−5
]

+ [0.74 ± 0.03] ln (1.0 + 𝑑s [0.00163 ± 0.00009]) .
(5)
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Figure 5: Relation between the (residual) marine sediment density
and the sediment depth.The residual density values were calculated
relative to a theoretical (upper layer) density 𝜌

0
(1). Theoretical

density values (red line) were calculated using the expression in (2).

5. Model Uncertainties

The upper sediment density equation in (1) approximates
the lateral density distribution within the upper sedimentary
layer with an average error of 8.2%. This average error was
computed as 𝜀 = 𝐼−1∑𝐼

𝑖=1
𝜀

𝑖
; 𝜀
𝑖
= (|𝜌 − 𝜌|/𝜌) × 100%,

where 𝜌 and 𝜌 are measured and theoretical density values,
respectively. The uncertainties of the upper sediment density
equation (1) are presented in Figure 6. The scatter plot shows
differences between the measured and theoretical density
values. The histogram shows distribution of relative density
differences (in %). The density distribution exhibited clearly
a decreasing trend with the increasing oceanic depth. The
upper sediment densities are, however, also significantly
dispersed (roughly ±0.4 g/cm3) around this prevailing trend.

The 3D sediment density model in (4) approximates the
NGDC density samples with an average error of 9.64%.
The density model in (5) has slightly larger average error
of 9.67%. The largest relative differences between the 3D
density functions in (4) and (5) reach only 1.5%. These
differences are about one order of magnitude smaller than
average uncertainties of both density functions. Both models
thus approximate the NGDC density samples with almost
the same accuracy. The uncertainties of the 3D sediment
density model (4) are shown in Figure 7. The largest density
dispersions are within the upper sedimentary layers (mostly
between −0.6 and 1.0 g/cm3). This dispersion is reduced
at deeper sections (to roughly ±0.4 g/cm3 at the sediment
depths below 1.25 km). We explain this by a more consoli-
dated structure of deep sediments caused by compaction.

The theoretical density model in (1)–(5) that we derived
under the assumption that the maximum density of marine
sediments is 2.6 g/cm3. Moreover, the density samples within
the 50m thick upper sedimentary layer were used to establish
the upper sediment density equation (1). For the maximum
sediment density between 2.55 and 2.7 g/cm3, the parameter
changes of both theoretical models in (4) and (5) are within
the accuracy limits as found for the adopted maximum
sediment density of 2.6 g/cm3. Moreover, the change of
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Figure 6: Errors of the upper sediment density equation in (1). Scatter plot and histogram of the differences between the measured and
theoretical density values within the upper sedimentary layer (𝑑

𝑠
< 50m). The density differences are plotted with respect to the oceanic

depth. Statistics of the differences: standard deviation = 0.16 g/cm3, max = 0.50 g/cm3, andmin = −0.46 g/cm3.The histogram shows a relative
distribution of the density differences.
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Figure 7: Errors of the 3D sediment density model in (3). Scatter plot and histogram of the differences between the measured and theoretical
density values. The density differences are plotted with respect to the sediment depth. Statistics of the differences: standard deviation =
0.22 g/cm3, max = 1.04 g/cm3, and min = −1.32 g/cm3. The histogram shows the relative distribution of the density differences.

regression parameters in (1) is within the accuracy limits
even if the density samples were taken within the upper
sedimentary layer of which thickness is 100m.

We further investigated the approximation errors of
applying a uniform density model (for the average sediment
density of 1.70 g/cm3). The scatter plot and histogram of
errors are shown in Figure 8. The approximation of the
NGDC density samples by a uniform density model yields
an average error of 13.2%. The largest density dispersion
(between −0.75 and 0.9 g/cm3) is seen in the upper strati-
graphic units. This dispersion systematically decreases with
the increasing sediment depth. As already explained, this
pattern is likely due to a more consolidated structure of deep
sediments. However, the application of a uniform density
model systematically underestimates the sediment densities
at deeper sections.

6. Remarks on Sediment Density Contrasts

The theoretical density models of marine sediments in (1)
and (4) are utilized in definitions of the density contrasts

of the ocean-sediment and sediment-bedrock interfaces. For
the sediment-bedrock density contrast, we used the 3D
sediment density model (4) and the average density of the
DSDP bedrock density samples of 2.9 g/cm3. This value of
the average bedrock density is slightly larger than the value
given by Carlson and Raskin [50].They estimated the average
density of the oceanic crust of 2.89 ± 0.04 g/cm3 based on
seismic refraction data in combination with drilling results
and laboratory studies of seismic properties of oceanic and
ophiolitic rocks and ophiolite lithostratigraphy. For the aver-
age bedrock density 𝜌b of 2.9 g/cm3, the sediment-bedrock
density contrast Δ𝜌s/b is defined as

Δ𝜌s/b (𝐷, 𝑇s) = 𝜌b − 𝜌 (𝑑s, 𝐷)

≅ [1.24 ± 0.04] + [(5.1 ± 0.5) × 10

−5
]𝐷

− [0.0037 ± 0.0002] 𝑇

[0.766 ± 0.007]

s ,

(6)

where 𝑇s is the total thickness of marine sediments (in m).
With reference to an uncertainty of the average bedrock
density as given by Carlson and Raskin [50], the expected
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Figure 8: Errors of a uniform density distribution model. Scatter plot and histogram of the differences between the measured densities
and the average sediment density of 1.70 g/cm3. Statistics of the differences: standard deviation = 0.29 g/cm3, max = 0.90 g/cm3, and min =
−0.75 g/cm3. The histogram shows the relative distribution of density differences.
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Figure 9: Values of the upper sediment density [in g/cm3] at 457
DSDP drill sites used for the analysis of the lateral density change
with respect to the ocean depth.

uncertainty of the (nominal) sediment-bedrock density con-
trast at the shallow oceanic depths (i.e., in the first constituent
on the right-hand side of (6)) is roughly ±0.04 g/cm3.

Gladkikh and Tenzer [51] developed a 3D seawater
density model based on the analysis of oceanographic data
from the World Ocean Atlas 2009 [52] and the World Ocean
Circulation Experiment 2004 [53]. This 3D density model
was defined as a function of the ocean depth (to account
for density variations due to pressure) and geographical
latitude (to account for density variations due to salinity and
temperature). They also derived a more complex functional
density model in order to account for a large seawater
density gradient within the pycnocline, caused mainly by a
combination of decreasing water temperature and increasing
salinity with the increasing ocean depth. They estimated
that this theoretical model approximates the actual seawater
density distribution with a maximum relative error of 0.6%,
while the corresponding average error is approximately 0.1%.
These approximation errors of the seawater densitymodel are
considerably smaller than the estimated uncertainties of the

upper sediment density equation in (1). The ocean-sediment
density contrast can then be defined based on using a more
simplified version of the seawater density-depth equation
[54]

𝜌w (𝐷) = 𝜌w,0 + 𝛽 [𝑎1𝐷 + 𝑎2𝐷
2
] , (7)

where 𝜌w,0 = 1.02791 g/cm
3, 𝛽 = 6.37 g/m3, 𝑎

1
= 0.7595m−1

,

and 𝑎
2
= −4.3984 × 10

−6m−2.
From (1) and (7), the ocean-sediment density contrast
Δ𝜌w/s is given by

Δ𝜌w/s (𝑑s, 𝐷) = 𝜌0 (𝐷) − 𝜌w (𝐷)

= [0.63 ± 0.02] − [(5.6 ± 0.5) × 10

−5
]𝐷

+ [(2.8 ± 0.2) × 10

−11
]𝐷

2
.

(8)

The uncertainties in the sediment density model (1)
represent most of the contribution to a total error budget of
(8).

7. Discussion

The mineral composition and physical characteristics of
marine sediments are the result of a complex interaction
among geological, oceanographic, and biological processes
(e.g., [55–57]). The transportation distance, the depositional
environment conditions (depth, temperature, concentrations
of dissolved gas, calcium carbonate, and silica), and the
ocean fertility control both the sediment structure and the
sedimentation process. Among these factors, the lateral den-
sity distribution depends primarily on mineral composition
and transportation distance. Light and fine particles are
transported at longer distances. Consequently, there is a clear
pattern in the size distribution, for instance, of lithogenous
sediments in the oceans (forming ∼70% of total volume of
marine sediments). Coarse particles (gravels and sands) form
mostly near-shore deposits, while the grain size typically
decreases offshore with clays occupying the deep-ocean
basins. This might explain a prevailing trend of a decreasing
(upper layer) sediment density with the increasing ocean
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depth (see Figure 4). To illustrate the dependence of the
sediment density on the transportation distance, we compiled
the map of upper density values taken at 457 DSDP drill sites
in Figure 9. As seen, the upper sediment density at the bottom
of marginal seas is typically higher than the density taken
from drill sites at the bottom of deep oceans. The density
minima are located throughout the equatorial Pacific, while
the density maxima are at the bottom of the Red Sea.

Despite the fact that each stratigraphic unit exhibits
a range of densities, the mean sediment density clearly
increases with the increasing sediment depth. As seen in
Figure 5, the density-depth gradient is slightly larger in
shallow stratigraphic units than in deeper sediment sec-
tions. It is a well-known fact that this increasing sediment
density is caused by compaction (cf. [27]). The increasing
sediment density due to compaction causes the shallow
sediment deposits in contact with the basement along the
basin margins to have typically a lower density. The density
contrast between the sediment-bedrock interface becomes
less pronounced beneath deep sedimentary basins than along
the margins of sedimentary basins as well as under shallow
sediment accumulations. This has obviously implications
on the accuracy of seismic and gravity surveys of deep
sediment basins caused by a weakening signature of the
basement interface with the increasing sediment depth and
consequently the decreasing density contrast.

The 3D sediment density model in (4) approximates the
NGDC density samples with an average error of 9.64%. A
very similar accuracy is attained when using the alternative
3D density model in (5). On the other hand, the approxima-
tion by a uniform density model yields an average error of
13.2%. Despite the average errors, both models do not differ
significantly; the 3D density model improved considerably
the approximation of the density distribution at the greater
sediment depths (>1 km). The 3D density model thus should
be applied to represent the density structure of thick sediment
deposits mostly found at the bottom of marginal seas.

Theoretical models of density and density contrast
derived in this study can routinely be applied in global
marine sediment studies. Moreover, these density models
can be applied in regional studies, where sediment density
samples are not available. As was demonstrated in Figure 1,
the currently available NGDC database comprises the sedi-
ment density samples taken from only several hundreds of
irregularly distributed drill sites. Most of the NGDC density
samples were collected at the northern hemisphere except
for the Arctic Ocean, where drill sites are almost completely
absent. In regional studies with the known structure and
physical properties of marine sediments, more customized
models could be applied, adapting the existing densitymodels
(such as Hamilton’s sediment density-depth equation), which
were derived from a particular sediment type and its physical
properties.

8. Summary and Concluding Remarks

We have derived the theoretical density models of marine
sediments based on the analysis of the NGDC density
samples. These density models were then utilized in deriving

the theoretical models of the density contrast of the ocean-
sediment and sediment-bedrock interfaces. The accuracy of
the 3D sediment density model was analyzed and compared
with a uniform density model.

The error analysis revealed that the upper sediment den-
sity equation in (1) approximates the lateral density variations
with the average error of 8.2%. This equation together with
the seawater density-depth equation in (7) was used for
a definition of the ocean-sediment density contrast in (8).
The density dispersion within the upper sedimentary unit is
within ±0.4 g/cm3. The uncertainties of the seawater density
model are, on the other hand, only about ±0.02 g/cm3. The
uncertainties of the ocean-sediment density contrast are thus
mostly attributed to the errors of the upper sediment density
model.

The application of a uniform density distribution model
yields large errors at deep marine sediment sections (>1 km)
where it systematically underestimates the actual sediment
density. Consequently, it overestimates the density contrast
at the sediment-bedrock interface. The 3D sediment density
models (in (4) and (5)) approximate more realistically the
depth-dependent density change due to compaction. The
average error of the 3D sediment density model in (4) was
found to be 9.64%, while the average error of a uniform
density model (of average sediment density of 2.7 g/cm3) is
13.2%. The 3D sediment density model also provides a more
accurate representation of the sediment-bedrock density
contrast (in (6)) than a uniform density model especially
beneath thick sedimentary basins.
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