
Research Article
Clustering Classes in Packages for Program Comprehension

Xiaobing Sun,1,2 Xiangyue Liu,1 Bin Li,1 Bixin Li,3 David Lo,4 and Lingzhi Liao5

1School of Information Engineering, Yangzhou University, Yangzhou, China
2State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
3School of Computer Science and Engineering, Southeast University, Nanjing, China
4School of Information Systems, Singapore Management University, Singapore
5Nanjing University of Information Science & Technology, Nanjing, China

Correspondence should be addressed to Bin Li; lb@yzu.edu.cn

Received 16 October 2016; Revised 13 February 2017; Accepted 27 February 2017; Published 11 April 2017

Academic Editor: Xuanhua Shi

Copyright © 2017 Xiaobing Sun et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

During software maintenance and evolution, one of the important tasks faced by developers is to understand a system quickly
and accurately. With the increasing size and complexity of an evolving system, program comprehension becomes an increasingly
difficult activity. Given a target system for comprehension, developers may first focus on the package comprehension.The packages
in the system are of different sizes. For small-sized packages in the system, developers can easily comprehend them. However, for
large-sized packages, they are difficult to understand. In this article, we focus on understanding these large-sized packages and
propose a novel program comprehension approach for large-sized packages, which utilizes the Latent Dirichlet Allocation (LDA)
model to cluster large-sized packages. Thus, these large-sized packages are separated as small-sized clusters, which are easier for
developers to comprehend. Empirical studies on four real-world software projects demonstrate the effectiveness of our approach.
The results show that the effectiveness of our approach is better than Latent Semantic Indexing- (LSI-) and Probabilistic Latent
Semantic Analysis- (PLSA-) based clustering approaches. In addition, we find that the topic that labels each cluster is useful for
program comprehension.

1. Introduction

Program comprehension is one of the most frequently per-
formed activities in softwaremaintenance [1, 2]. It is a process
whereby a software practitioner understands a programusing
both knowledge of the domain and semantic and syntax
knowledge, to build a mental model of the program [3, 4].
Developers working on software maintenance tasks spend
around 60% of their time for program comprehension [5].
As software evolves, its complexity becomes increasingly
higher. Moreover, some documents affiliated to the system
also become outdated or inaccessible, which makes program
comprehension more difficult.

In practice, the natural top-down program comprehen-
sion process can effectively facilitate developers to under-
stand the system step by step [6]. For an object oriented Java
software system, developers can also understand a system in
such a top-down way. Packages are first taken into considera-
tion. Then, interesting packages are selected, and developers

further go deep into classes in the packages. For small-sized
packages (with several classes), it is easy for developers to
understand them. However, for packages with many classes
in them, it is more challenging for developers to understand
these classes, their relationships, and their functionalities
[7, 8]. To aid program understanding, classes in these large-
sized packages can be clustered into smaller-sized groups.
With such clustering, developers can understand a system
more easily.

There are several approaches that cluster programs based
on static structural dependencies in the source code [9]. Static
structural dependencies based approaches usually cluster
classes in a system based on static structural dependencies
among program elements, such as variable and class ref-
erences, procedure calls, use of packages, and association
and inheritance relationships among classes [8, 10, 11]. These
approaches are more suitable in the process of implementing
a change request in the source code. But before implementing
a change request in the source code, developers should know

Hindawi
Scientific Programming
Volume 2017, Article ID 3787053, 15 pages
https://doi.org/10.1155/2017/3787053

https://doi.org/10.1155/2017/3787053

2 Scientific Programming

which part in the source code is related to the change request.
Specifically, they need to know the functional points of a
system and where in the source code corresponds to these
functional features. A feature or functional point represents a
functionality that is defined by requirements and accessible to
developers and users. Then, they can implement source code
level changes. Hence, some studies focused on understanding
the functional features of a system and proposed semantic
clustering, which exploits linguistic information in the source
code, such as identifier names and comments [12]. These
approaches usually take the whole system as input and
generate clusters at some granularity levels, for example, class
level ormethod level.Thegenerated clusters corresponding to
different functional features are used to divide a system into
different units [13, 14]. This article also focuses on exploiting
linguistic information in the source code to understand func-
tional features of different clusters in large-sized packages.
In a large-sized package, there are a number of functional
features or concerns. Each of these concerns is implemented
in a set of classes. The previous studies focused on clustering
a software unit. However, developers still do not easily know
what the functional features that each cluster expresses are.
So to get a good understanding of its concerns and the
classes that implement each of them, in this article, we further
generate a set of topics to describe each cluster.

This article proposes a technique to generate a set of
clusters of classes for a large-sized package, where different
clusters correspond to different functional features or con-
cerns. Our approach is based on Latent Dirichlet Allocation
(LDA), which is a topic model and one of the popular ways
to analyze unstructured text in the corpus [15]. LDA can
discover a set of ideas or themes that well describe the entire
corpus. We use LDA for a whole package and extract latent
topics to capture its functional features. Then, classes in the
package with similar topics are clustered together.

Our approach can be effectively used for top-down
program comprehension during software maintenance. For
small-sized packages, developers can directly understand
them. For large-sized packages, our approach can be used
to divide packages into small clusters. Each of these small
clusters can be understood more easily than the original
large-sized package.Themain contributions of this article are
as follows:

(1) We propose to use LDA to generate clusters for large-
sized packages. The topics generated by LDA are
useful to indicate the functional features for these
class clusters.

(2) We conduct an empirical study to show the effec-
tiveness of our approach on four real-world open-
source projects, JHotDraw, jEdit, JFreeChart, and
muCommander.The results show that our approach is
more effective in identifying more relevant classes in
the cluster than other semantic clustering approaches,
that is, Latent Semantic Indexing- (LSI-) and Prob-
abilistic Latent Semantic Analysis- (PLSA-) based
clustering.

(3) The empirical study on four selected packages from
four subject systems shows that the topics generated

by our approach are useful to help developers under-
stand these packages.

The rest of the article is organized as follows: in the
next section, we introduce the background of program
comprehension and LDA model. Section 3 describes our
approach. We describe the design of our experiment, exper-
iment results, and threats to validity of our study in Sections
4, 5, and 6, respectively. In Section 7, related work using clus-
tering for program comprehension is discussed. Finally, we
conclude the article and outline directions for future work in
Section 8.

2. Background

In this article, we use LDA to cluster classes in large-sized
packages for easier program comprehension. This section
discusses the background of program comprehension and
LDA topic model.

2.1. Program Comprehension. For software developers, pro-
gram comprehension is a process whereby they understand
a software artifact using both knowledge of the domain and
semantic and syntax knowledge [10]. Program comprehen-
sion can be divided into bottom-up comprehension, top-
down comprehension, and various combinations of these
two processes. In bottom-up comprehension, a developer
may first read all the source code at finer statement or
method level and abstract features and concepts according
to the low-level information. Then, coarser class-level or
package-level elements are read and understood. Finally,
developers comprehend the whole system. For top-down
comprehension, a developer first utilizes knowledge about the
domain to build a set of expectations that are mapped to the
source code. Then, he/she understands the coarser package-
level or class-level elements, followed by finer method-level
or statement-level elements. Finally, the developer also gets
an understanding of the whole system. In practice, top-down
program comprehension is more acceptable since it meets
humans’ way of thinking from simple to complex, fromwhole
to part [3].

Software clustering is one of the effective techniques for
top-down program comprehension. During software main-
tenance, developers usually need to identify the functional
features they are interested in to help them accomplish a
change request. In this article, we propose a software cluster-
ing technique using LDA to provide some features for devel-
opers to facilitate the top-down program comprehension
process.

2.2. Latent Dirichlet Allocation. Topic models were origi-
nated from the field of information retrieval (IR) to index,
search, and cluster a large amount of unstructured and
unlabeled documents. A topic is a collection of terms that
cooccur frequently in the documents of the corpus. One
of the mostly used topic models in software engineering
community is Latent Dirichlet Allocation (LDA) [16–18]. It
requires no training data and can well scale to thousands or
millions of documents.

Scientific Programming 3

Large-size
packages

Source code
Analyze the

packages

Extracting key
information

Clusters for
each large-size

package

No

Yes

Clustering the
classes

Comprehending
artificially

Small-size
packages

Figure 1: Process of our approach.

LDA models each document as a mixture of 𝐾 corpus-
wide topics and each topic as amixture of terms in the corpus
[15]. More specifically, it means that there is a set of topics
to describe the entire corpus; each document can contain
more than one of these topics; and each term in the entire
repository can be contained in more than one of these topics.
Hence, LDA is able to discover a set of ideas or themes that
well describe the entire corpus. It assumes that documents
have been generated using the probability distribution of
the topics and that words in the documents were generated
probabilistically in a similar way.

In order to apply LDA to the source code, we represent
a software system as a collection of documents (i.e., classes)
where each document is associated with a set of concepts (i.e.,
topics). Specifically, the LDA model consists of the following
building blocks:

(1) A word is the basic unit of discrete data, defined to
be an item from a software vocabulary 𝑉 = {𝑤

1
,

𝑤
2
, . . . , 𝑤V}, such as an identifier or a word from a

comment.
(2) A document, which corresponds to a class, is a

sequence of words denoted by 𝑑 = {𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
},

where 𝑤
𝑖
is the 𝑖th word in the sequence.

(3) A corpus is a collection of documents (classes)
denoted by𝐷 = {𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑚
}.

Given 𝑚 documents containing 𝑘 topics expressed over
V unique words, the distribution of 𝑖th topic 𝑡

𝑖
over V words

and the distribution of 𝑗th document over 𝑘 topics can be
represented.

By using LDA, it is possible to formulate the problem of
discovering a set of topics describing a set of source code

classes by viewing these classes as mixtures of probabilistic
topics. For further details on LDA, interested readers are
referred to the original work of Blei et al. [15].

With LDA, latent topics can be mined, allowing us to
cluster them on the basis of their shared topics. In this article,
to effectively use LDA, we apply it in a package-level corpus
rather than each class to extract the latent topics to simulate
the functional features or concerns for a package since small
(class-level) corpus is too small to generate good topics [19–
23].Then, we cluster the classes according to these topics and
assign different classes to their corresponding topics [23].

3. Our Approach

Faced with the source code of a software system, developers
need to use their domain knowledge to comprehend the
program from coarse package level to class level in each
package. The process of understanding different packages is
different. In the process, small-sized packages are easy to
understand while large-sized packages are complex and they
need to be separated into small-sized clusters. In this article,
we focus on clustering the classes in large-sized packages as
well as their corresponding functional features.

The process of understanding packages is described in
Figure 1. Firstly, we analyze the size of each package in the
software system. Small-sized packages are comprehended
manually. For large-sized packages, there are two steps. First,
LDA is used to extract the latent key information to facilitate
the comprehension process. Then, on the basis of the key
information of each package, we adopt the clustering to build
small-sized clusters to decompose each package. Thus, given
the source code of a software system at hand, programmers

4 Scientific Programming

JEdit
(6 packages)

P > 5 P ≤ 5

Large-size
packages packages

Small-size

jarbunder
browser

asm

classpath
collection
bufferset

Figure 2: An example of separating packages into large-sized packages and small-sized packages for six packages in jEdit when 𝑃 is set to 5.

can comprehend small-sized packages by themselves and
large-sized packages with the help of our approach. In
the following subsections, we discuss more details of our
approach.

3.1. Analyzing the Size of Packages. Our approach focuses on
understanding large-sized packages. So we first need to select
large-sized packages in a program. Here, we set a threshold
𝑃 for the number of classes in a package. The packages
including more than 𝑃 classes are selected for analysis.
These packages are separated into smaller clusters to facilitate
program comprehension. Figure 2 shows an example of
separating packages into large-sized packages and small-sized
packages for six packages in jEdit when 𝑃 is set to 5. The
packages jarbunder, browser, and asm are classified as large-
sized packages.

3.2. Extracting Key Information Based on LDA. During the
program comprehension process, developers are more fo-
cused on functional features or concerns of the program. In
the program, the source code contains not only the syntax
information but also the unstructured data, such as natural
language identifiers and comments [24]. These unstructured
source code identifiers and comments can be used to capture
the semantics of the developers’ intent [25]. They represent

an important source of domain information and can often
serve as a starting point in many program comprehension
tasks [26, 27]. However, there exists noise in the source
code, which can potentially confuse the LDA application.
So natural language processing (NLP) techniques are usually
used to perform one or more preprocessing operations be-
fore applying LDA models to the source code data. Then,
LDA can be effectively used to generate the topics. To
effectively use LDA, we apply it in a package-level cor-
pus to simulate the functional features or concerns for a
package. Finally, we cluster the classes according to these
topics and assign different classes to their corresponding
topics.

3.2.1. Preprocessing of the Source Code. There are several typ-
ical preprocessing operations for the unstructured part of
a source code. These preprocessing operations can be per-
formed to reduce noise and improve the quality of the
resulting text for LDA [28].

We first isolate identifiers and comments and strip away
syntax and programming language keywords (e.g., “public”
and “int”). First, we remove header comments since they
often include generic information about the software that
are included in most of source code files. Then, we tokenize
each word based on common naming practice, such as camel

Scientific Programming 5

Figure 3: The process of preprocessing the class InvalidHeaderException.java in jEdit.

case (“oneTwo”) and underscores (“one_two”), and remove
common English language stop words (the, it, and on) and
programming language related key words (public, int, and
while).

After preprocessing the unstructured part of source code
files, LDA can be used to extract key information more
effectively. Figure 3 shows an example of the detailed process
of preprocessing the source code in the class InvalidHead-
erException.java in jEdit. After preprocessing the source
code, most of the useful words are kept for LDA application.

3.2.2. Extracting Key Information from Large-Sized Packages.
After preprocessing each class in large-sized packages, we
need to extract key information from them. LDA is an
effective approach to discover a set of ideas or themes that
well describe the entire corpus. Before using LDA, we need to
set the number of topics, that is, K. This parameter affects the
effectiveness of LDA application. In this article, K is related
to the size of clusters for a package, which is determined by
users.

An LDA application generates two files: one is the word-
topicmatrix which lists the words for each topic and the other
is the topic-document matrix which shows the percentage
of topics in each document, also called the membership
value. An example is given in Figure 4. The results show
the distribution of different topics in different classes, and
each topic is described by different words with different
possibilities.These topics express different functional features
of classes in the package.

3.3. Clustering Classes in Large-Sized Packages. After extract-
ing the topics from the objective package, classes having
similar topics should be allocated in a cluster to aid their
comprehension. In this subsection, we discuss details for
clustering classes in a package.

3.3.1. Generating Initial Clusters. To cluster classes in a pack-
age, the number of clusters should be first determined.
However, it is difficult to know this information at the

6 Scientific Programming

Figure 4: An example of the output of an LDA application.

beginning. In this article, the number of clusters is estimated
based on the number of classes in a cluster.

Let us assume that the number of classes in an initial
cluster is M, where 𝑀 is a user-defined parameter. That is,
if a user thinks that anM-scale cluster is easy for him/her to
understand, he/she can set the initial size of each cluster asM,
for example, 5 and 10. For a package with𝑁 classes (𝑁 ≥ 𝑀),
each of these classes should be put into a cluster. Thus there
will be ⌈𝑁/𝑀⌉ (a whole number) clusters for a package. We
set the number of topics 𝐾 to be the same as the number of
clusters (i.e., ⌈𝑁/𝑀⌉), because we need a topic to label each
cluster.

After applying the LDA in a preprocessed package, we
get two files, the word-topic matrix which lists the words
for each topic and the topic-document matrix which shows
the percentage of the topic words in each document. To
allocate different classes to their corresponding topics, we use
the topic-document matrix. That is, we allocate the top 𝑀
documents to these 𝐾 topics in the topic-document matrix.
Thus a set of clusters can be generated,whichwe call the initial
clusters for a package.

The ideal situation for the initial clusters is that each
class is just assigned to only its own and exclusive cluster.
Inevitably, there are two special cases; one is that a class
may match different topics in the topic-document matrix.
Such classes are called shared classes, which we need to
reassign. The other case is that there may be some remaining
classes that are not included in the top𝑀 documents in any
topics. Such classes are called nonmatching classes, which
need to be assigned to the most probable clusters related

to them. In the following, we deal with these classes to
guarantee that each class is assigned to one and only one clus-
ter.

3.3.2. Assigning Shared Classes and Nonmatching Classes.
Shared classes are the classes matching different topics in
the generated topic-document matrix. These classes are all
listed in the top 𝑀 classes for each topic. We list all the
classes shared by different topics and the membership value
of each topic for them.A shared class is allocated to the cluster
corresponding to the topic with the highest membership
value.

For nonmatching classes that are not initially matched
to any cluster, they are processed in a similar way as shared
classes. We list all these nonmatching classes and their
membership values. Each of these nonmatching classes is put
into the cluster corresponding to the topic with the highest
membership value.

Finally, each cluster in a package only contains classes
having high membership values and each class is a member
of only one cluster. Based on the word-topic matrix, we can
see thewords describing the topic, which indicates the feature
of the cluster. Figure 5 shows an example of the process to
generate the clusters for a large-sized package. First, initial
clusters are generated according to the membership values
with five topics.Then, shared classes and nonmatching classes
are assigned to corresponding initial clusters based on their
membership values. Finally, a set of clusters for the large-
sized package is obtained as shown in the bottom-left part of
Figure 5.

Scientific Programming 7

Figure 5: An example of generating clusters for a large-sized package (with the number of topics set to 5).

4. Case Study

In this section, we conduct case studies to evaluate the
effectiveness of our approach. In our study, we address the
following three research questions (RQs):

RQ1: Does the number of topics affect the shared
classes and nonmatching classes?
RQ2: Is our LDA clustering approach more effective
than other semantic clustering approaches, that is,
LSI-based clustering and PLSA-based clustering?
RQ3: Can our approach provide useful topics for
developers to understand the classes in the pack-
age(s)?

In our approach, the number of topics is set by users
themselves. We investigate RQ1 to see how this parameter
affects the number of shared and nonmatching classes. In
addition, we investigate RQ2 to see whether our clustering
approach using LDA is more effective than other semantic
clustering based approaches based on LSI and PLSA [12, 29–
31], respectively. Finally, there is another difference between
our approach and other clustering approaches; that is, each

cluster that is generated by our approach is labeled with a
topic to facilitate understanding of the cluster. So RQ3 aims
to answer whether the topic labeling each cluster can help
developers understand the cluster or not.

4.1. Empirical Environment. We implemented our approach
with Java language in the Eclipse environment. In addition,
all the selected subject programs are also Java programs. So
our case study was conducted in the Eclipse environment.

4.2. Subject Systems. We address our research questions by
performing case studies on the source code of four well-
known software systems, JHotDraw (https://sourceforge.net/
projects/jhotdraw), jEdit (https://sourceforge.net/projects/
jedit), JFreeChart (https://sourceforge.net/projects/jfreechart),
and muCommander (http://www.mucommander.com), as
shown in Table 1.

JHotDraw is a medium-sized, open-source, 2D drawing
framework developed in the Java programming language.
jEdit is a medium-sized, open-source text editor written in
Java. JFreeChart is a free 100% Java chart library that makes
it easy for developers to display professional quality charts

https://sourceforge.net/projects/jhotdraw/
https://sourceforge.net/projects/jhotdraw/
https://sourceforge.net/projects/jedit/
https://sourceforge.net/projects/jedit/
https://sourceforge.net/projects/jfreechart/
http://www.mucommander.com/

8 Scientific Programming

Table 1: Subject systems.

Subject Version Files Packages Classes
JHotDraw 7.0.6 144 23 305
jEdit 5.1.0 147 43 573
JFreeChart 1.0.17 105 70 990
muCommander 0.9.0 98 89 692

Table 2: The percentage of classes over P (5, 10, and 15) of the four systems.

Subject 𝑃 > 5 (%) 𝑃 > 10 (%) 𝑃 > 15 (%)
JHotDraw 91.8 79.7 68.5
jEdit 91.1 81.3 72.2
JFreeChart 93.2 81.0 67.6
muCommander 81.1 56.9 37.2
Average 89.3 74.7 61.4

in their applications. muCommander is a lightweight, cross-
platform file manager that runs on any operating system
supporting Java.

These projects belong to different problem domains.They
are general enough to represent real-world software systems,
and they have been widely used in empirical studies in the
context of software maintenance and evolution [32, 33]. In
addition, they have become the de facto standard system
for experiments and analysis in topic and concern mining
(e.g., by Robillard and Murphy [34] and Binkley et al. [35]).
Moreover, these four subject systems of different sizes that are
neither too small nor too large are selected due to their good
design and manageable size for manual analysis.

4.3. Parameters Setting. In our approach, there are two pa-
rameters, 𝑃 and 𝐾. 𝑃 represents the size of a package and 𝐾
is the number of topics as input for the LDA model. Values
of these two parameters will affect the number of packages to
be subdivided into clusters and the number of clusters in a
package. Table 2 shows the percentage of classes in packages
with different number of classes. From the results, when 𝑃 is
5, 10, and 15, the average percentages of classes in packages
of large sizes are 89.3%, 74.7%, and 61.4%, respectively. In
this study, we consider packages of size larger than 10 as the
large-sized packages used to evaluate our approach. Hence,
for all four systems, most of classes and packages are used to
evaluate our approach.

The other parameter in our approach is the number of
topics (𝐾) for LDA analysis. 𝐾 is an important parameter
which also indicates the number of clusters for the final
clustering results. It determines the size of each cluster. We
set 𝐾 to be 5, 10, and 15 for our study, respectively.

4.4. Methods and Measures. For LDA computation, we used
MALLET (http://mallet.cs.umass.edu), which is a highly scal-
able Java implementation of the Gibbs sampling algorithm.
We ran for 10,000 sampling iterations, the first 1000 of which
were used for parameter optimization. We selected different
numbers of topics to useMALLET to generate the word-topic

matrix and topic-document matrix. Then, we clustered each
large-sized package based on these two matrixes.

For semantic clustering based on LSI and PLSA [12, 29–
31] that we used to compare with our approach, they are
popular methods for cluster analysis, especially for clustering
nonstructured data. LSI uses singular value decomposition
to explore patterns in the relationships between the terms
and concepts contained in an unstructured corpus [36]. LSI
is implemented based on the assumption that words used
in the same contexts tend to have similar meanings. Hence,
LSI is able to extract the conceptual contents from a corpus
by establishing associations between those terms that occur
in similar contexts. Probabilistic Latent Semantic Analysis
(PLSA) is a statistical technique for the data analysis, which is
based on amixture decomposition derived from a latent class
model [30, 31].

We selected these clustering approaches for comparison
because (1) they are widely used in clustering software data
and show promising results [37, 38] and (2) they are also
clustering approaches based on lexical information which is
similar to our approach. In our study, they are performed
by clustering classes with similar vocabularies. After calcu-
lating the similarity between each pair of documents, an
agglomerative hierarchical clustering algorithm is executed.
There are a lot of similarity measures, for example, cosine
similarity, Manhattan distance, and Euclidean distance [39].
Cosine similarity which is a popular similarity measure is
used here [33, 40].

To answer RQ1, we compute the number of shared classes
and nonmatching classes and the shared occurrence counts (or
shared counts) of the shared classes. For example, if one class
is shared by topic 1 and topic 2, its shared count is 1. If the class
is also shared by topic 3, the shared count is 2. We analyze the
percentages of shared classes and nonmatching classes as well
as the shared counts for different numbers of topics.

For RQ2, our study involved 10 participants from uni-
versity and industry. Half of them are from our lab with 2-3
years of development experience and the other half are from
industry with 5-6 years of development experience especially

http://mallet.cs.umass.edu/

Scientific Programming 9

Table 3: The selected packages and selected classes.

Subject Package Size Class 𝐾

JHotDraw JHotDraw.src.org.jhotdraw.app.action 33 AbstractProjectAction.java 10
jEdit jEdit.org.gjt.sp.jedit.gui 73 AbbrevEditor.java 15
JFreeChart jfreechart.source.org.jfree.chart.plot 52 AbstractPieLabelDistributor.java 10
muCommander muCommander.main.com.mucommander.command 15 AssociationBuilder.java 5

large project development experience. They are not familiar
with the systems before.Then, they were assigned with a class
as shown in the fourth column of Table 3.The task for them is
to identify the most likely classes that are related to the given
classes in their enclosing packages. Then each participant
obtained a cluster of classes for each given class. As different
participants may generate different clusters, they needed to
discuss the results and reached a consensus on the clustering
results for each given class. We used the clustering results
as the authoritative clusters to compare with the clusters
produced by our approach and the LSI-based/PLSA-based
clustering approach. For LSI-based clustering approach and
our approach that are used for comparison, we need to set
the 𝐾 value. Based on the size of the authoritative clusters,
we set the 𝐾 values for the packages, which are shown in the
last column of Table 3. To answer RQ2, we first provided the
clustering results of the three approaches to participants. In
this process, to guarantee a fair treatment, they did not know
which clustering results were generated by our approach or
the LSI-based/PLSA-based clustering approach. Then, each
of participants assessed each of the three clusters to vote
the best one. In addition, to quantitatively compare these
two approaches, we used precision and recall, two widely
used information retrieval and classification metrics [41],
to validate the accuracy of different clustering approaches.
Precision measures the fraction of classes identified by a
clustering approach to be in the same cluster as the given class
that are truly relevant (based on the authoritative cluster),
while recall measures the fraction of relevant results (i.e.,
classes that appear in the authoritative cluster) that are put in
the same cluster as the given class by a clustering approach.
Mathematically, they are defined as follows:

Precision

=

󵄨󵄨󵄨󵄨Clustering results ∩ Authoritative results󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨Clustering results󵄨󵄨󵄨󵄨

× 100%

Recall

=

󵄨󵄨󵄨󵄨Clustering results ∩ Authoritative results󵄨󵄨󵄨󵄨
|Authoritative results|

× 100%.

(1)

In the above equations, clustering results and authorita-
tive results are sets of classes.

To answer RQ3, participants were required to write the
words in the identifiers or comments to label the authoritative

clusters. This process is similar to that of RQ2, and a set of
authoritativewords are produced. To showwhether the topics
generated by our approach are useful, the participants needed
to assess the generated topics to checkwhether they are useful
for them to understand the clusters. Each participant needs to
provide a rating in a five-point Likert scale, 1 (very useless)
to 5 (very useful). Finally, we also computed the precision
and recall of the words in the topics by comparing them
with authoritative words. The way precision and recall are
computed is similar to the way they are computed to answer
RQ2.

Overall, the participants needed to answer four questions
during the evaluation process. InRQ2, theywere asked to give
the answers of the authoritative results for the clustering and
assess the results between LSI or PLSI and our approach. In
RQ3, they needed to provide labels of the clusters and assess
the topics generated by our approach.

5. Results

In this section, we gather and analyze results collected from
the case studies to answer RQ1, RQ2, and RQ3.

5.1. RQ1. First, we see the existence of shared classes and non-
matching classes in the initial clusters. Table 4 shows the
average percentage of the initial clusters without nonmatch-
ing classes and shared classes. From the results, we see that
there do exist some shared classes and nonmatching classes
in the initial clusters. So we need to perform the operation
of reassigning these shared classes and nonmatching classes.
Then, we see how the number of topics affects the results of
shared classes and nonmatching classes. Figure 6 shows the
box-plots of the number of shared classes and nonmatching
classes and shared times in the process of clustering the
classes with different numbers of topics. From the results in
Figures 6(a) and 6(b), we notice that, with the increasing in
the number of topics, the shared counts and the number of
shared classes also increase. So setting different values of the
number of topics will affect the number of shared classes.
In addition, Figure 6(c) shows the results for nonmatching
classes in the process of clustering the classes. We see that
nonmatching classes are fewer than shared classes. Moreover,
the range of the number of nonmatching classeswith different
numbers of topics is similar. That is, values of different
numbers of topics do not obviously affect the number of
nonmatching classes.

From the results discussed above, shared classes and
nonmatching classes exist in the initial clusters. However, the
majority of the classes are neither shared nor nonmatching

10 Scientific Programming

Table 4: The percentage of initial clusters without nonmatching classes and shared classes.

Cluster 𝐾 = 5 (%) 𝐾 = 10 (%) 𝐾 = 15 (%)
Initial clusters without nonmatching classes 90.2 90.1 85.4
Initial clusters without shared classes 70.0 60.0 55.3

80

60

40

20

0

Sh
ar

ed
 co

un
ts,

 5

Sh
ar

ed
 co

un
ts,

 1
0

Sh
ar

ed
 co

un
ts,

 1
5

63

63

63

16

54

4
54

18

6

54

39

⋆

⋆

⋆

⋆

(a) The shared counts of different classes in the initial clusters with
different number of topics (5, 10, and 15)

30

25

20

15

10

5

0

Sh
ar

ed
 cl

as
se

s,
5

Sh
ar

ed
 cl

as
se

s,
10

Sh
ar

ed
 cl

as
se

s,
15

63

63

5315
25

39
2

63

4

4

4

6

53⋆

⋆

⋆

(b) The number of shared classes in the initial clusters with different
number of topics (5, 10, and 15)

40

30

20

10

0

N
on

m
at

ch
in

g
cla

ss
es

, 5

N
on

m
at

ch
in

g
cla

ss
es

, 1
0

N
on

m
at

ch
in

g
cla

ss
es

, 1
5

63

63

63

4

4

4

6

53

53

6 39

39 37

⋆ ⋆

⋆

⋆

⋆

⋆

(c) The number of nonmatching classes in the initial clusters with
different number of topics (5, 10, and 15)

Figure 6: Shared counts, number of shared classes, and number of nonmatching classes in the initial clusters for number of topics set to 5,
10, and 15.

Scientific Programming 11

Table 5: The votes for our approach and LSI-based/PLSA-based clustering approach.

Subject Package Our approach LSI-based PLSA-based
JHotDraw JHotDraw.src.org.jhotdraw.app.action 7 2 1
jEdit jEdit.org.gjt.sp.jedit.gui 6 1 3
JFreeChart jfreechart.source.org.jfree.chart.plot 5 4 1
muCommander muCommander.main.com.mucommander.command 7 1 2

Table 6: The precision and recall of our approach and LSI-based/PLSA-based clustering approach.

Package Our approach LSI-based PLSA-based
P R P R P R

JHotDraw.src.org.jhotdraw.app.action 0.75 0.57 0.44 0.57 0.51 0.43
jEdit.org.gjt.sp.jedit.gui 0.4 0.5 0.04 0.25 0.14 0.22
jfreechart.source.org.jfree.chart.plot 0.83 0.83 1 0.6 0.76 0.68
muCommander.main.com.mucommander.command 0.67 0.33 0.29 0.33 0.42 0.26

ones. Furthermore, some shared classes are shared by three
or more topics, and the number of shared classes is larger
than that of nonmatching classes. In addition, the results also
show that different settings of number of topics will affect the
number of shared classes but will not affect the number of
nonmatching classes.

5.2. RQ2. In this subsection, we compare the accuracies of
the three clustering approaches to show the effectiveness of
our approach.

First, we invited participants to assess the clustering
results from three clustering approaches. The voting results
are shown in Table 5. The results show that, in most cases,
the results generated by our approach are more fit to their
needs. For the jfreechart.source.org.jfree.chart.plot package,
the voting results of LSI-based clustering and our approach
are similar. When we investigated deep into the results in
this package, both two clustering approaches output the
clusters with two true-positive relevant classes (the true-
positive relevant classes are those classes that do belong to
the authoritative cluster). So participants are not sure which
one is better than the other one. So from the participants’
qualitative analysis, we notice that our approach can generate
clustering results which better fit their needs compared to the
LSI-based and PLSA-based clustering approach.

In addition, to quantitatively compare these clustering
approaches, we compute their precision and recall results,
which are shown in Table 6. From the recall perspective, our
approach is always better than (or at least as good as) the
LSI-based and PLSA-based clustering approaches. However,
from the precision perspective, sometimes our results are
better, and sometimes the LSI-based clustering or PLSA-based
clustering is better. When we investigate results where our
approach achieves lower precision, we notice that the number
of classes in the cluster generated by our approach is larger
than that by LSI-based clustering and PLSA-based clustering.
For example, for jfreechart.source.org.jfree.chart.plot package,
there are six classes in the authoritative cluster. Our approach

generates five true-positive relevant classes while the LSI-
based clustering approach generates four and the four are
just the true-positive relevant classes. So the precision of the
LSI-based clustering approach is high while our approach is
worse. But from the respective of program comprehension,
recall is more important because, with more relevant classes,
developers can better comprehend the cluster. That is to
say, our approach can cover more relevant classes in the
authoritative clusters, which can effectively facilitate program
comprehension. So from the results discussed above, com-
pared with LSI-based clustering and PLSA-based clustering,
our approach can effectively identify more relevant classes in
a cluster to help program comprehension.

5.3. RQ3. Different from other clustering approaches, our
approach also labels each cluster with the topics, which is
composed of some words to describe the cluster. In this
subsection, we discuss whether these topics are useful to
comprehend the cluster.

First, we provided the topics of each cluster to the
participants. They used a five-point Likert scale to answer
the quality of the topics. The results are shown in Table 7.
The average score of the results is around 4, which indicates
that the participants think that the topics are useful to
understand the cluster. So for program comprehension, the
topics labeling the clusters are useful for users to understand
the program.

In addition, we also assess the topics of the clusters
quantitatively from the precision and recall perspectives. The
results are shown in Table 8. For each cluster, our approach
can produce a topic which includes some words to label
it. These words can cover most of the words given by the
participants. For example, for the cluster that includes the
AbstractPieLabelDistributor.java class, 82% of the words can
be covered. Hence, the participants can use these words to
help them understand the clusters. In addition, from the
precision perspective, our approach is not very good and
most of the precision results are about 10%. However, for the
other 90% irrelevant words, some are obviously not related

12 Scientific Programming

Table 7: The score assessed by the participants on the topics.

Package Participants
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 AVG

JHotDraw.src.org.jhotdraw.app.action 5 5 5 5 4 5 5 4 4 4 4.6
jEdit.org.gjt.sp.jedit.gui 4 4 4 4 3 4 3 4 5 4 3.9
jfreechart.source.org.jfree.chart.plot 3 5 5 4 4 4 4 4 4 4 4.1
muCommander.main.com.mucommander.command 4 4 5 4 4 4 4 3 4 4 4

Table 8: The precision and recall of our approach in inferring representative words to label clusters.

Subject Package Class Topics
P R

JHotDraw JHotDraw.src.org.jhotdraw.app.action AbstractProjectAction.java 0.10 0.76
jEdit jEdit.org.gjt.sp.jedit.gui AbbrevEditor.java 0.06 0.80
JFreeChart jfreechart.source.org.jfree.chart.plot AbstractPieLabelDistributor.java 0.10 0.82
muCommander muCommander.main.com.mucommander.command AssociationBuilder.java 0.17 0.64

to the cluster, which are easily identified by the participants,
for example, the words “method,” “refer,” and “jEdit.” These
words are included in the topics because they are not removed
in the preprocessing process. To improve the results, we
can improve the preprocessing operations to remove words
related to the specific subject programs. Although some noisy
information is produced from our approach, the participants
still feel that the topics are useful to understand the clusters.

Hence, from the results, we see that the topics in our
approach are helpful for developers to understand the clus-
tering results.

6. Threats to Validity

Like any empirical validation, ours has its limitations. In
the following, threats to the validity of our case study are
discussed.

The first threat relates to the correctness of our experi-
ments and implementation. We have checked the implemen-
tation and fixed bugs. Another threat relates to participants’
bias. We have reduced this bias by not telling the participants
of results produced by our approach and those produced
by the baseline approach. In addition, we only applied our
technique to four subject programs.Moreover, we considered
only one programming language (Java) and one develop-
ment environment (Eclipse). Further studies are required
to generalize our findings to large-scale industrial projects
and with developers who have sufficient domain knowledge
and familiarity with the subject systems. Thus we cannot
guarantee that the results in our case study can be generalized
to other more complex or arbitrary subjects. However, these
subjects were selected from open-source projects and widely
employed for experimental studies [42, 43]. In evaluating the
effectiveness of the clustering results, we randomly selected a
number of packages. To reduce the threats to validity further,
in the future, we plan to evaluate our clustering approach
with even more packages from more software projects. The
final threat comes from the measures used to evaluate the
effectiveness of our approach, that is, precision and recall.

These two metrics only focused on the false-positives and
false-negatives for authoritative clustering results. However,
for program comprehension, other factors may be more
important.

7. Related Work

Program comprehension is one of the most important activ-
ities in software maintenance and reverse engineering [8,
10, 23, 44, 45]. Clustering techniques are commonly used
to decompose a software system into small units for easier
comprehension. Some studies analyze syntax features or
dependencies to cluster the software [46–50], while others
rely on the semantic information in the source code for
clustering [51–54].

Clustering approaches based on the syntax (structure) in
the source code usually focus on the structural relationships
among entities, for example, variable and class references,
procedure calls, usage of packages, and association and
inheritance relationships among classes. Mancoridis et al.
proposed an approach which generates clusters usingmodule
dependency graph of the software system [8]. They treated
clustering as an optimization problem, which makes use
of traditional hill climbing and genetic algorithms. In [46,
55], the Bunch clustering system was introduced. Bunch
generates clusters using weighted dependency graph for
software maintenance. Sartipi and Kontogiannis presented
an interactive approach composed of four phases to recover
cohesive subsystems within 𝐶 systems. In the first phase,
relations between 𝐶 programs are extracted. In the second
phase, these relationships are used to build an attributed
relational graph. In the third phase, the graph is manu-
ally or automatically partitioned using data mining tech-
niques [56]. These syntax relationships can help developers
understand how the functional features are programmed in
the source code. In this article, we focus on the cluster-
ing based on functional features in the source code. And
we used LDA for semantic analysis of these functional
features.

Scientific Programming 13

Semantic based clustering approaches attempt to show
the functional features of a system [57–60]. The functional
features in the source code are analyzed from comments,
identifier names, and file names [61]. Kuhn et al. presented
a language independent approach to group software artifacts
based on LSI. They grouped source code containing similar
terms in the comments [12, 62]. Scanniello et al. presented
an approach to perform the software system partitioning.
This approach first analyzes software entities (e.g., programs
or classes) and uses LSI to get the dissimilarity between
entities, which are grouped by iteratively calling the K-
means clustering algorithm [63]. Santos et al. used semantic
clustering to support remodularization analysis in an input
program [58]. Our approach used LDA to generate the
clusters, particularly for large-sized packages, to facilitate
their comprehension.

In addition, some program comprehension techniques
combined the strengths of both syntax and semantic cluster-
ing [7, 38, 64–66]. The ACDC algorithm is one example of
this combined approach which used name and dependency
of classes to cluster all classes in a system into small clusters
for comprehension [3]. Andritsos and Tzerpos proposed
LIMBO, a hierarchical algorithm for software clustering [7].
The clustering algorithm considers both structural and non-
structural attributes to reduce the complexity of a software
system by decomposing it into clusters. Saeidi et al. proposed
to cluster a software system by incorporating knowledge
from different viewpoints of the system, that is, knowledge
embedded within the source code as well as the structural
dependencies within the system, to produce a clustering
result [67]. Then, they adopted a search-based approach to
provide a multiview clustering of the software system. In this
article, we focused on semantic analysis of the source code
for its clustering. In addition, our approach also generates
topics to help users more easily understand the classes in the
clusters.

8. Conclusion and Future Work

In this article, we propose an approach of clustering classes
in large-sized packages for program comprehension. Our
approach uses LDA to cluster large-sized packages into small
clusters, which are labeled with topics to show their features.
We conducted case studies to show the effectiveness of
our approach on four real-world open-source projects. The
results show that the clustering results of our approach are
more relevant than those of other clustering techniques, that
is, LSI-based and PLSA-based clustering. In addition, the
topics labeling these clusters are useful to help developers
understand them. Therefore, our approach could provide
an effective way for developers to understand large-sized
packages quickly and accurately.

In our study, we only conducted studies on four Java-
based programs, which does not imply its generality for other
types of systems. Future work will focus on conducting more
studies on different systems to evaluate the generality of
our approach. In addition, during the clustering process, we
find that some classes are weakly coupled with its package,
but they are more related to another package. That is, there

are problems with the current package’s structure. So we
consider applying our clustering approach to improve the
package structure. Finally, our approach is a first step in a
top-down program comprehension process; in the future,
we plan to cluster other finer-level program elements, for
example, methods, to provide a more comprehensive top-
down program comprehension support to better understand
a software system.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work is supported partially by Natural Science Foun-
dation of China under Grant nos. 61402396, 61472344,
61602267, and 61472343, the Open Funds of State Key Lab-
oratory for Novel Software Technology of Nanjing University
under Grant no. KFKT2016B21, the Jiangsu Qin Lan Project,
the China Postdoctoral Science Foundation under Grant
no. 2015M571489, the Six Talent Peaks Project in Jiangsu
Province under Grant no. 2011-DZXX-032, the Natural Sci-
ence Foundation of the JiangsuHigher Education Institutions
of China under Grant no. 15KJB520030, the Priority Aca-
demic Program Development of Jiangsu Higher Education
Institutions, and the Jiangsu Collaborative Innovation Center
on Atmospheric Environment and Equipment Technology.

References

[1] X. Peng, Z. Xing, X. Tan, Y. Yu, and W. Zhao, “Improving
feature location using structural similarity and iterative graph
mapping,” Journal of Systems and Software, vol. 86, no. 3, pp.
664–676, 2013.

[2] J. Wang, X. Peng, Z. Xing, and W. Zhao, “Improving feature
location practice with multi-faceted interactive exploration,” in
Proceedings of the 35th International Conference on Software
Engineering (ICSE ’13), pp. 762–771, IEEE, San Francisco, Calif,
USA, May 2013.

[3] M. P. Obrien, “Software comprehension: a review and research
direction,” Tech. Rep., 2003.

[4] Z. Fu, K. Ren, J. Shu, X. Sun, and F. Huang, “Enabling person-
alized search over encrypted outsourced data with efficiency
improvement,” IEEE Transactions on Parallel and Distributed
Systems, vol. 27, no. 9, pp. 2546–2559, 2016.

[5] E. Soloway and K. Ehrlich, “Empirical studies of programming
knowledge,” IEEE Transactions on Software Engineering, vol. 10,
no. 5, pp. 595–609, 1984.

[6] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the com-
prehension of program comprehension,” ACM Transactions on
Software Engineering and Methodology, vol. 23, no. 4, article 31,
2014.

[7] P. Andritsos and V. Tzerpos, “Information-theoretic software
clustering,” IEEE Transactions on Software Engineering, vol. 31,
no. 2, pp. 150–165, 2005.

[8] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R.
Gansner, “Using automatic clustering to produce high-level
system organizations of source code,” in Proceedings of the

14 Scientific Programming

6th International Workshop on Program Comprehension (IWPC
’98), p. 45, Ischia, Italy, June 1998.

[9] N. Anquetil and T. Lethbridge, “Experiments with clustering
as a software remodularization method,” in Proceedings of the
6thWorking Conference on Reverse Engineering (WCRE ’99), pp.
235–255, IEEE, October 1999.

[10] V. Rajlich and N. Wilde, “The role of concepts in program
comprehension,” in Proceedings of the 10th International Work-
shop on ProgramComprehension (IWPC ’02), pp. 271–278, IEEE,
Paris, France, June 2002.

[11] Z. Zhou, Y.Wang, Q.M.Wu, C. Yang, andX. Sun, “Effective and
efficient global context verification for image copy detection,”
IEEE Transactions on Information Forensics and Security, vol. 12,
no. 1, pp. 48–63, 2017.

[12] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering:
identifying topics in source code,” Information & Software
Technology, vol. 49, no. 3, pp. 230–243, 2007.

[13] S. C. Choi and W. Scacchi, “Extracting and restructuring the
design of large systems,” IEEE Software, vol. 7, no. 1, pp. 66–71,
1990.

[14] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An informa-
tion retrieval approach for automatically constructing software
libraries,” IEEE Transactions on Software Engineering, vol. 17, no.
8, pp. 800–813, 1991.

[15] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” Journal ofMachine Learning Research, vol. 3, no. 4-5,
pp. 993–1022, 2003.

[16] X. Sun, X. Liu, B. Li, Y. Duan, H. Yang, and J. Hu, “Exploring
topic models in software engineering data analysis: a survey,”
in Proceedings of the 17th IEEE/ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing (SNPD ’16), pp. 357–362, IEEE,
Shanghai, China, June 2016.

[17] B. Gu, V. S. Sheng, K. Y. Tay,W. Romano, and S. Li, “Incremental
support vector learning for ordinal regression,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 26, no. 7,
pp. 1403–1416, 2015.

[18] B. Gu, V. S. Sheng, Z. Wang, D. Ho, S. Osman, and S. Li,
“Incremental learning for]-support vector regression,” Neural
Networks, vol. 67, pp. 140–150, 2015.

[19] J. Tang, Z. Meng, X. Nguyen, Q. Mei, and M. Zhang, “Under-
standing the limiting factors of topic modeling via posterior
contraction analysis,” in Proceedings of the 31th International
Conference on Machine Learning, pp. 190–198, 2014.

[20] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshynanyk,
and A. De Lucia, “How to effectively use topic models for
software engineering tasks? An approach based on genetic
algorithms,” in Proceedings of the 35th International Conference
on Software Engineering (ICSE ’13), pp. 522–531, IEEE,May 2013.

[21] Y. Zhang, X. Sun, and B. Wang, “Efficient algorithm for k-
barrier coverage based on integer linear programming,” China
Communications, vol. 13, no. 7, pp. 16–23, 2016.

[22] Q. Liu,W. Cai, J. Shen, Z. Fu, X. Liu, andN. Linge, “A speculative
approach to spatial-temporal efficiency with multi-objective
optimization in a heterogeneous cloud environment,” Security
and Communication Networks, vol. 9, no. 17, pp. 4002–4012,
2016.

[23] D. Binkley, D.Heinz, D. Lawrie, and J. Overfelt, “Understanding
LDA in source code analysis,” in Proceedings of the 22nd
International Conference on ProgramComprehension (ICPC ’14),
pp. 26–36, June 2014.

[24] T. Mens, A. Serebrenik, and A. Cleve, Eds., Evolving Software
Systems, Springer, 2014.

[25] F. Longo, R. Tiella, P. Tonella, andA.Villafiorita, “Measuring the
impact of different categories of software evolution,” in Software
Process and Product Measurement, International Conferences:
IWSM 2008, Metrikon 2008, and Mensura 2008, pp. 344–351,
2008.

[26] B. Dit, L. Guerrouj, D. Poshyvanyk, and G. Antoniol, “Can
better identifier splitting techniques help feature location?”
in Proceedings of the IEEE 19th International Conference on
Program Comprehension (ICPC ’11), pp. 11–20, IEEE, Ontario,
Canada, June 2011.

[27] T. Fritz, G. C. Murphy, E. Murphy-Hill, J. Ou, and E. Hill,
“Degree-of-knowledge: modeling a developer’s knowledge of
code,” ACM Transactions on Software Engineering and Method-
ology, vol. 23, no. 2, article 14, 2014.

[28] X. Sun, X. Liu, J. Hu, and J. Zhu, “Empirical studies on the NLP
techniques for source code data preprocessing,” in Proceedings
of the 3rd International Workshop on Evidential Assessment of
Software Technologies (EAST ’14), pp. 32–39, May 2014.

[29] G. Santos, M. T. Valente, and N. Anquetil, “Remodulariza-
tion analysis using semantic clustering,” in Proceedings of
the Software Evolution Week—IEEE Conference on Software
Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE ’14), pp. 224–233, Antwerp, Belgium, February 2014.

[30] T. Hofmann, “Unsupervised learning by probabilistic latent
semantic analysis,” Machine Learning, vol. 42, no. 1-2, pp. 177–
196, 2001.

[31] T. Hofmann, “Probabilistic latent semantic analysis,” in Pro-
ceedings of the 15th Conference on Uncertainty in Artificial
Intelligence (UAI ’99), pp. 289–296, Stockholm, Sweden, July
1999, https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1
&smnu=2&proceeding_id=15 &article_id=179.

[32] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and N.
Chrisochoides, “Modeling class cohesion as mixtures of latent
topics,” in Proceedings of the IEEE International Conference
on Software Maintenance (ICSM ’09), pp. 233–242, Alberta,
Canada, September 2009.

[33] M. Shtern and V. Tzerpos, “Clustering methodologies for
software engineering,” Advances in Software Engineering, vol.
2012, Article ID 792024, 18 pages, 2012.

[34] M. P. Robillard and G. C. Murphy, “Representing concerns in
source code,” ACM Transactions on Software Engineering and
Methodology, vol. 16, no. 1, article 3, 2007.

[35] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and P. Tonella,
“Tool-supported refactoring of existing object-oriented code
into aspects,” IEEE Transactions on Software Engineering, vol.
32, no. 9, pp. 698–717, 2006.

[36] S. Deerwester, “Improving information retrieval with latent
semantic indexing,” in Proceedings of the Annual Meeting of the
American Society for Information Science, pp. 1–10, 1988.

[37] D. Poshyvanyk, M. Gethers, and A. Marcus, “Concept location
using formal concept analysis and information retrieval,” ACM
Transactions on Software Engineering and Methodology, vol. 21,
no. 4, pp. 1–34, 2012.

[38] J. I. Maletic and A. Marcus, “Supporting program comprehen-
sion using semantic and structural information,” in Proceedings
of the 23rd International Conference on Software Engineering, pp.
103–112, May 2001.

[39] J. Han, Data Mining: Concepts and Techniques, Morgan Kauf-
mann, San Francisco, Calif, USA, 2005.

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&proceeding_id=15&article_id=179
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&proceeding_id=15&article_id=179
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&proceeding_id=15&article_id=179

Scientific Programming 15

[40] X. Sun, B. Li, Y. Li, and Y. Chen, “What information in
software historical repositories do we need to support software
maintenance tasks? An approach based on topic model,” in
Computer and Information Science, pp. 27–37, Springer Interna-
tional Publishing, 2015.

[41] C. J. van Rijsbergen, Information Retrieval, Butterworths, Lon-
don, UK, 1979.

[42] U. Erdemir, U. Tekin, and F. Buzluca, “Object oriented software
clustering based on community structure,” in Proceedings of the
18th Asia Pacific Software Engineering Conference (APSEC ’11),
pp. 315–321, IEEE, Ho Chi Minh, Vietnam, December 2011.

[43] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S.
Panichella, “Using IRmethods for labeling source code artifacts:
is it worthwhile?” in Proceedings of the 20th IEEE International
Conference on Program Comprehension (ICPC ’12), pp. 193–202,
June 2012.

[44] X. Liu, X. Sun, B. Li, and J. Zhu, “PFN: a novel program
feature network for program comprehension,” in Proceedings
of the 13th IEEE/ACIS International Conference on Computer
and Information Science (ICIS ’14), pp. 349–354, Taiyuan, China,
June 2014.

[45] Z. Fu, X. Wu, C. Guan, X. Sun, and K. Ren, “Toward efficient
multi-keyword fuzzy search over encrypted outsourced data
with accuracy improvement,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 12, pp. 2706–2716, 2016.

[46] B. S. Mitchell and S. Mancoridis, “On the automatic mod-
ularization of software systems using the bunch tool,” IEEE
Transactions on Software Engineering, vol. 32, no. 3, pp. 193–208,
2006.

[47] S. Islam, J. Krinke, D. Binkley, and M. Harman, “Coherent
clusters in source code,” Journal of Systems and Software, vol.
88, no. 1, pp. 1–24, 2014.

[48] S. Mirarab, A. Hassouna, and L. Tahvildari, “Using Bayesian
belief networks to predict change propagation in software sys-
tems,” in Proceedings of the 15th IEEE International Conference
on Program Comprehension (ICPC ’07), pp. 177–186, June 2007.

[49] F.Deng and J.A. Jones, “Weighted systemdependence graph,” in
Proceedings of the 5th IEEE International Conference on Software
Testing, Verification and Validation (ICST ’12), pp. 380–389,
Montreal, Canada, April 2012.

[50] M. Gethers, A. Aryani, and D. Poshyvanyk, “Combining con-
ceptual and domain-based couplings to detect database and
code dependencies,” in Proceedings of the IEEE 12th Inter-
national Working Conference on Source Code Analysis and
Manipulation (SCAM ’12), pp. 144–153, IEEE, Trento, Italy,
September 2012.

[51] Z. Fu, X. Sun, Q. Liu, L. Zhou, and J. Shu, “Achieving effi-
cient cloud search services: multi-keyword ranked search over
encrypted cloud data supporting parallel computing,” IEICE
Transactions on Communications, vol. E98B, no. 1, pp. 190–200,
2015.

[52] Z. Xia, X. Wang, X. Sun, and Q. Wang, “A secure and dynamic
multi-keyword ranked search scheme over encrypted cloud
data,” IEEETransactions onParallel andDistributed Systems, vol.
27, no. 2, pp. 340–352, 2016.

[53] L. Guerrouj, “Normalizing source code vocabulary to support
program comprehension and software quality,” in Proceedings of
the 35th International Conference on Software Engineering (ICSE
’13), pp. 1385–1388, San Francisco, Calif, USA, May 2013.

[54] A. De Lucia, M. Di Penta, and R. Oliveto, “Improving source
code lexicon via traceability and information retrieval,” IEEE

Transactions on Software Engineering, vol. 37, no. 2, pp. 205–227,
2011.

[55] N. Anquetil and T. C. Lethbridge, “Recovering software archi-
tecture from the names of source files,” Journal of Software
Maintenance and Evolution, vol. 11, no. 3, pp. 201–221, 1999.

[56] K. Sartipi and K. Kontogiannis, “A user-assisted approach to
component clustering,” Journal of Software Maintenance and
Evolution, vol. 15, no. 4, pp. 265–295, 2003.

[57] T. Ma, J. Zhou, M. Tang et al., “Social network and tag sources
based augmenting collaborative recommender system,” IEICE
Transactions on Information and Systems, vol. E98-D, no. 4, pp.
902–910, 2015.

[58] G. Santos, M. T. Valente, and N. Anquetil, “Remodularization
analysis using semantic clustering,” in Proceedings of the 1st
Software Evolution Week—IEEE Conference on Software Main-
tenance, Reengineering, and Reverse Engineering (CSMR-WCRE
’14), pp. 224–233, February 2014.

[59] Z. Xia, X. Wang, X. Sun, and B. Wang, “Steganalysis of least
significant bit matching using multi-order differences,” Security
and Communication Networks, vol. 7, no. 8, pp. 1283–1291, 2014.

[60] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue,
“Mudablue: an automatic categorization system for open source
repositories,” in Proceedings of the 11th Asia-Pacific Software
Engineering Conference (APSEC ’04), pp. 184–193, Busan,
Republic of Korea, December 2004.

[61] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Enriching reverse engineer-
ing with semantic clustering,” in Proceedings of the 12thWorking
Conference on Reverse Engineering (WCRE ’05), pp. 133–142,
Pittsburgh, Pa, USA, November 2005.

[62] A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello,
“Investigating the use of lexical information for software system
clustering,” in Proceedings of the 15th European Conference on
SoftwareMaintenance and Reengineering (CSMR ’11), pp. 35–44,
IEEE, Oldenburg, Germany, March 2011.

[63] G. Scanniello, M. Risi, and G. Tortora, “Architecture recovery
using Latent Semantic Indexing and k-Means: an empirical
evaluation,” in Proceedings of the 8th IEEE International Confer-
ence on Software Engineering and Formal Methods (SEFM ’10),
pp. 103–112, September 2010.

[64] G. Scanniello, A. D’Amico, C. D’Amico, and T. D’Amico, “Using
the Kleinberg algorithm and vector space model for software
system clustering,” in Proceedings of the 18th IEEE International
Conference on Program Comprehension (ICPC ’10), pp. 180–189,
IEEE, Braga, Portugal, June-July 2010.

[65] G. Scanniello and A. Marcus, “Clustering support for static
concept location in source code,” in Proceedings of the IEEE 19th
International Conference on ProgramComprehension (ICPC ’11),
pp. 36–40, Kingston, Canada, June 2011.

[66] Y. Kong, M. Zhang, and D. Ye, “A belief propagation-based
method for task allocation in open and dynamic cloud environ-
ments,” Knowledge-Based Systems, vol. 115, pp. 123–132, 2017.

[67] A. M. Saeidi, J. Hage, R. Khadka, and S. Jansen, “A search-
based approach to multi-view clustering of software systems,”
in Proceedings of the 22nd IEEE International Conference on
Software Analysis, Evolution, and Reengineering (SANER ’15),
pp. 429–438, March 2015.

Submit your manuscripts at
https://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

