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This paper presents an efficient electrocardiogram (ECG) signals compression technique based on QRS detection, estimation, and
2D DWT coefficients thresholding. Firstly, the original ECG signal is preprocessed by detecting QRS complex, then the difference
between the preprocessed ECG signal and the estimated QRS-complex waveform is estimated. 2D approaches utilize the fact
that ECG signals generally show redundancy between adjacent beats and between adjacent samples. The error signal is cut and
aligned to form a 2-D matrix, then the 2-D matrix is wavelet transformed and the resulting wavelet coefficients are segmented
into groups and thresholded. There are two grouping techniques proposed to segment the DWT coefficients. The threshold level
of each group of coefficients is calculated based on entropy of coefficients. The resulted thresholded DWT coefficients are coded
using the coding technique given in the work by (Abo-Zahhad and Rajoub, 2002). The compression algorithm is tested for 24
different records selected from the MIT-BIH Arrhythmia Database (MIT-BIH Arrhythmia Database). The experimental results
show that the proposed method achieves high compression ratio with relatively low distortion and low computational complexity
in comparison with other methods.

1. Introduction

The electrocardiogram (ECG) is an invaluable tool for
diagnosis of heart diseases. ECG signals are usually sampled
at 200–500 samples/s with 8–12 bits resolution. Considering
long monitoring periods, compression is required to handle
such vast amount of data. It can increase the capacity of
databases where hundreds of thousands of ECG signals are
stored for subsequent monitoring and evaluation. Other
applications of ECG compression include transmission via
telephone or mobile radio to an ECG center for further
processing.

In recent years, many schemes have been suggested
for compression of ECG data [1–11]. These compression
techniques can be broadly classified into three groups: (1)
direct data handling techniques [1–3], (2) transformation-
based techniques [3–11], and (3) parameterized model-
based techniques [9]. Our approach belongs to the second
group. In general, transform techniques involve expanding a

signal into a weighted sum of basis functions. The coefficients
of this sum are properly encoded and stored or transmitted
instead of the original data. The best transform is the
one which requires the least number of basis functions to
represent the input signal for a given mean-square error
(MSE). Transform techniques include several wavelet-based
compression methods. The good time-frequency localization
properties of wavelets make them especially suitable for data
compression applications. Wavelets have been used in many
data compression applications recently and have produced
good results [4–8, 10].

Many of the previous works has employed the QRS-
complex detection in compressing the ECG waveform. The
detection of the QRS complex specifically, the detection of
the peak of the QRS complex, or R wave in an electro-
cardiogram (ECG) signal is a difficult problem since it has
a time-varying morphology and is subject to physiological
variations due to the patient and to corruption due to noise.
For a tutorial on ECG signals, readers are referred to [12].
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As noted in [13], most of the current QRS detectors can be
divided into two stages: a preprocessor stage to emphasize
the QRS complex and a decision stage to threshold the QRS-
enhanced signal. Typically, the preprocessor stage consists
of both linear and nonlinear filtering of the ECG. The
ECG signal is first bandpass filtered to reduce noise and
differentiated to emphasize the large slope of the R wave; it
is then squared to further exploit the high-frequency content
of the QRS complex.

This paper is organized as follows. Section 2 presents
the QRS significant features extraction and QRS-complex
estimation. Section 3 is concerned with the preprocessing
of the original ECG signal. Section 4 is a review of the
two-dimensional discrete wavelet transform. Section 5 is
an overview of coefficients grouping and thresholding and
entropy principle. Section 6 shows the coding technique.
Section 7 displays the experimental results of the compres-
sion algorithm on the selected records and a comparison
with other coders in the literature. Finally, the paper is
concluded in Section 8.

2. QRS-Complex Detection and Estimation

The ECG signal is composed from three main components,
namely, the QRS complexes, P-wave: and T-wave as shown
in Figure 1. Since the QRS complexes have a time-varying
morphology, they are not always the strongest signal compo-
nent in an ECG signal. Therefore, P-waves or T-waves with
characteristics similar to that of the QRS complex, as well as
spikes from high-frequency pacemakers, can compromise the
detection of the QRS complex. In addition, there are many
sources of noise in a clinical environment that can degrade
the ECG signal. These include power line interference,
muscle contraction noise, poor electrode contact, patient
movement, and baseline wandering due to respiration [14].
Therefore, QRS detectors must be invariant to different
noise sources and should be able to detect QRS complexes
even when the morphology of the ECG signal is varying
with respect to time. The significant features of the ECG
signal are the P, QRS, and T-waves. In this work only
the QRS waves are detected. Moreover, for best quality of
QRS estimation and the duration between the Q-R and R-
S are detected and transmitted with the code stream. The
QRS-complex estimation produce the typical QRS-complex
waveform using the parameters extracted from the original
ECG signal. The estimation algorithm is a MATLAB based
estimator and is able to produce normal QRS waveform
using a shifted and scaled versions of a triangular and
sinusoidal wave forms.

3. Preprocessing of the Original ECG Signal

ECG signal preprocessing consists of three steps: (i) curet-
tage, (ii) normalization and mean removal, (iii) and conver-
sion the error matrix into 2D matrix.

Figure 1: The ECG components.

3.1. The ECG Signal Curettage. The curettage process
means to subtract the estimated QRS signal x′ =
[x′1 x

′
2 x

′
3 x

′
4 · · · x′N ] from the original ECG waveform x =

[x1 x2 x3 x4 · · · xN ] upon the following equation:

e(n) = x(n)− x′(n), (1)

where e(n) is the error signal, e = [e1 e2 e3 e4 · · · eN ], and
N is the length of the original ECG signal. The benefit of this
step is to preserve the QRS signal which contains the most
energy of the ECG signal.

3.2. Normalization and Mean Removal. Normalization of the
error signal is done by dividing the error signal on the
maximum value of the error signal Am, which is calculated
using (2) as follows:

Am = MAX(e(n)). (2)

Mean removal is performed by subtracting the mean value
Mx from each sample of the signal method. The mean of the
ECG signal is calculated using the following equation:

Mx = 1
N

N∑
n=1

e(n), (3)

where N is the number of samples in the error signal and
e(n) is the samples of the error signal. Normalization and
mean removal is done by the following equation:

y(n) = e(n)
Am

−Mx, n = 1, 2, . . . ,N , (4)

where y(n) is the normalized mean removed error signal.
The main benefit of this step is to guarantee that the absolute
values of all DWT coefficients are less than one.
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Figure 2: The ECG 2D image matrix.

3.3. Conversion into 2D Matrix. The dependencies in ECG
signals can be broadly classified into two types: the depen-
dencies among a single ECG cycle and the dependencies
across ECG cycles. These dependencies are sometimes
referred to as intrabeat and interbeat dependencies, respec-
tively. An efficient compression scheme needs to exploit both
dependencies to achieve maximum data compression. To
compress the ECG data using the proposed coding scheme,
the one-dimensional ECG signal has to be converted into a
two-dimensional matrix. Thus, the first step in the presented
algorithm is to separate each “period” of the ECG. This
step is done with assistant of QRS complex detection which
is described in Section 2. Each period is then stored as
row in the 2D Matrix. It can be seen that the intrabeat
dependencies are in the horizontal direction of the matrix
and the interbeat dependencies are in the vertical direction.
The created image is shown in Figure 2. Since each ECG
period can have different lengths, using the constructed 2D
ECG matrix using will have a different number of data points
in each row. In the literature, there are many approaches
tried to overcome this problem. In [16], the compression
system using JPEG2000 normalizes each ECG period to the
same length. Some approaches [20] tend to add a number
of zeros at the end of each heartbeat data sequence. Some
drawbacks appear in approaches like the bits needed to be
sent “or stored” to identify the length of each period [16, 20]
which reduce the compression ratio (CR). Another drawback
is the discontinuity in the matrix resulting from padding
the end of each heartbeat with appropriate number of zeros
[20]. Here, a novel technique is proposed for converting the
1D ECG signal into 2D array and warding the drawbacks
of the previous approaches. Firstly, 32 periods are aligned
with reference to the R signal and all periods are cut at a
certain length L. The length L is chosen at the minimum
period length downward to a multiple of 32 “where 32 is
the length of the constructed 2D ECG array.” For example,
if the minimum period length is 267, then the length L
= 224. The residual of all periods is assembled into one
row then segmented into 32 by 32 matrices. After that, the
32 × 32 matrices are added beside the first array “32 by L
matrix.” This approach exploits the benefit of the interbeat
dependencies without additional bits.

4. Two-Dimensional Discrete Wavelet
Transform (2D-DWT)

The continuous wavelet transform (CWT) is provided by (5),
where x(t) is the signal to be analyzed. ψ(t) is the mother
wavelet or the basis function. All the wavelet functions
used in the transformation are derived from the mother
wavelet through translation (shifting) and scaling (dilation
or compression). Consider the following:

X(τ, s) = 1√|s|
∫
x(t)ψ∗

(
t − τ
s

)
dt. (5)

The mother wavelet is used to generate all the basis functions,
the translation parameter τ relates to the location of the
wavelet function as it is shifted through the signal, and
the scale parameter S is defined as |1/frequency| and cor-
responds to frequency information. Notice that the wavelet
transform merely performs the convolution operation of the
signal and the basic function. The wavelet series is just a
sampled version of CWT and its computation may consume
significant amount of time and resources, depending on the
resolution required.

The discrete wavelet transform (DWT), which is based
on subband coding, is found to yield a fast computation
of wavelet transform. It is easy to implement and reduces
the computation time and required resources. In DWT, a
time-scale representation of the digital signal is obtained
using digital filtering techniques. The signal to be analyzed
is passed through filters with different cut-off frequencies
at different scales. Wavelets can be realized by iteration of
filters with rescaling. The resolution of the signal, which
is a measure of the amount of detail information in
the signal, is determined by the filtering operations, and
the scale is determined by upsampling and downsampling
(subsampling) operations.

The DWT is computed by successive lowpass and high-
pass filtering of the discrete time-domain signal X[n],
where n is an integer, as shown in Figure 3. The low-
pass filter is denoted by G0 while the high-pass filter is
denoted by H0. At each level, the high-pass filter produces
detail information d[n], while the low-pass filter associated
with scaling function produces coarse approximations a[n].
Figure 4 shows the reconstruction of the original signal from
the wavelet coefficients. Basically, the reconstruction is the
reverse process of decomposition. The approximation and
detail coefficients at every level are upsampled by two, passed
through the low-pass and high-pass synthesis filters, and
then added. This process is continued through the same
number of levels as in the decomposition process to obtain
the original signal. In most wavelet transform applications,
it is required that the original signal be synthesized from the
wavelet coefficients. So the analysis and synthesis filters have
to be selected carefully to achieve perfect reconstruction.
The 2D-DWT is simply the application of the 1D-DWT
repeatedly to first horizontal data of the image, then the
vertical data of the image as shown in Figure 5 and the inverse
2D-DWT is shown in Figure 6.
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Figure 3: Three-level wavelet decomposition tree.
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Figure 4: Three-level wavelet reconstruction tree.

5. Coefficients Grouping and Thresholding

As a consequence of DWT decomposition, the resulted
coefficients are classified into a few coefficients that contain
the most energy of the signal “important coefficients” and
a huge number of coefficients which contain less amount
of energy of the signal “less important coefficients.” For
efficient compression ratio and signal quality, this property
have to be exploited correctly by dedicating more bits to
represent the important coefficients and less bits to represent
less important coefficients. Thresholding is a process that
converts a range of coefficients values to a certain level based
on threshold value λ. Normally, hard thresholding and soft
thresholding techniques are used for such denoising process.
Hard and soft thresholding with threshold λ are defined as
follows.

The hard thresholding operator is defined as

D(U , λ) = U ∀|U| > λ
= 0 otherwise.

(6)

The soft thresholding operator on the other hand is
defined as

D(U , λ) = sgn (U)� max(0, |U| − λ). (7)

Hard thresholding is “keep or kill” procedure and is more
intuitively appealing and also it introduces artifacts in the
recovered images. But soft thresholding is more efficient and
it is used for the entire algorithm. In [21], thresholding
methods are categorized into the following five groups based
on the information the algorithm manipulates.

(1) Histogram shape-based methods, where, for exam-
ple, the peaks, valleys, and curvatures of the
smoothed histogram are analyzed.

(2) Entropy-based methods result in algorithms that use
the entropy of the original and the transformed

signals and the cross-entropy between the original
and binarized signals.

(3) Attribute-based methods search for a measure of
similarity between the adjacent samples and periods.

(4) The spatial methods use higher-order probability
distribution and/or correlation between samples.

(5) Local methods adapt the threshold value on each
subband signal to the signal energy.

In this paper, entropy-based thresholding technique is
adopted as a thresholding method. This class of algorithms
exploits the entropy of the distribution of the coefficients
levels. For illustration, consider a source S that generates
random symbols s1, s2, . . . , sN . For example, Smay be a digital
image, and si represents one of N possible pixel levels. If Pi
denotes the probability of occurrence of symbol si, then

I(si) = log
1
pi
= − log pi, (8)

where I(si) is defined as the self-information for the symbol
si, that is, the information we get from receiving si. If the base
of the logarithm is two, then self-information is measured
in bits. According to Shannon, the average information
“Entropy” of a source S is defined as

H(S) =
∑
i

pi log2
1
pi
. (9)

For information theory, if the symbols are distinct, then the
average number of bits needed to encode them is always
bounded by their entropy. In practice, the entropy of a source
in general is unknown, and estimates for the entropy depend
on the probability model adapted for the structure of the
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symbols. For example, in a probability model, assume a
source generates six distinct symbols (s1 = 4, s2 = 5, s3 = 6,
s4 = 7, s5 = 8, and s6 = 9) and that each symbol is generated
with equal probability, that is, pi = 1/6, for I = 1, 2, 3, 4,
5, 6. The self-information of each symbol is I(si) = 0.4308.
From the definition of the entropy [7], for this probability
model H(S) = 2.585. In other words, using this model a
coding scheme for this sequence cannot be found that can
code better than 2.585 bit per sample.

In a different model, assume that the probability of each
symbol is p1 = p3 = 3/10 and p2 = p4 = p5 = p6 =
1/10. Using this model, I(s1) = I(s3) = 1.75, I(s2) = I(s4) =
I(s5) = I(s6) = 3.3, and H(S) = 2.371. As a consequence
of this discussion, it can be concluded that coefficients which
occurred a few times yield to more information “more bits
in coding” and those coefficients which occurred many times
yield to less amount of information “less bits in coding.”

Hard thresholding of a certain group of subbands coeffi-
cients is done by eliminating all coefficients that are smaller
than a certain threshold level L. This process introduces
distortion in a certain aspect in the reconstructed signal.
To decrease the effect of thresholding, a soft thresholding
technique is applied in this work. The coefficients which
value with high self-information I(s) are thresholded to the
nearest value that has low I(s). The thresholding value λ
in this proposal is not a constant value as normally used
in the literature [22], the thresholding value λ is a variable
depending on the self-information of the coefficients values.

To explore the effect of proposed thresholding technique,
many thresholding rules “coefficients grouping” for the
DWT coefficients had been suggested. In [23], the authors
propose a list of six rules to group the wavelet coefficients.
In this paper, two rules for “coefficients grouping” are
listed to group the 2D wavelet coefficients. After wavelet
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Figure 7: The 1st grouping scheme.

transformation of the error signal, the wavelet coefficients are
grouped to be thresholded upon a certain threshold value λ.
The results coefficients of wavelet transform can be presented
as in the following equation:

C = [AN HN VN DN HN−1 VN−1 DN−1 · · ·H1 V1 D1],
(10)

where A is the row vectors of the approximation coefficients,
H is the row vectors of the horizontal detail coefficients, V is
row vectors of the vertical detail coefficients, andD is the row
vectors of the diagonal detail coefficients. The first grouping
scheme arranges the wavelet coefficients into three groups as
in the following equations:

G1 =AN ,

G2 =[HN VN DN ],

G3 =[HN−1 VN−1 DN−1 · · ·H1 V1 D1].

(11)

The second grouping scheme divides the wavelet coefficients
into five groups as in the following equations:

G1 = AN ,

G2 = [HN VN DN ],

G3 = [HN−1 · · ·H1],

G4 = [VN−1 · · ·V1],

G5 = [DN−1 · · ·D1].

(12)

Figures 7 and 8 show the first and second grouping schemes
of 3-level 2D DWT decomposition.

The following steps describe the entropy thresholding
algorithm.

(1) Calculate the histogram and pdf distribution func-
tion of levels in each group of coefficients and the
self-information of all levels as in (8) and the entropy.

(2) Arrange the levels from the highest to the lowest
based on the self-information of levels.

G1
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V1 D1

Figure 8: The 2nd grouping scheme.

(3) Threshold all coefficients which have levels with the
highest self-information.

(4) Repeat step 1, 2, and 3 until reaching the desired
entropy.

6. The Coding Technique System

Figure 9 illustrates the QRS-complex estimation compres-
sion algorithm. The coding process is manipulated by
dividing the coded stream into two parts: the header part and
the thresholded coefficients part. The header part consists
of two sections. The first section has 3 bits dedicated for
pointing out the dimension of the 2D ECG signal (e.g., the
32× 32 matrix is coded as “101”), 9 bits dedicated for storing
the length of each period, 12 bits dedicated for storing the
maximum value in the original signal, and 12 bits dedicated
for storing the mean of the normalized signal. The second
section has 36 bits to represent the Q, R, and S values and
12 bits to represent Q-R and R-S duration. Figures 10(a) and
10(b) illustrate the coding stream that represents the header
part.

The significant and insignificant coefficients are coded
separately. The runs of significant coefficients are coded as
follows.

(i) One bit of value “1” identifies the run of significant
coefficients.

(ii) A sign bit to encode the sign of the significant
coefficient.

(iii) Eight bits to encode the value of the significant
coefficient.

Figure 10(c) illustrates the coding stream that represents
runs of significant coefficients.

The runs of insignificant coefficients are coded with
variable-length coding VLC based on run length encoding as
follows.
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(i) One bit of value “0” identifies the run of insignificant
coefficients.

(ii) Four bits to represent the number of bits needed to
code the run length.

(iii) Variable in length (from 1 to 16 bits) to encode the
run length.

Figure 10(d) illustrates the coding stream that represents
runs of insignificant coefficients.

The compression ratio CR, the percent RMS difference
PRD, and peak signal-to-noise ratio PSNR will be used as

a performance measure. The CR and PSNR are calculated
respectively by (13) as follows:

CR = Length of x(n)∗11
length of output stream

,

PSNR = 20 log10
max[x(n)]√

1/N
∑N

n=1 [x(n)− x(n)]2
,

(13)

where x(n) and x(n) represent the original and the recon-
structed signal, respectively. Three different PRD formulas
can be found in the open literature. The first formula is
described by (14) as follows:

PRD1 =
√√√√∑N

n=1 [x(n)− x(n)]2∑N
n=1 [x(n)− x]2 × 100. (14)
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Figure 11: Compression system applied on (a) record 100 (CR = 15.3, PRD = 0.502, PSNR = 48.2) and (b) record 220 (CR = 22.1, PRD =
0.61, PSNR = 47.7).

The second formula is expressed by (15) as follows:

PRD2 =
√√√√∑N

n=1 [x(n)− x(n)]2∑N
n=1 [x(n)− 1024]2 × 100. (15)

Finally, the last formula is expressed by

PRD3 =
√√√√∑N

n=1 [x(n)− x(n)]2∑N
n=1 x2(n)

× 100. (16)

The RMS of a set of values is the square root of the arithmetic
mean (average) of the squares of the original values as

xrms =
√

1
n

(
x2

1 + x2
2 + · · · + x2

n

)
. (17)

7. Experimental Results

The MIT-BIH Arrhythmia Database [24] has been used
to evaluate the performance of the proposed compression
algorithm. The ECG signals used here were sampled at
360 Hz and each sample is represented by 11 bits/sample. We
used two datasets formed by taking certain records from the
MIT-BIH Arrhythmia Database. These datasets were chosen
because they were used in earlier studies and allow us to
compare the performance of the proposed method with
other coders in the literature. The first dataset consists of
10 min of data (each) from record numbers 100, 101, 102,
103, 107, 109, 111, 115, 117, 118, and 119. The second dataset
consists of 1 min of data (each) from record numbers 104,
107, 111, 112, 115, 116, 117, 118, 119, 201, 207, 208, 209,
212, 213, 214, 228, 231, and 232.
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Figure 12: CR-PRD curves for the selected records of Experiment
2.

7.1. Experiment 1. This experiment conclude testing the
proposed algorithm on records 100 and 220 in order to
explore and reveal the effectiveness of the proposed method
on the clinical diagnosis information of the reconstructed
ECG signal. Figure 11 shows the compression performance
of the proposed method of the selected two records of the
MIT-BIH Arrhythmia Database. The evaluation of the figure
shows that the reconstructed ECG signal had preserved the
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Table 1: Performance comparison with previous 2D compression
algorithms.

Reference Number Record CR PRD

Wei et al. [11] 117 10.000 1.180

Chou et al. [15] 117 13.000 1.180

Bilgin et al. [16] 117 8.000 0.860

Morteza et al. [17] 117 8.000 1.380

Lu et al. [10] 117 8.000 1.180

Djohan et al. [5] 117 8.000 3.900

Hilton [7] 117 8.000 2.600

117 8.200 0.820

Proposed
117 13.000 1.140

117 12.440 1.090

117 19.2 1.6

Lee and Buckley [18] 119 24.100 10.500

Morteza et al. [17] 119 21.600 4.870

Lu et al. [10] 119 21.600 5.000

Zigel et al. [9] 119 21.600 5.500

Proposed
119 22 4.8

119 38.6196 8.04

Mohammadpour and Mollaei [19] 205 24.000 1.400

Proposed
205 32.2 0.663

205 76.2 1.13

Proposed 100 32.442 0.671

Mohammadpour and Mollaei [19] 220 24.000 1.370

Proposed 220 24.4 0.748

most of the clinical diagnosis information of the original
ECG signal.

7.2. Experiment 2. In this experiment the proposed algo-
rithm was applied to 10 ECG records selected randomly from
the MIT-BIH arrhythmia database. These records are 100,
101, 102, 103, 107, 109, 111, 115, 117, and 119. Figure 12
explore the results of this experiment. The results demon-
strate that the compression results versus the percentage
RMS difference for the tested records are converging to each
other, which mean that the proposed compression method is
opportune for all ECG signals.

7.3. Experiment 3. This experiment is a comparison of the
proposed compression algorithm with previous compression
methods based on 2D ECG signal in the literature as follows.
In [16], Bilgin et al. applied the image coding standard—
JPEG to ECG signal compression. In [20], Tai et al. adopted
a modified SPIHT method to compress ECG signals. In [18],
Lee and Buckley proposed an ECG compression method
based on the 2D DCT. In [25], Xingyuan and Juan have
applied wavelet-based hybrid ECG compression technique
on ECG signals.

8. Conclusion

In this paper, new wavelet based ECG compression technique
is proposed, associated with acceptable PRD and PSNR
values. It is based on converting 1D ECG signal with irregular
periods into 2D matrix of size L × L. The length L is chosen
at the minimum period length downward to a multiple of 32.
The residual of all periods is assembled into one row then
segmented into 32 by 32 matrices. This approach exploits
the benefit of the interbeat dependencies without additional
bits. Numerical results show that the 2D ECG compression
is better than 1D ECG compression methods as shown
in Table 1. Table 1 illustrates also the detailed comparison
between the proposed algorithm and the last listed methods
for 117, 119, 205, and 220 ECG records. It is clear that
the proposed algorithm has the highest CR with acceptable
PRD. Also, it is clear that the coding and decoding stages
in the proposed algorithm are fast and easy to implement.
Moreover, the proposed algorithm has a good performance
for different ECG signals considered from clinical point
of view and all the clinical information is preserved after
reconstruction. Finally, it should be noted that a further
improvement in results may be achieved with sophisticated
implementation of compression system in any simulation
program as LABVIEW.
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