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We review some of the recent developments in the area of stochastic comparisons of order statistics
and sample spacings. We consider the cases when the parent observations are identically as well
as nonidentically distributed. But most of the time we will be assuming that the observations are
independent. The case of independent exponentials with unequal scale parameters as well as the
proportional hazard rate model is discussed in detail.

1. Introduction

The simplest and the most popular method of comparing the magnitudes of two random
variables is through their means and medians. It may happen that in some cases the median
of X is larger than that of Y, while the mean of X is smaller than the mean of Y. However,
this confusion will not arise if the random variables are stochastically ordered. Similarly, the
same may happen if one would like to compare the variability of X with that of Y based only
on numerical measures like standard deviation, and so forth. Besides, these characteristics of
distributions might not exist in some cases. In most cases one can express various forms of
knowledge about the underlying distributions in terms of their survival functions, quantile
functions, hazard rate functions, mean residual functions, and other suitable functions of
probability distributions. These methods are much more informative than those based only
on few numerical characteristics of distributions. Comparisons of random variables based on
such functions usually establish partial orders among them. We call them as stochastic orders.

Stochastic models are usually sufficiently complex in various fields of statistics.
Obtaining bounds and approximations for their characteristics is of practical importance.
That is, the approximation of a stochastic model either by a simpler model or by a model
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with simple constituent components might lead to convenient bounds and approximations
for some particular and desired characteristics of the model. The study of changes in
the properties of a model, as the constituent components vary, is also of great interest.
Accordingly, since the stochastic components of models involve random variables, the topic
of stochastic orders among random variables plays an important role in these areas. Books
by Muller and Stoyan [1] and Shaked and Shanthikumar [2] give excellent treatment of this
topic.

Order statistics and spacings are of great interest in many areas of statistics and they
have received a lot of attention from many researchers. Let X3, ..., X, be n random variables.
The ith order statistic, the ith smallest of X;’s, is denoted by X;.,. In reliability engineering, an
n component system that works if and only if at least k of the n components work is called
a k-out-of-n system. The lifetime of a k-out-of-n system can be represented as X, _j+1:n. A
parallel system is a 1-out-of-n system while a series system is an n-out-of-n system. Thus, the
study of lifetimes of k-out-of-n systems is equivalent to the study of the stochastic properties
of order statistics. Spacings, the differences between successive order statistics, and their
functions are also important in statistics, in general, and in particular in the context of life
testing and reliability models. The books by David and Nagaraja [3], and Arnold et al. [4];
and two volumes of papers on this topic by Balakrishnan and Rao [5, 6] are excellent sources
of information on this topic. But most of this work has been confined to the case when the
observations are independent and identically distributed (i.i.d.). In many practical situations,
like in reliability theory, the observations are not necessarily i.i.d. Only during the last two
decades or so this topic has got the attention of researchers. Some important early references
for this case are Sen [7], David and Nagaraja [3], Shaked and Tong [8], Bapat and Beg [9],
Boland et al. [10], Kochar [11], and Nappo and Spizzichino [12], Boland et al. [13] and
Balakrishnan [14], among others.

Some interesting partial ordering results on order statistics and spacings from
independent but nonidentically random variables have been obtained by Pledger and
Proschan [15], Proschan and Sethuraman [16], Bapat and Kochar [17], Boland et al. [18],
Kochar and Kirmani [19], Kochar and Korwar [20], Kochar and Rojo [21], Dykstra et al. [22],
Kochar and Ma [23], Bon and Piltidnea [24], Kochar [25], Khaledi and Kochar [26-30]. The
book by Shaked and Shanthikumar [2] gives an excellent description of the various results
on this topic till 2007.

In this review paper, we will discuss some latest developments on the topic of
stochastic comparisons of order statistics and spacings. In Section 2, we introduce the
required notation and definitions. Sections 3 and 4 are devoted to stochastic comparisons
of order statistics in one-sample and two-sample problems, respectively. In Section 5, we
discuss the topic of stochastic orderings among spacings in one-sample problem and two
sample problems. Section 6 is devoted to some applications of these results. Throughout this
chapter increasing means nondecreasing and decreasing means nonincreasing; and we will be
assuming that all distributions under study are absolutely continuous.

2. Definitions and Some Preliminaries

In this section, we recall some basic definitions of stochastic orders and their properties. Let X
and Y be univariate random variables with distribution functions F and G, survival functions
F and G, density functions f and g; and hazard rates r¢ (= f/F) and 7 (= g/G), respectively.
Let Ix (Iy) and ux (uy) be the left and the right endpoints of the support of X (Y).
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2.1. Magnitude Orders

First we give some definitions of stochastic orders to compare the magnitudes of two random
variables.

Definition 2.1. X is said to be stochastically smaller than Y (denoted by X < Y) if
F(x) <G(x) Vx. (2.1)
It is easy to see that X < Y if and only if
Fl(u) <G'u) Yue(01). (2.2)
It can be shown that this is also equivalent to E[g(X)] < E[g(Y)] for all increasing function g

for which expectations exist.

Definition 2.2. X is said to be smaller than Y in hazard rate ordering (denoted by X<, Y) if
G(x)/F(x) is increasing in x € (—oo, max(ux, uy)).

It can be shown that X <j,; Y is equivalent to the inequalities

P[X-t>x|X>t|<P[Y-t>x|Y>t], Vx>0,¢t (2.3)

In other words, the conditional distributions, given that the random variables are at least of a
certain size, are all stochastically ordered (in the standard sense) in the same direction. Thus,
if X and Y represent the survival times of different models of an appliance that satisfy this
ordering, one model is better (in the sense of stochastic ordering) when the appliances are
new, the same appliance is better when both are one month old, and in fact is better no matter
how much time has elapsed. It is clearly useful to know when this strong type of stochastic
ordering holds since qualitative judgements are then easy to make. In case the hazard rates
exist, it is easy to see that X<, Y, if and only if, rg(x) < rp(x) for every x. The hazard rate
ordering is also known as uniform stochastic ordering in the literature.

Definition 2.3. X is said to be smaller than Y in the reverse hazard rate order, denoted by
X <ih Y/ if

Pt-X>x|X<t)>P(t-Y>x|Y<t), Vx>0and all t. (2.4)

It is shown in Ross [31] that if X and Y are two independent random variables, then
X <t Y may not imply

X+(X+Y)<a Y +(X+Y). (2.5)

However (2.5) will hold if X and Y satisfy a stronger ordering called [ikelihood ratio ordering
as defined below.
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Definition 2.4. X is said to be smaller than Y in likelihood ratio ordering (denoted by X <, Y)
if g(x)/ f(x) is increasing in x € (Ix, ux) U (ly, uy).

The mean residual life function of a random variable X is defined as px(t) = ff F(t)dt.
An interesting order based on the mean residual life is defined as follows.

Definition 2.5. X is said to be smaller than Y in the mean residual life order, denoted by
X< Y, if

px(t) < py(t) V. (2.6)

When the supports of X and Y have a common left end-point, we have the following
chain of implications among the above stochastic orders:

XSer == XSth = XSmrIY
U A3 A3 (2.7)
X<mY = X<4Y = E[X]<E[Y].

Definition 2.6. X is said to be smaller than Y in the increasing convex order (denoted by X <ix Y)
if

foo F(x)dx < fm G(x)dx, V. (2.8)

t t

Note that (2.8) holds if and only if
E[$p(X)] < E[p(Y)] (2.9)

for every convex function ¢ for which the above expectations exist. Also note that X <Y =
X Siex Y.

Another order closely related to the likelihood ratio order is the joint likelihood
ordering as introduced by Shanthikumar and Yao [32].

Definition 2.7. For a bivariate random variable (X, Y), X is said to be smaller than Y according
to joint likelihood ordering, denoted by X<,,.;, if and only if

E[pX, )] 2 E[p(Y,X)], € Ger, (2.10)
where
Ger: {9 : p(v, x) <P(x,y), x <y} (2.11)
It can be seen that
Xy <orj Xo & f € Gor, (2.12)

where f (-, ) denotes the joint density of (Xj, X>).
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As pointed out by Shanthikumar and Yao [32], joint likelihood ratio ordering between
the components of a bivariate random vector may not imply likelihood ratio ordering
between their marginal distributions unless the random variables are independent, but it
does imply stochastic ordering between them, that is,

Or:j
X<Y—X<Y. (2.13)

A bivariate function ¢ € Gy, is called arrangement increasing (Al). Hollander et al. [33]
have studied many interesting properties of such functions, though, apparently, they did not
relate it to the notion of likelihood ratio ordering.

The above idea can be extended to compare the components of an n-dimensional
vector X = (X, ..., X;). We define Xj <g.j - - - <¢r.j X, if the joint density f(x1, ..., x,) of Xis an
arrangement increasing function. (See, Marshall et al. [34] for the definition of an arrangement
increasing function on R".)

In a different context, Robertson and Wright [35] studied a subclass of arrangement
increasing functions on R", which they call as ISO* functions, as described below. Let x and y
be two vectors on R" such that Zgzl yi < 2521 xi,j=1,...,n-1and 3, yi = >7; x;. We will

denote this partial ordering between the vectors by x < y.

Definition 2.8. A real-valued function ¢ defined on a set &# C R" is said to be ISO* on  if
$(x) < (y), for all x < y.

As mentioned earlier, an ISO* function is arrangement increasing but the converse is
not true. It is easy to see that the joint density f(x1, x;) of a bivariate random vector (X, X») is
ISO* if and only if the conditional density of X, given X; + X, = f is monotonically increasing
for each fixed t.

The usual likelihood ratio order has the following multivariate version.

Definition 2.9. Let X = (X1,X5,..., Xy) and Y = (Y3, Y5, ..., Y,) be two n-dimensional random
vectors with absolutely continuous (or discrete) distribution functions and let f and g denote
their continuous (or discrete) density functions, respectively. Suppose that

f)g(y) < f(xny)g(xVy) (2.14)

for every x and y. Then X is said to be smaller than Y in the multivariate likelihood ratio
order (denoted as X<, Y).

Definition 2.10. The random vector X = (Xj, ..., X,) is smaller than the random vector Y =

st
(Y7,...,Y,) in the multivariate stochastic order (denoted by X <Y) if h(X) <s h(Y) for all
increasing functions h.

It is known that multivariate likelihood ratio ordering implies multivariate stochastic
ordering, but the converse is not true. Also if two random vectors are ordered according
to multivariate likelihood ratio (stochastic) ordering, then their corresponding subsets of

components are also ordered accordingly. For more details on stochastic orderings, see
Chapters 1 and 4 of Shaked and Shanthikumar [2].
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2.2, Variability Orders

One of the basic criteria for comparing variability in probability distributions is that of
dispersive ordering. Let F™! and G™! be the right continuous inverses (quantile functions)
of F and G, respectively.

Definition 2.11. X is less dispersed than Y (denoted by X <gisp Y) if
F'(f)-F'(@)<G'(f) -G (@), Y0<a<p<l. (2.15)

Note that (2.15) is equivalent to
G'F(x)-x increasing in x. (2.16)

When (2.16) holds, Doksum [36] called this ordering as tail-ordering and used it to
find bounds on powers and efficiencies of nonparametric tests. Deshpande and Kochar [37]
pointed out that tail ordering is same as dispersive ordering and obtained some new results
for this partial order.

A consequence of X <gispY is that [X; — Xo|<s|Y1 - Y2| and which in turn implies
var(X) < var(Y) as well as E[|X; — X3|] < E[|Y: - Y2|], where X3, X5 (Y3,Y3) are two
independent copies of X (Y). For details, see Saunders [38], Saunders and Moran [39],
Lewis and Thompson [40], Deshpande and Kochar [37], Bagai and Kochar [41], Bartoszewicz

[42, 43], and Section 2.B of Shaked and Shanthikumar [2].

Connection between Hazard Rate Order and Dispersive Order

Kochar [44] observed that

X <ne Y = P[XXYY] + P[YXXY] < P[YYXX] + P[XYYX], (2.17)

where, for example, P[XXYY] means P[Xi., < Xp» < Y12 < Ys,] with the notation that Z;.,,
denotes the ith order statistic of a random sample Z;, ..., Z, on Z.

Equation (2.17) indicates that hazard rate ordering not only compares the magnitudes
of two random variables, but it also has perhaps some connection with the variability
between the random variables. On differentiating (2.16), one can easily see that

X Y &= 16(G7 @) <7 (Fw) Vue (0,1), (2.18)

when the random variables X and Y admit densities. This lead Bagai and Kochar [41] to
prove the following connection between hazard rate ordering and dispersive ordering.
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Theorem 2.12. (a) If X or Y have increasing failure rate (IFR), then X <gisp = X <p, Y.
(b) If X or Y have decreasing failure rate (DFR), then X <p, = X <ip Y.

For a review on applications of dispersive ordering, see Joen et al. [45].

A weaker variability ordering is right spread order as introduced in Fernandez-Ponce et
al. [46]. It was also independently studied by Shaked and Shanthikumar[47] who call it as
excess wealth order.

Definition 2.13. X is said to be smaller than Y in the excess wealth order (denoted by X <y Y)
if

T Fwd e dx, 0 :
J‘Fl(p) (x) xSJ‘Gl(p) (x)dx, 0<p<1 (2.19)

Dispersive ordering implies excess wealth ordering which in turn implies that the
commonly used measures of variability like variances are ordered. One may refer to Shaked
and Shanthikumar [2] for a comprehensive discussion of this order.

2.3. Skewness Orderings

Skewness describes the departure of a distribution from symmetry, where one tail of the
density is more “stretched out” than the other. Several partial orders have been introduced
in the literature to compare the relative skewness of probability distributions. van Zwet [48]
introduced the concept of convex transform order to compare two distributions according to
skewness as defined below.

Definition 2.14. X is said to be smaller than Y in the convex transform order, denoted by X <. Y
if and only if, G'F(x) is convex in x on the support of X.

If X< Y, then Y is more skewed than X as explained in van Zwet [48] and Marshall
et al. [34]. The convex transform order is also called more IFR (increasing failure rate) order
in reliability theory, since when f and g exist, the convexity of G™'F(x) means that

FOE @) _ re(F ()
g(Gw) r(Gl(w)’

(2.20)

is increasing in u € [0,1]. Thus X <. Y can be interpreted to mean that X ages faster than Y
in some sense. Gamma distributions are ordered according to the convex transform order in
terms of their shape parameters.

Another well-known partial order to compare the skewness of two probability
distributions is star order.

Definition 2.15. X is said to be smaller than Y in the star order, denoted by X <, Y (or F <, G)
if the function G 'F(x) is star shaped in the sense that G™'F(x)/x is increasing in x on the
support of X.
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The star order is also called more IFRA (increasing failure rate in average) order in
reliability theory, since the average failure of F at x is

:—mfu)

1 X
7 == d 2.21
e = 3 [ = = @.21)
Thus F <, G can be interpreted in terms of average failure rates as
= (F1
tX (F'(w)) (2.22)
ry (G (w))

is increasing in u € (0,1]. Note that X has an increasing failure rate if and only if F is star-
ordered with respect to exponential distribution.
The function

F'(u)

1
2.23
E(X)L x dF(x) (2.23)

Lx(u) =

is known as Lorenz curve in the economics literature. It is often used to express inequality
in incomes. Based on Lorenz curve, the Lorenz order has been proposed in Economics to
compare income inequalities.

Definition 2.16. X is said to be smaller than Y in the Lorenz order, denoted by X <ioren, Y, if

F(u)

mfo *db) 2

2.24
E(Y)f xdG(x), Yu e (0,1]. (2.24)

It is known in the literature (Marshall et al. [34] ) that,

X< Y = X<, Y = X <porens Y = cv(X) < ev(Y), (2.25)

where cv(X) = /Var(x)/E(X) denote the coefficient of variation of X.
All the above partial orders are scale invariant. A good discussion of the star order and

Lorenz order can be found in Barlow and Proschan [49], Marshall et al. [34], and Kochar [50].

2.4. Dependence Concepts and Orderings

Let (X,Y) be a bivariate ramdom vector with joint distribution F(x,y) and with density
function f(x,y). Lehmann [51] introduced many partial orderings for dependence.

Definition 2.17. (a) X and Y are TP, dependent or likelihood dependent if their joint density
f(x,y) is totally positive of order 2 in x and y, or more precisely if

fxuy1) f(xLy )
f (xz,yi) f(x2, yi) (2.26)

whenever x; < x2, 11 < Y.
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(b) Y is stochastically increasing in X, denoted by SI(Y | X), if P(Y >y | X = x) is
increasing in x for all y, or equivalently,

PY<y|X=x)2P(Y<y|X=x"), x<x" (2.27)

(c) Y is right tail increasing in X, denoted by RTI(Y | X), if P(Y > y | X > x) is
increasing in x for all y.

(d) Y is left tail decreasing in X, denoted by LTD(Y | X), if P(Y < y | X < x) is
decreasing in x for all y.

Finally, random variables X and Y are associated (written A(X,Y)) if cov[['(X,Y),
A (X,Y)] > 0 for all pairs of increasing binary functions I and A. As shown in Barlow and
Proschan [49, page 143] the following chain of implications holds among the above notions
of positive dependence:

TP,(X,Y) = SI(X | Y) = RTI(X | Y) = A(S,T) = Cov(X,Y) > 0. (2.28)

These concepts of bivariate dependence can be easily extended to the multivariate
case. A function ¢ : R" — [0, o0) is said to be multivariate total positivity of order 2 (denoted by
MTP,) if

g(X)p(y) <p(xAy)p(xVy) for every x and y in R", (2.29)

where x Ay = (min(xy,¥1),...,min(x,, y,)) and x Vy = (max(xi,¥y1),..., max(xX,, Yn)).
Random variables Xj, ..., X, are said to be MTP, dependent if their joint density function
is MTP;. It is shown in Kemperman [52] (see also Block and Ting, [53]) that if the support
of a random vector X = (Xj,...,X,) is a lattice (i.e., if x and y are in the support of X then
so are x Ay and x V y) then X is MTP; if and only if, its density function f is TP, in each
pair of its variables when the other (n —2) variables are held fixed. See Karlin and Rinott [54]
for more details on properties of MTP; functions. Also refer to Joe [55] and Nelsen [56] for a
comprehensive discussion.
Observing that when X and Y are continuous, inequality (2.27) can be written as

Hyg,y o Hiy (1) <u, (2.30)

where ¢, = F'(p) stands for the pth quantile of the marginal distribution of X, and Hy
denotes the conditional distribution of Y given X = s. Avérous et al. [57] proposed the
following definition to measure the relative degree of monotone dependence between two
pairs of bivariate random variables (Xj,Y7) and (X3, Y>).
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Definition 2.18. Y; is said to be less stochastic increasing in X; than Y, is in X5, denoted by
(1] X1) Zs1 (Y2 | Xp), ifand only if, for0<u<1,and0<p <g<1,

Hapg,,p 0 Hi[lgzp] (u) < Hyp,) 0 Hfélp] (u), (2.31)

where &, = Fi‘1 (p) stands for the pth quantile of the marginal distribution of X;, and Hj[y
denotes the conditional distribution of Y; given X; = s, fori =1, 2.

Dolati et al. [58] proposed the following weaker dependence order based on RTI
criteria, called more RTI order.

Definition 2.19. Y is said to be less right-tail increasing (RTI) in X; than Y, is in X5, denoted by
(Y1 | X1) 2t (Y2 | Xp),if and only if, for0<u<1l,and0<p < g <1,

* *—1 * *—1
Hy,, © Hopg,,y () < Hipy, y o Hyp 4 (w), (2.32)

where ¢, = Fi‘1 (p) stands for the pth quantile of the marginal distribution of X;, and Hig
denotes the conditional distribution of Y; given X; > s, fori =1, 2.

It is easy to see that both more SI order and more RTI order are copula-based orders, and
more SI order implies more RTI order which in turn implies more concordance ordering (i.e.,
the two copulas are ordered). For the concept of copula, please refer to Nelsen [59] for more
details.

As observed in Avérous et al. [57] and Genest et al. [60], there is a close connection
between the above concepts of more dependence and the notion of dispersive ordering.

2.5. Notions of Majorization and Related Orderings

One of the basic tools in establishing various inequalities in statistics and probability is the
notion of majorization.

Let {x@) < x2) < -+ £ x(n)} denote the increasing arrangement of the components of
the vector x = (x1,x2,...,X5).

m .
Definition 2.20. The vector x is said to majorize the vector y (written x > y) if 37_ x4 <
Siaveforj=1,...,n-1and 3 x4 = i v

Functions that preserve the majorization ordering are called Schur-convex functions.

The vector x is said to majorize the vector y weakly (written x ; y) if Z{Zl x@) < Z{Zl Y for
j =1,...,n. Marshall et al. [34] provides extensive and comprehensive details on the theory
of majorization and its applications in statistics.

Bon and Paltanea [24] have considered a preorder on R*", which they call as a p-larger
order.

Definition 2.21. A vector x in R*" is said to be p-larger than another vector y also in R*"

. P j ' .
(written x > y) if [T, x¢) < T, v@,j=1,...,n
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Let log(x) denote the vector of logarithms of the coordinates of x. It is easy to verify
that

X ; y & log(x) ; log(y). (2.33)

It is known that x "£ y = (g(x1),...,8(xn)) ; (gn),...,8(yn)) for all concave functions g
(cf. [34]). From this and (2.33), it follows that when x,y € R*"

xYy=xty. (2.34)

P
The converse is, however, not true. For example, the vectors (0.2,1,5) > (1,2,3) but
majorization does not hold between these two vectors.

3. Stochastic Comparisons of Order Statistics in
the One-Sample Problem

In this section, we compare order statistics from a single sample according to various
stochastic orders.

3.1. Magnitude Orderings between Order Statistics in the One-Sample
Problem

Let Xj, ..., X, be a set of independent and identically distributed random variables. It is easy
to see that X, <st Xj.s, forall 1 <i < j < n. Boland et al. [18] extended this result from usual
stochastic order to hazard rate order. Using the definition of likelihood ratio ordering, it is
not hard to prove that X;., < Xj., for 1 <i < j < n. Shaked and Shanthikumar [2] considered
the problem of comparing order statistics from samples with possibly unequal sample sizes.
They showed that if random variables X;’s are iid, then X,., <ir Xp+1:n41 and Xi. 21 Xi:ne1.
Ragab and Amin [61] strengthened this result and proved that X, < Xj.,, whenever i < j
andn—-i>m-—j.

It is interesting to investigate the above stochastic relations among order statistics
when the random variables are independent but not identically distributed. Boland et al.
[18] showed that if random variables are independent and Xy <pr Xy+1, kK = 1,...,n, then
Xi—1:n <hr Xins+1,1=1,...,n+ 1. They also proved that if X;’s are independent and X,,.1 <nr Xk,
k=2,...,n then Xiy >h Xins1,1 = 1,...,n. Assuming X < Xp <jp - - - <jr Xp, Bapat an Kochar
[17] proved that X.,, <ip X, i < j.

3.2. Variability Orderings between Order Statistics in the One-Sample
Problem

David and Groeneveld [62] proved that if X;’s are iid random variables with a common
decreasing failure rate (DFR) distribution, then var(X;,) < var(Xj,), for1 <i < j < n.
Kochar [11] strengthened this result to prove that under the same conditions, Xi., <disp Xjn,
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1 < i < j £ n. Khaledi and Kochar [27] further proved that if X;’s are iid with a DFR
distribution, then X;., <gisp Xj.m, wheneveri<jandn-i>m-j.

3.3. Skewness Orderings between Order Statistics
in the One-Sample Problem

Arnold and Villasenor [63], Arnold and Nagaraja [64], Wilfling [65], and Kleiber [66],
among others, studied Lorenz order relations between order statistics from uniform and other
distributions. In particular, Arnold and Villasenor [63] proved the following result on Lorenz
ordering between the order statistics from uniform distributions.

Theorem 3.1. Let U;., denote the ith order statistic of a random sample of size n from a uniform
distribution over (0,1),i=1,...,n. Then
(a
(b
(c
(d

) Uivtn <torenz Ui, foralli<n -1,
) Uin <torenz Uins, f01" alli<n+1,
) U—iv1:n+1 <torenz Un—icn, f01" all i<mn,
) Uni22043 <torenz Un+1:2n41, fOI’ all n.

The last inequality may be described as “sample medians exhibit less variability as
sample size increases.” Arnold and Villasenor [63] wonder about the conditions on i, j, m,
and n under which

uj:m <Lorenz ui:n (31)

holds.

Kochar [67] answered this question in Theorem 3.2 below in which sufficient
conditions on the parent distribution F are obtained under which X;.,, <, X;., holds. Many
of the previously known results follow from this general result as particular cases as star
ordering implies Lorenz ordering.

Theorem 3.2. Fori=1,...,n, let X;,, denote the ith order statistic of a random sample of size n from
a distribution with reverse hazard rate 7r. If

x7p(x) is increasing in x, (3.2)
thenfori<jandn—-i>m-j,
Xj:m <s Xi:n- (33)

Remark 3.3. Arnold and Villasenor [63] mention (3.2) as a sufficient condition for the relation

Xi+1:n <Lorenz Xi:n (34)

to hold. We have a more general result.
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The following theorem is also proved in in Kochar [67].
Theorem 3.4. Fori=1,...,n, let X;,, denote the ith order statistic of a random sample of size n from

a distribution with its hazard rate rp(x) = f(x)/ F(x) satisfying the condition,

xre(x) is decreasing in x. (3.5)

Then
Xin < Xjm fori<j n—i>m-j. (3.6)
The above theorems immediately lead to the following result because of the relation

between star ordering and Lorenz ordering.

Corollary 3.5. Iffori=1,...,n, X, denotes the ith order statistic of a random sample of size n from
a distribution satisfying

(a) condition (3.2), then
Xj:m Ztorenz Ximn (37)

fori<jandn—-i>m-—j.

(b) condition (3.5), then
Xj:m >Lorenz Ximn (3-8)

fori<jandn—-i>m-—j.

Example 3.6. The condition (3.2) is satisfied by the power function distribution with
distribution function, Fx(x) = [x/c]", 0 < x < ¢, y > 0. Therefore, the conclusions of
Theorem 3.2 and Corollary 3.5(a) hold for this distribution. Arnold and Villasenor [63] also
conjectured that for this distribution,

Xn—j+1:n+1 <Lorenz Xn—j:n/ for every 1<j<n (3.9)

Its proof immediately follows from Theorem 3.2 and Corollary 3.5.

Example 3.7. Let X has Pareto distribution with F(x) = 1 - (x/¢)™, x > ¢, a > 1.
Condition (3.5) is satisfied by this distribution. Hence the conclusions of Theorem 3.4 and
Corollary 3.5(b) hold for this distribution.



14 ISRN Probability and Statistics

3.4. Dependence among Order Statistics in the One-Sample Problem

Assuming that Xj,...,X, are independent and identically random variables, Bickel [68]
showed that

COV(Xi:nr Xj:n) > 0. (310)

When the parent distribution has an increasing hazard rate and a decreasing reverse hazard
rate, Tukey [69] showed that

COV(Xi’:n/ Xj’:n) < C0V<Xi:n/ Xj:n) (311)

foreitheri=7and j<j;orj=jandi <i.

Kim and David [70] proved that if both the hazard and the reverse hazard rates of the
Xi’s are increasing, then inequality (3.11) remains valid when i = i’ and j < j'; However, the
inequality (3.11) is reversed when j = j' and i’ < i.

Avérous et al. [57] used the more SI concept to study the relative degree of dependence
between two pairs of random variables. They proved the following result.

Theorem 3.8. Let X1, < -+ Xy and Xq.p < -+ Xypw be the order statistics associated with two
independent random samples of sizes n and n' from the same continuous distribution. Then, for 1 <
i<j<n1<i<j<n,andi' <i,j-i<j-i',n-i<n' -i,n -j <n-j,onehold that

Kjow | Xiw ) Z51(Xjin | Xicn)- (3.12)

As a direct consequence, we have the following result.

Corollary 3.9. Let Xy, < -+ Xy be order statistics from the same continuous distribution. Then,
(1) (Xk:n | Xi:n) <g (X]n | Xi:n)for 1<i< ] <k<mn
(2) Xjin | Xin) L1 Xjsrms1 | Xivrmnr) for 1 <i<j<m;
(3) (Xn+1:n+1 I Xin+1) 2st (X | Xl:n)for n>2.

It can be seen from the above result that the dependence between the components of
a pair (Xj.,, Xi:n) of order statistics decreases in the sense of SI ordering as i and j get further
apart.

Remark 3.10. Since the copula of a pair of order statistics of a random sample is independent
of the parent distribution and since the concept of more SI is copula based, it follows that in
Theorem 3.8 and Corollary 3.9, the two samples could be from different distributions.

As explained in Avérous et al. [57], the following result follows immediately from
Theorem 3.8.

Corollary 3.11. Under the assumptions of Theorem 3.8, one has

K(Xj’:n’r Xi’:n’) S K(Xj:n/ Xi:n)r (313)
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where k(X,Y') represents Spearman’s rho, Kendall’s tau, Gini’s coefficient, or indeed any other copula-
based measure of concordance satisfying the axioms of Scarsini [71].

3.4.1. Kendall’s T and Spearman’s p for Order Statistics

Two popular nonparametric measures of association for bivariate random variables are
Kendall’s 7 and Spearman’s p, which measure different aspects of the dependence structure.
In terms of dependence properties, Spearman’s p is a measure of average quadrant
dependence, while Kendall’s 7 is a measure of average likelihood ratio dependence (cf.
[59, 72]).

Avérous et al. [57] made an important observation that in the case of a random
sample from a continuous distribution with cdf F, the copula of a pair of order statistics
is independent of the parent distribution F. As a result the value of any copula-based
measure of dependence like Kendall’s tau or Spearman’s coefficient for any pair of order
statistics (X;.,, Xj.,) will be the same for all continuous distributions Schmitz [73] derived the
following formulas:

1
T(Xlzn/ Xn:n) - m—1 ’
3.14
. x 0 (n‘) (3.14)
P( l:ins n:n) - = 1’l+k (3 )'
X. Liand Z. Li [74] proved a conjecture in Schmitz [73] that
P(Xlzn/ Xn:n) 3
_— = . 1
T(Xlznr Xn:n) — 2, e (3 5)

Avérous et al. [57] used a combinatorial approach to prove the following formula of
Kendall’s T for any pair of order statistics from the same continuous distribution:

T(Xin, Xjin) =1 - 22(2:1) (111—_12>< :ll: >Z

Subsequently, Chen [75] developed three new formulas to compute p(X1.,, Xyi:n):

\

RGN

2n-2 '
=0\ n—jts,r+i-1

(3.16)

Il
o

p(Xl:n/ Xn:n) = 3(1 - 4an), (317)

where a, can be computed by any one of the following formulas.

(1) Formula 1:

1 pt
a, =n(n-1) fo fo (1-s)"t"(t - )" 2ds dt; (3.18)
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(2) Formula 2:

_ L 1k (z n+k .
an = kZ:O( 1) () 2 K (3.19)
(3) Formula 3:
L nl Gn!

He further showed the following compound inequality:

3(2n—1)(14n* + 151 +3) _ p(Xim, Xn) _ 321 -1)(14n° - 130+ 2)

3.21
56m3 +86m2 +43n+7 ~ T(Xip, Xpm) = 56m3 -82n2+39n-6 ( )

from which, (3.15) follows immediately.
Recently, Navarro and Balakrishnan [76] have also studied this problem and have
obtained alternate expressions for computing these measures of dependence.

3.4.2. Dependence Orderings among Order Statistics When the Observations Are Not
Identically Distributed

The proportional hazard rates (PHRs) model is a popular model in survival analysis,
reliability theory, and other branches of statistics. Let X; denote the lifetime of the ith
component of a reliability system with survival function F;(t), i = 1,...,n. Then they
have proportional hazard rates if there exist constants 1y, ..., 1, and a (cumulative hazard)
function R(t) > 0 such that F;(t) = e™R® fori = 1,...,n. Clearly then the hazard rate of X;
is ri(t) = iR (t) (assuming it exists). An example of such a situation is when the components
have independent exponential lifetimes with respective hazard rates 14, ..., A,.

Boland et al. [10] studied in detail the dependence properties of order statistics
when the observations are not necessarily identically distributed. They proved the following
dependence result for the PHR model.

Theorem 3.12. Let Xy,...,X, be independent random variables with differentiable densities and
follow the PHR model on an interval. Then for 1 <i < n, Xj, is SLin Xi.p.

They also gave a counterexample to illustrate that, in general, X, is not SI in Xj.,.
However, they showed that for 1 <i < j <n, Xj,, is RTI in X;,,.

Theorem 3.13. Let Xj, ..., X, be independent random variables. Then for any i < j, RTI(X.n | Xin)
and LTD (X | Xjin).

They showed with the help of a counter example that, in general, the relation RTI(X., |
Xj.n) may not hold fori < j.
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This topic has been further developed by Hu and Xie [77], where they exploited the
negative dependence of occupancy numbers in the balls and bins experiment. They proved
the following result.

Theorem 3.14. Let Xj, ..., X, be independent random variables. For 1 <i < j;3 < jp <+ <j <m,
and (x1,...,x,) €R",

(1) if Ainy = {Xin >y}, then

P(Xj, > x1,..., Xj, > % | Ainy) (3.22)

is increasing in y;
(2) if event A, is either {Xiyn > y} or {Xin <y}, then the conditional probability in (3.22)
is decreasing in i for each y,; and

(3) if each Xy has a continuous distribution function, and if A;,, is either {Xi, = y} or
{Xic1n <y < Xin}, then (3.22) is decreasing in i for each y, where Xo., = —c0.

Dubhashi and Haggstrom [78] further extended the above result to multivariate
stochastic comparisons.

Theorem 3.15. Let X1, ..., X, be independent random variables. Then
[(Xi:n/ oo Xum) | Xion > ]/] st [(Xi:n/ oo Xnn) | Xion > ]//]/ y< y,' (3.23)

Subsequently, Theorem 3.14 was further extended by Hu and Chen [79] as follows.
Theorem 3.16. Let X1, ..., X, be independent random variables.

(1) If j —i > max{n —m,0}, then

P(Xjin > x1, Xjs1n > X2, -+, Xpn > Xn_ji1 | Xim > ) (3.24)
is increasing in y for all (x1,. .., Xp_j+1) € R"T*;

(2) Ifj —i < min{n —m,0}, then

P(Xi < x1,Xom <2, 0, Xjin < Xpju1 | Xiom < ) (3.25)

is decreasing in y for all (x1,...,x;) € RJ.

Recently, Zhuang et al. [80] discussed the dependence among order statistics in the
sense of multivariate stochastic comparisons, which extends the results in Hu and Chen [79]
and Dubhashi and Haggstrom [78].

Theorem 3.17. Let X3, ..., X, be independent random variables.

(1) If j —i > max{n —m,0}, then

[(Xj:nr .. '/Xn:n) | Xi:m > y] st [(Xj:n/- . -/Xn:n) | Xi:m > y/]/ y < yl' (326)
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(2) If j —i <min{n - m, 0}, then

[(Xlznz .. '/Xj:n) | Xim < ]/] st [(Xl:n/ cee /Xj:n) | Xin < ]/,]/ y < y,- (327)

4. Stochastic Comparisons of Order Statistics in
the Two-Sample Problem

Let Xi,...,X, be a set of independent random variables and Yj,...,Y; be another set
of independent random variables. Ross [31] proved that if X;<«Y;, i = 1,...,n, then
(X1,...,Xn) St (Y4,...,Yy). A consequence of this result is that X;, <4 Y, fori = 1,...,n.
Lynch et al. [81] generalized this result from stochastic ordering to hazard rate ordering
though under a stronger condition. They proved that if X;<\ Y, i,j € {1,...,n}, then
Xim <nr Yim, 1 = 1,...,n. A similar result for likelihood ratio ordering has been proved by
Chan et al. [82]. They proved that if X; <Y}, i,j € {1,...,n}, then X;:, <)y Yy, i = 1,..., 1.
Lillo et al. [83] in the following theorem strengthened this result to the case when the number
of Xi’s and Y;’s is not necessarily equal.

Theorem 4.1. Let Xy,...,X, be independent random variables and let Y1, ..., Y., be another set of
independent random variables, all having absolutely continuous distributions. Then X; <j, Y; for all
i, j implies Xiy <ir Yj.m whenever i < jand n—i>m-—j.

In the next theorem we establish dispersive ordering between order statistics when the
random samples are drawn from different distributions.

Theorem 4.2. Let X, ..., X, be a random sample of size n from a continuous distribution F and let
Yi...,Y,, be a random sample of size m from another continuous distribution G. If either F or G is
DFR, then

XSdiSpY = Xin Sdisp Y]m fOT" i<jn-izm-—j. (4.1)

Proof. Let F be a DFR distribution. The proof for the case when G is DFR is similar. Khaledi
and Kochar [27] proved that X;., <gisp Xj.m for i < j and n—i > m~j. Bartoszewicz [42] proved
that if X <gisp Y then X, <gisp Yj.- Combining these we get the required result. O

Since the property X <j; Y together with the condition that either F or G is DFR implies
that X <4isp Y, we get the following result from the above theorem.

Corollary 4.3. Let X, ..., X, be a random sample of size n from a continuous distribution F and
Yi ..., Y, be a random sample of size m from another continuous distribution G. If either F or G is
DFR, then

X <hr Y = Xi:n Sdisp Y]’:m fOT‘ i < j/ n—i >m- ] (42)
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4.1. Stochastic Comparisons of Order Statistics When
Observations Are Heterogeneous

Many researchers have investigated the effect on the survival function, the hazard rate
function and other characteristics of the time to failure of this system when we switch the
vector (Ay,...,,) to another vector say (47, ..., ;) in the PHR model. Pledger and Proschan
[15], for the first time, studied this problem and proved the following interesting result
among many other results.

Theorem 4.4. Let (Xy,...,X,) and (X3,...,X}) be two random vectors of independent lifetimes
with proportional hazards with Ay, ..., A, and 1, ...\;, as the constants of proportionality. Then for
i=1,...,n.

(A dayee dn) > (AL, A2) = Xp 2 XL, fork=1,...,n. (43)

Proschan and Sethuraman [16] strengthened this result from component wise
stochastic ordering to multivariate stochastic ordering. That is, under the assumptions of
Theorem 4.4, they proved that

(Xlznl ceey Xn:n) st (X* . X;;n)- (44)

lns -

These results show that if the parent observations have proportional hazard rates,
then their order statistics are stochastically larger when the proportionality parameters are
dispersed in the sense of majorization.

Boland et al. [18] showed with the help of the following counterexample that (4.3) can
not be strengthened from stochastic ordering to hazard rate ordering for k = n when n > 3.

Example 4.5. Let (X1, X5, X3) be independent exponential random vector with hazard rate
vector (A1,42,13) = (0.1,1,9) and (X], X3, X3) be independent exponential random vector
with hazard rate vector (1], 13, 13) = (0.1,4,6). It is easily seen that

(A1, A, da) > (A2, 45,42). (4.5)
However,
x5 (2) = 0.113 > rX:, (2) = 0.100. (4.6)
Hence,
X33 Zhe X35- (4.7)

Khaledi and Kochar [28] proved the following result for the largest order statistics
under p-larger ordering.
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Theorem 4.6. Let (Xy,...,X,) and (X7,...,X}) be two random vectors of independent lifetimes
with proportional hazards with Aq,..., A, and A{, ... A}, as the constants of proportionality. Then

A2 d) 2 (A5 A0 A5) = X 2 X (4.8)

The following example due to Khaledi and Kochar [28] shows that Theorem 4.6 may
not hold for other order statistics.

Example 4.7. Let (X1, X5, X3) be independent exponential random vector with hazard rate
vector (A1, A2, 43) = (0.1,1,7.9) and (X7, X3, X3) be independent exponential random vector

with hazard rate vector (1], 13, 13) = (1,2,5). It is easily seen that

(1, dp, d3) & (A3, 43, 12). (4.9)
However,
X5 (X) =9 > rx: (%) =8, (4.10)
which implies
Xi3 <t XT .- (4.11)

Khaledi and Kochar [28] also showed that in, general,
(A2 dn) 2 (A5 A5, AD) 52X <ot X (4.12)

Torrado and Veerman [84] formulated a simple criteria in terms of the \A;’s to see
whether two k-out-of-n systems are stochastically ordered.

4.1.1. Comparison of Order Statistics from Heterogenous and Homogeneous Samples.

Let Xy,..., X, be continuous independent random variables such that the c.d.f. of X; is F;,
i=1,...,n, where F;’s are not necessarily all equal. Let Y3, ..., Y, be a random sample of size
n from a distribution with c¢.d.f G = (1/n) 3, F;. Sen [7] proved a very general result that
whereas for the first order statistic, Xi., <st Y1.n, the inequality is reversed for the largest order
statistic, that is, X,.., >st Yon-

Dykstra et al. [22] studied the above problem for the exponential distributions. They
proved the following stronger result on hazard rate ordering for largest order statistics.
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Theorem 4.8. Let X, ..., X, be independent exponential random variables with X; having hazard
rate \j,i=1,...,n;and let Y1,...,Y, be a random sample of size n from an exponential distribution
with common hazard rate X. Then for

A== 2 Ai, (4.13)
Yn:n <hr Xn:n (414)

as well as
Yn:n Sdisp Xn:n- (415)

Khaledi and Kochar [28] proved that (4.14) and (4.15) continue to hold with A = X =
(1_[?:1)”)1/ ", the geometric mean of the \'s. This result gives better bounds on the hazard rate
and measures of variability of a parallel system with heterogeneous exponential components.

Khaledi and Kochar [28] also extended the results (4.14) and (4.15) from the
exponential case to the PHR model as stated in the next theorem.

Theorem 4.9. Let Xy,...,X, be independent random variables with X; having survival function
=\, . . . L .
F,i=1,...,n Let Y1,...,Y, be a random sample with common population survival distribution

?)L, where \ = (H?zl)t,-)l/", then

(1) Yon <nr Xuns
(i) Yon <disp Xun if F has decreasing failure rate (DFR).

These results give nice bounds on the hazard rate and the variance of a parallel system
with components which are independent following the PHR model in terms of the case when
they are independent and identically distributed.

Kochar and Xu [85] further strengthened the conclusion (4.14) of Theorem 4.8 of
Dykstra et al. [22] from hazard rate ordering to likelihood ratio order for the PHR model,
which includes exponential as a special case.

Theorem 4.10. Let Xy, ..., X, be independent random variables with X; having survival function
=\, . . . L .
F,i=1,...,n LetYq,...,Y, be a random sample with common population survival distribution

f)t, where \ = >, Ai/n, then

Yn:n <ir Xuen- (416)

The following example due to Kochar and Xu [85] shows that the result of Khaledi
and Kochar [27] above cannot be strengthened from the hazard rate order to the likelihood
ratio order under p-larger ordering.

Example 4.11. Let Xy, ..., X, be independent exponential random variables with X; having
hazard rate \;,i =1,...,n,and Y3, ..., Y, be a random sample of size n from an exponential
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distribution with common hazard rate A = (H:’zlx\i)l/ " Then, the reversed hazard rate of X,,.,
is

" no)ehix
£ i’; ; 3 1*_‘26_“. (4.17)
Similarly, the reversed hazard rate of Yy, is
. - pAx
gt i (418)
LetA; = A =1, 13 =3, and n = 3, then,
1{:'28 ~1321 <1339 = g’;’:l((ll)) (4.19)
Thus,
Xin Z1h Yo, (4.20)
which implies that
Xnin Z1r Yoen- (4.21)

Bon and Péltinea [86] proved the following result on stochastic ordering between
kth order statistics from heterogeneous and homogeneous samples from exponential
distributions.

Theorem 4.12. Let X,..., X, be independent exponential random variables with hazard rates \;,
i=1,...,n LetYy,...,Y, be independent exponential random variables with a common hazard rate
A. Then,

A > X — Xk:n st Yk:nr (422)

where

-1

1/k
A=<(Z> 3 Ail--wik> , (4.23)
1<iy<-<ig<n

a result which also follows from Khaledi and Kochar [27] for the case when k = n.

Kochar and Xu [87] proved the following results on excess wealth ordering between
largest order statistics from heterogeneous and homogeneous samples.
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Theorem 4.13. Let X, ..., X, be independent exponential random variables with X; having hazard
rate \j,i=1,...,n. LetYy,...,Y, be a random sample of size n from an exponential distribution with
common hazard rate A. Then,

A < = Yn:n <Rrs Xn:n/ (424)

where

A*:Z

n
i=1

-1
1 = k+1 1
- [Z(—n > . (4.25)

k
k=1 1<ir Sosigsn 21 A

Theorem 4.14. Let X;, ..., X, be independent random variables with X; having survival function
=k . . . A
F,i=1,...,nandletYy,...,Y, be another random sample with the common survival function F .

If F is DFR, then

)L* < A= Yn:n SRS Xn:n/ (426)

where \* is given in (4.24).
As a consequence, we have the following result.

Corollary 4.15. Let X, ..., X, be independent random variables with X; having survival function
A . . . ¢
F,i=1,...,nandletYy,...,Y, be another random sample with the common survival function F .

If F is DFR, then
A* <A = Var(Yy.,) < Var(X,.), (4.27)

where \* is given in (4.24).

Remark 4.16. In the special case of exponential distribution, F(x) = e ¥, Khaledi and Kochar
[28] gave a lower bound on the variance of X, in terms of the geometric mean,

1&1
Var(X.n) > XZI—Z (4.28)
i1

Since the right spread order implies the variance being ordered (cf. Shaked and Shanthikumar
[2]), Corollary 4.15 provides a better lower bound for the variance,

181
Var(X,) > )TZ;‘TZ (4.29)

as \* < .
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4.1.2. Skewness Comparisons of Order Statistics from Two Samples

Kochar and Xu [87] for the first time studied the problem of comparing order statistics
according to shape orderings like convex ordering and star ordering. They proved that
a parallel system with heterogenous exponential component lifetimes is more skewed
(according to convex transform order) than the one with i.i.d. exponential components. This
is stated in the following theorem.

Theorem 4.17. Let Xy, ..., X, be independent exponential random variables with X; having hazard
rate Aj,i=1,...,n. Let Y1,...,Y, be a random sample of size n from an exponential distribution with
common hazard rate . Then,

Youn <c Xnin- (4.30)

Remark 4.18. Theorem 4.17 means that a parallel system with homogeneous exponential
components ages faster than than a system with heterogenous exponential components
in the sense of “more IFR” property. Note that a parallel system with homogeneous
exponential components is IFR (Barlow and Proschan [49]). However, a parallel system with
heterogenous exponential components may not be IFR.

Remark 4.19. It is interesting to note that, unlike the magnitude and variability orders, no
restriction on the parameters is needed for Theorem 4.17 to hold as the convex transform
order is scale invariant. Intuitively, due to the heterogeneity, the largest order statistic
from a heterogenous sample will be more skewed than that from a homogeneous sample.
Theorem 4.17 confirms this fact for exponential samples.

The following result, which is of independent interest in economics, is a direct
consequence of Theorem 4.17

Corollary 4.20. Let X1, ..., X, be independent exponential random variables with X; having hazard
rate \j,i=1,...,n. LetYi,..., Y, be a random sample of size n from an exponential distribution with
common hazard rate A. Then,

Yn:n <vorenz Xu:n- (431)

From Barlow and Proschan [49, page 60], it follows that,

141
EYn:n = XZ;/
i=1

(4.32)
1&1
Var(Yn:n) = ﬁzll_z
Using (2.25), one get the following lower bound on the coefficient of variation of X.,,,
i (1/i)
CV(Xn:n) > M (433)

(S /i)

Kochar and Xu [88] extended Theorem 4.17 to the PHR family as follows.
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Theorem 4.21. Let Xy, ..., X, be independent random variables with X; having survival function
A, L . . .
F,i=1,...,nandletYy,...,Y, bea random sample from a distribution with the common survival

—1 ~
distribution F~ where L > A = {/ T, \i, the geometric mean of A;’s. If

R(x)

r(x) is increasing in x > 0, (4.34)

then

Xn:n 2* Yn:nr (435)

where R(x) = —log F(x) is the cumulative hazard rate function, and r(x) = f(x)/ F(x) is the hazard
rate function of F.

It can be seen that distributions like Weibull, Lomax, and Pareto satisfy the condition
(4.34). Kochar and Xu [88] proved the following result on star ordering for kth order statistics.

.. . . . . —

Theorem 4.22. Let X, ..., X, bei.i.d. random variables with the common survival distribution F y
.. . . . L .=k

and let Xp41, ..., X, be another set of i.i.d. random variables with common survival distribution F :

—1
and let Yy, ..., Y, be a random sample from a distribution with common survival distribution F~ where
A> L If

95*((?) is increasing in x >0, (4.36)
then
Xien 2x Yien, (4.37)
and hence,
Xkn ZrLorenz Yen, k=1,...,m, (4.38)
where

i <<g) 5 )W;)”" 439

and L = {l : max{k —n+p,0} <I<min{p, k}}.

4.1.3. Stochastic Comparisons of Second Order Statistics

In the next theorem, we give a collection of results on various types of stochastic orders for
the second order statistics.
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Theorem 4.23. Let Xj,..., X, be independent exponential random variables with parameters
M, ..., Ay, respectively; and let Y1, . .., Y, be independent random variables with common hazard rate
A.

(a) (Paltinea [89])

-1
Y2:n <hr X2:n A > X = J (Z) Z .)Ll)LI (440)

1<i<j<n

(b) (Zhao and Balakrishnan [90])

Y2:n Sdisp X2:n =\ > X (44-1)
(c) (Zhao et al. [91])
Kk 1 A3 - A1A2
L < . > = 8 SMA2 .
Yz_n <ir Xz,n =\ > A m—1 <2A1 + A% . A2 >, (4 42)
where
k
Ar=Y), k=123 (4.43)
i=1

(d) (Zhao and Balakrishnan [92])
Y2:n Smrl XZ:n =\ 2 )L**/ (444)

where

a 2n-1
Cam-D[IE 1/ (A - 4) - (n-1)/A1)]

k%

(4.45)

4.2. The Scale Family

Independent random variables Xj,,...,X,, are said to belong to the scale family of
distributions if X, ~ F(A;x), fori =1,...,n, where F is an absolutely continuous distribution
function with density function f. It means that the random variables 1;X,,,..., 1, X},
are independent and identically distributed with common cdf F. F is called the baseline
distribution and the ;s are the scale parameters. It includes many important distributions
like normal, exponential, Weibull, and gamma as special cases. The scale model is of
theoretical as well as practical importance in various fields of probability and statistics. As we
have seen above, there is an extensive literature on stochastic orderings among order statistics
when the observations follow the exponential distribution with different scale parameters.
Pledger and Proschan [15] proved the following general result for the scale model.
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Theorem 4.24. Let Xy,..., X, Y1,...,Y, be independent nonnegative random variables with X; ~

F(lix), Y; ~ F(uix), A >0, u; > 0,i =1,...,n where F is an absolutely continuous distribution. If
r(x), the hazard rate of F, is decreasing, then

()‘1/ veey )Ln) ; (ﬂl/ sy ,un) == Xk:n st Yk:nr (446)

fork=1,...,n

Bon and Piltanea [86] proved the following result for the scale model when one set of
variables are iid.

Theorem 4.25. Let X3, ..., X, be independent nonnegative random variables with X; ~ F (1;x) and
let Y1,...,Y, be a random sample from a distribution with cdf F(my(\)x), where F is the cdf of a
nonnegative random variable with nonincreasing failure rate and

n -1 1/k
mk(A)=<<k> > Ah---)tik) . (4.47)

1<ij<<ix<n
If F(x)/[xF(x)] is an increasing function on [0,0), then for k € {1,...,n},
Xien 2st Yeen- (44.8)

Hu [93] also considered the general scale problem and proved the following result.

Theorem 4.26. Let X4,...,X,; Yi,...,Y, be independent nonnegative random variables with X; ~
F(Aix), Y; ~ F(uix), where A; >0, u; >0,i=1,...,nare such that

Ao dn) > (1, i) (4.49)

Assume that the failure rate of F, r (x) is decreasing and xr(x) is increasing. Then on some probability
space (Q,F, D), there exist random variables X3,...,X;; Y],..., Y, such that

X1, Xn) 2(X,,..., X0),

Y, V) 2 (Y., Y, (4.50)

Xien > Yien, a.s.fork=1,...,n.
This implies in particular that
st
(Xltnl s an:n) 2 (Y];n, ceey Xn:n). (451)

Let G(a, 1) and W (a, ) denote gamma and Weibull random variables with shape
parameter a and scale parameter A. For these scale models, Sun and Zhang [94] and Khaledi
and Kochar [95], respectively, proved the following theorem.
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Theorem 4.27. Let (Xi,...,X,) and (Y1,...,Y,) be two sets of independent random variables with

(@) Xi ~W(a, Xj) and Y; ~W(a, p;),i=1,...,nor
(b) Xi ~G(a, X)) and Y; ~ G(a, p;), i=1,...,n.

Thenfor0 <a <1,
m t
A > 44 e (Xlzn/ “ee /Xn:n) SE (len/ ey Yn:n)- (452)

4.2.1. Generalized Gamma Distribution

A random variable X is said to have a generalized gamma distribution, denoted by X ~
GG(p, g), if it admits the following density function:

p -1 _—x
gp,q(x) = 1"( x9 16 P

_—r x>0, 4.53
q/p) (4:59)

where p, (> 0) are the shapes parameters. It was introduced by Stacy [96] and includes the
wildly used exponential (p = 1, g = 1), Weibull (g = p), and gamma (p = 1) distributions
as special cases. It is a flexible family of distributions, having an increasing failure rate when
q >1, p>1,abathtub failure rate when g < 1, p > 1, an upside down bathtub (or unimodal)
failure rate wheng > 1, p < 1.

It is easy to show that for p < 1,9 < 1, the hazard rate of generalized gamma
distribution is decreasing. It is shown in Khaledi et al. [97] that xr(x) is an increasing
function of x for all p,q > 0. Thus the conditions of Theorem 4.26 are satisfied when the
baseline distribution is generalized gamma distribution with p <1, g <1 and thus extending
the result of Theorem 1.1 in Sun and Zhang [94] from standard gamma distribution to
generalized gamma distribution.

4.2.2. Power-Generalized Weibull Distribution

A random variable X is said to have power-generalized Weibull distribution, denoted by
X ~PGW(v,7), if its density function is

ftv,y) = ;t“(l + YT s 05y 50, (4.54)

and its survival function is
F(t,v,y) =", >0, (4.55)

It has a decreasing failure rate when v < y, v < 1, an increasing failure rate when v > y,v > 1,
a bathtub failure rate when 0 < y < v < 1, and an upside down bathtub (or unimodal) failure
rate when y > v > 1. It includes Weibull and exponential distributions as special cases.

For more details on this family and its applications in probability and statistics, the
reader is referred to Bagdonavicius and Nikulin [98]. Let r(x) be the hazard rate function



ISRN Probability and Statistics 29

of power-generalized Weibull distribution. It is known that for v <y, 0 < v <1, r(x) is a
decreasing function (cf. [98]).
For all values of v and y, the function

xr(x) = Sx(1+ )1 (4.56)

is increasing in x. That is, the conditions of Theorem 4.26 are satisfied by the power-
generalized Weibull distribution with v <y, 0 < v <1, thus extending the result of Theorem
2.2 in Khaledi and Kochar [95] from standard Weibull distribution to power-generalized
Weibull distribution.

Khaledi et al. [97] proved that under some additional conditions the results of
Theorem 4.24 can be extended from stochastic ordering to the hazard rate order when we
compare two series systems.

Theorem 4.28. Let X,,, ..., X,, be independent nonnegative random variables with X, ~ F(A;x),
i=1,...,n, where \; >0,i=1,...,nand F is an absolutely continuous distribution. Let r be the

hazard rate functions of F. Ifxzr'(x) is decreasing and (Ay, ..., \,) '§ (M1, -, fn), then
(1) Xin 2nr Yiin, and

(ii) if r(x) is decreasing then Xi.n 2gisp Y1:n-
The inequalities in (i) and (ii) are reversed if x*r'(x) is increasing.

It is shown in Khaledi et al. [97] that x?r'(x) is decreasing for the PGW(v,y)
distribution when 0 < v < y and v < 1. This is also true for the GG(p, q) distribution when
p,q < 1. We know that for p,q < 1, the hazard rate function r(x) is decreasing. That is,
Theorem 4.28 (ii) can be applied to this case as well.

Khaledi et al. [97] also established a stochastic ordering result for the largest order
statistics under p-larger ordering.

Theorem 4.29. Let X;,..., X, be a set of independent nonnegative random variables with X; ~
F(\ix),i=1,...,n, where F is an absolutely continuous distribution function with density function
f. Let Y1,...,Y, be another set of independent nonnegative random variables with Y; ~ F(u;x),
i=1,...,n Let ¥(x) denote the reverse hazard rate of F. If x7(x) is decreasing in x, then

(')Ll" "’)L”) g ([«11,--.,[4;1) = Xn:n st Yn:no (457)

The above theorem immediately leads to the following corollary.

Corollary 4.30. Let Xy,...,X, be a set of independent nonnegative random variables with X; ~
F(\ix),i=1,...,n, where F is an absolutely continuous distribution function with density function
f.LetYi,...,Y, beiid. random variables with common c.d.f F (Xx), where X is the geometric mean
of the \i’s. If x7(x) is decreasing in x, then Xy., >st Yen.

The above corollary gives a lower bound on the survival function of a parallel system
with non-identical components in terms of the one with i.i.d. components when the common
scale parameter is the geometric mean of the scale parameters. The new bound is better than
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the one that follows from Hu [93] which is in terms of the arithmetic mean of the scale
parameters since Fy,, (x) is a nonincreasing function of A and the fact that the geometric
mean of the \;’s is smaller than their arithmetic mean.

Under the conditions of Theorems 4.28 and 4.29 the improvements on the bounds are
relatively more if the \;’s are more dispersed in the sense of majorization. This fact follows
from the fact that the geometric mean is Schur concave whereas the arithmetic mean is Schur
constant and the survival function of a parallel system of i.i.d components with baseline
distribution F(x) and common parameter Lis decreasing in X,

It is shown in Khaledi et al. [97] that the conditions of Theorem 4.29 are satisfied when
the baseline distributions in the scale model are generalized gamma distribution and power-
generalized Weibull distribution with arbitrary parameters.

The next theorem again by Khaledi et al. [97] extends Theorem 4.26 from stochastic
ordering to the reverse hazard rate order when we compare two parallel systems, a result
which is similar to Theorem 4.28.

Theorem 4.31. Let X,,, ..., X,, be independent nonnegative random variables with X,, ~ F(A;x),
i=1,...,n,where \; >0,i=1,...,nand F is an absolutely continuous distribution. Let Y1,...,Y,
be another set of independent nonnegative random variables with Y; ~ F(uix),i=1,...,n. Let f and
7 be the density and the reverse hazard rate functions of F, respectively. If x*7'(x) is increasing, then

m rh
Moo da) = (1, fn) = X = Yo (4.58)

It is proved in Khaledi et al. [97] that the conditions of Theorem 4.31 are satisfied
by generalized gamma distribution with the parameters p < 1 and g > 0. That is, the
reverse hazard rate of a parallel system consisting of independent components with GG(p, q)
lifetimes is Schur convex in the vector of scales parameters, when either p < 1 and g <1 (i.e,,
FisDFR,) orp <1and g > 1 (i.e., F has an upside down bathtub failure rate).

Balakrishnan and Zhao [99] proved the following result for gamma distribution.

Theorem 4.32. Let Xy,...,X, be independent gamma random variables with X; having shape
parameter 0 < r < 1 and scale parameter \;, i = 1,...,n. Let Y1,...,Y, be a random sample of
size n from a gamma distribution with shape parameter r and scale parameter X = A > X= ":/H?zl)ti,
the geometric mean of A;’s. Then

Xn:n Zhr Yn:n- (459)

This result generalizes the results of Khaledi and Kochar [27] from exponential
distribution to gamma distribution when the scale parameter is at most one.

4.3. Dependence Orderings among Order Statistics from Independent
Random Variables with Proportional Hazard Rates

Sathe [100] proved that if X, ..., X, are independent exponential random variables with
distinct parameters Ay, \y,..., A, then for any k = 2,...,n, the Peasrson coefficient of
correlation between Xj., and Xj., is maximum when the \;’s are equal. The natural question is
to see if we can extend this result to positive dependence orderings. Dolati et al. [58] studied
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this topic when the observations follow the proportional hazards rate model. They proved
the following result for the extreme order statistics.

Theorem 4.33. Let Xy,...,X, be independent continuous random variables following the PHR
model. Let Y1,...,Y, bei.id. continuous random variables, then

(Xn:n | Xl:n) <RTI (Yn:n | Yl:n)~ (460)

They also wondered whether this result can be strengthened to more SI ordering.
Genest et al. [60] gave a positive answer to this question by showing the following result.

Theorem 4.34. Let Xy,...,X, be independent continuous random variables following the PHR
model. Let Y1,...,Y, beii.d. continuous random variables, then

(Xn:n | Xl:n) <sI (Yn:n | Yl:n)- (461)

It will be of interest to know whether Theorem 4.34 can be extended to other order
statistics, thatis, for2<j<mn-1,

(Xj:n | Xl:n) <s1 (Yj:n | Yl:n) . (462)
It is true for j = 2. To prove our conjecture one needs to prove that
Xj:n = Xim Sdisp Yj:n =Y (463)

whose proof is still elusive for 3 < j <n-1.
It is also worth noting that Dolati et al. [58] got a nice bound for Kendall’s tau of
(Xun, X1:n) by using Theorem 4.33,

1
T (X, Xim) < 21’1——1 (4.64)

5. Stochastic Comparisons of Sample Spacings

Spacings are of great interest in many areas of statistics, in particular, in the characterizations
of distributions, goodness-of-fit tests, auction theory, life testing, and reliability models.
A large number of goodness-of-fit tests are based on functions of sample spacings, see
Balakrishnan and Rao [5, 6], Jammalamadaka and Taufer [101], and Jammalamadaka and
Goria [102] for more references.

Let Xj,..., X, be n random variables. The random variables D;,, = X;., — X;_1., and
D:, = (n—-i+1)Diy, i = 1,...,n, with X, = 0, are respectively called spacings and
normalized spacings. They are of great interest in various areas of statistics, in particular,
in characterizations of distributions, goodness-of-fit tests, life testing, and reliability models.
In the reliability context they correspond to times elapsed between successive failures of
components in a system. In stochastic auction theory, D,,., and D,., are of particular interest,
which represent auction rents in buyer’s auction and reverse auction in the second-price
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business auction (see [103]). In this section we consider the stochastic properties of spacings.
In Section 5.1 we investigate stochastic order relations between successive spacings. In
Section 5.2 we study the effect of changes in the scale parameters of the observations on
stochastic properties of spacings when the observations are independent exponentials.

5.1. Stochastic Orders between Successive Spacings in a Sample

It is well known that the normalized spacings of a random sample from an exponential
distribution are ii.d. random variables having the same exponential distribution. Many
authors have studied the stochastic properties of spacings from restricted families of
distributions. Barlow and Proschan [104] proved the following result on stochastic ordering
between the successive normalized spacings from DFR distributions.

Theorem 5.1. Let Xj,. .., X, be a random sample of size n from a DFR distribution. Then
(a)

D:n Sst D

i=1,...,n-1, (5.1)

;'k+1:n’
(b)

D;,..<«D},, mn2>i for fixed i. (5.2)

Similar results hold for the IFR case with the inequalities reversed in (a) and (b) above.
Later Pledger and Proschan [15] partially extended this result to the case when the random
variables are independent with proportional decreasing failure rates. Kim and David [70] have
also obtained some results on spacings from IFR (DFR) distributions.

Kochar and Kirmani [19] strengthened this result from stochastic ordering to hazard
rate ordering. They proved the following result.

Theorem 5.2. Let Xj,. .., X, be a random sample of size n from a DFR distribution. Then
(a)

D;,<wD;,, fori=1,...,n-1 (5.3)

(b)

D;, . < D}, n2>i for fixed i. (54)

Barlow and Proschan [104] have also shown that spacings of ii.d. DFR random
variables have also DFR distributions. Using this and the connection between hazard rate
ordering and dispersive ordering, the proof of the next result follows from Theorem 2.12.

Theorem 5.3. If Xj, ..., X, is a random sample from a DFR distribution, then fori=1,...,n -1,
(a) D;kn Sdis?’ D;'k+1:n’
(b) D;n-#l Sdisp D:‘n
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The corresponding problem when the random variables are not identically distributed
or not independent has also been studied by many researchers. Kochar and Kirmani [19]
proved that when the joint density of the parent observations is convex, the joint density of
the normalized spacings is ISO*. This will hold, in particular, when the X;s are independent
(but not necessarily identical) with log-convex densities.

Theorem 5.4. Let the joint density fx(xi,...,%x,) of X = (Xi,...,Xy) be convex. Then the joint
density of D = (D1, ..., Dy is ISO”.

This result immediately leads to the following interesting result.

Theorem 5.5. Let X1, Xo, ..., X, be independent random variables with log-convex densities. Then
DT:n Sé"i]' D;:n Sér:j e Séri]' D::n‘ (55)

If a density is log-convex, it is DFR, but the converse is not true. Hence, Theorem 5.5
establishes a stronger ordering between the normalized spacings than does Theorem 5.2
under a stronger condition on the parent distributions. A related paper on this topic is by
Nappo and Spizzichino [12].

One may wonder whether under the condition of Theorem 5.5 the result can be
extended from joint likelihood ratio order to likelihood ratio order. The answer is negative
as illustrated by a counterexample in Misra and van der Meulen [105].

Let Xj,..., X, be independent exponential random variables with X; having failure
rate \; fori =1,...,n. Hu and Xie [77] proved the following result.

Theorem 5.6. If A1 < [>]A\ fork =1,...,n, then

Dn:n <i Dn+1:n+l/

(5.6)
D1 <ir Dani1 [Donst <ir Do
If \i + Xj > A for all distinct i, j and k then
Dy-1:0 <ir D:n, Dy:ns1 <ty Dy (5.7)
They also showed that Dy.3 <j; D33 for all A;’s, and
D1y < Doy, n2>2. (5.8)

Kochar and Korwar [20] conjectured that (5.3) can be extended to the case when
Xi,..., X, are independent exponential random variables with possibly different scale
parameters. They proved their conjecture for n = 3 and Torrado et al. [106] provided a proof
of this conjecture for n = 4, but the general case still remains an open problem. Torrado et
al. [106] also proved that for any n, D}, <n. Dj,,. This topic has been extensively studied by
Khaledi and Kochar [30], Wen et al. [107], Xu et al. [108], and Chen and Hu [109] in single-
outlier or multiple-outlier exponential models.
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5.2, Comparing Spacings of Two Random Samples

How does a variability ordering between two probability distributions affect the relative
positioning of the observations in random samples from the two distributions? To answer
this question, let Xy, < X5, < --- < Xy denote the order statistics of a random sample
X1,Xo,..., Xy, from a distribution with distribution function F. Similarly, let Y1, < Y2, <

- < Yy, denote the order statistics of an independent random sample Y;,7Y>,...,Y, from
a distribution with distribution function G. The corresponding spacings are defined by
D;, = Xin— Xis1pand Hiy = Yo — Yi1g, fori=1,2,...,n, where Xg.,, = Y., = 0. Bartoszewic
[42] proved the following result.

Theorem 5.7. One has

Y Sdisp X= (Hlnr Hao, ..., Hn:n) st (Dlznr Doy, Dn:n)- (59)

Some consequences of the this result as reported in Kochar [25] are as follows.

(@) For1<i<j<m,

Xijin = Xin 25t Yjin = Yin. (5.10)
In particular,
Xuin = X1in 2ot Ynn = Yim. (5.11)
(b) One has
S% 5%, (5.12)

where s3 and s3, are the sample variances of the two samples.

(c) One has
X Zst My, (5.13)

where

-1
D DX = X (5.14)

i<j

= |G)

is the Gini’s mean difference for the X-sample. Similarly we define 7y.

Kochar et al. [110] extended the implication (5.10) when dispersive ordering between
F and G is replaced by either excess wealth order. They proved the following result.



ISRN Probability and Statistics 35

Theorem 5.8. If Y <., X, then, forall1<k<n-1,
Xn:n - Xk:n Zicx Yn:n - Yk:n S E[Xn:n - Xk:n] < E[Yn:n - Yk:n]- (515)
Taking k = 1 in this theorem gives us a result on the sample spacings,

Y Sew X= Xn:n - Xl:n Zicx Yn:n - Yl:n- (516)

It is well known that a random variable X is NBUE (new better than used in expectation)
if and only if X <e\, Y, where Y is exponential with the same mean as that of X (see [111]). It
follows directly from Theorem 5.8 that, if Xy, ..., X, is a random sample from a distribution
which is NBUE, then,

E[Xn:n_Xk:n] < 1+---+

1k]E[X], forany 1<k<n-1 (5.17)

5.3. Comparing Spacings of Heterogeneous Exponential Samples

Let X3,...,X, be independent exponential random variables with X; having hazard rate .\;,
i=1,...,nand letY),...,Y, be a random sample of size n from an exponential distribution
with common hazard rate A. Kochar and Korwar [20] proved that the distribution function
of Dy fori = 2,---,nis a mixture of independent exponential random variables with the
density function

_ [T i by —x X by
For = 2 s i ) O e | (5.18)

where r extends over all of the permutations of {1,2,...,n}. Hence, the distribution of D;
could be represented as

Fp,,(x) = X pjFy, (%), (5.19)

jer

where j denotes a permutation of (A4, ..., A,) belonging to r and

b= [T
! H?:l 27:1' )‘Tj (5 20)
ot
I -k +1)¥

and F );, Means an exponential distribution with hazard rate 1} ..

Pledger and Proschan [15] considered the problem of stochastically comparing the
spacings of nonidentical independent exponential random variables with those correspond-
ing to stochastically comparable independent and identically distributed exponential random
variables.
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Theorem 5.9 (see [15]). If Xy, ..., X, are independent exponential random variables with X; having
hazard vate Ay, i = 1,...,n, and Yi,...,Y, is a random sample of size n from an exponential
distribution with common hazard rate A = 3,1, A;/n, then

H;:n SSt Dlt:n’ (521)
where Hy = (n —k + 1)(Yk:n = Yk-1:) for k = 1,...,n are the normalized spacings of Y;’s, and
YO:n =0.

Kochar and Korwar [20] strengthened and extended this result from stochastic
ordering to likelihood ratio ordering and dispersive ordering.

Theorem 5.10. Under the conditions of Theorem 5.9,
H;., <Dy, Hi,<ipDi, k=1,...,n (5.22)
Kochar and Rojo [21] further strengthened Theorem 5.10 to multivariate likelihood
ratio order.

Theorem 5.11. Under the conditions of Theorem 5.9,
(Hy, - Hpw) <tr (DY -+ Do) - (5.23)
As a consequence, it follows that
Yin = Yin<st Xjn = Xiw V1<i<j<m (5.24)

Kochar and Xu [112] established the following results providing sufficient and
necessary conditions for stochastically comparing Dy., and Hy., according to likelihood ratio
and reverse hazard rate orderings.

Theorem 5.12. Let Xy, ..., X, be independent exponential random variables with X; having hazard
rate \j, i =1,...,n,and Yq,...,Y, be a random sample of size n from an exponential distribution
with common hazard rate X. Then, for k > 2,

(a) Hk:n Slr Dk;n or
(b) Hk:n Srh Dk:n;
if and only if

§ 1 Zr<(n?:1)li) / (H?:l 27:1' )‘rj>> <Z;l=k )‘G')z
Tk s () (T Sdn)) Sk,

(5.25)

Analogously, we have an equivalent necessary and sufficient condition for hazard rate
order, dispersive order, and stochastic order between Dy., and Hy., as proved in Kochar and
Xu [112].
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Theorem 5.13. Let X, ..., X, be independent exponential random variables with X; having hazard
rate A, i =1,...,n,and Y1,...,Y, be a random sample of size n from an exponential distribution
with common hazard rate A. Then, for k > 2,

(@) Hin <nr D,
(b) Hy.n <disp Di:n 01
(c) Hi:n <st Dien

if and only if

1 L <
> .
1z n—k+1 ; [T XL 2. (5.26)

T j=k

The next result is also from Kochar and Xu [112].

Theorem 5.14. Let X, ..., X, be independent exponential random variables with X; having hazard
rate A, i =1,...,n,and Y1,...,Y, be a random sample of size n from an exponential distribution
with common hazard rate X. Then, for k > 2,

(a) Hk:n Simrl Dk:n/

(b) Hk:n <Rs Dk:n or

(C) EHy., < EDgp
if and only if

J— 1 '
> n-k+1 Zr<(H?=1)‘i) / <Z;‘:k A I 2 /\,l))

(5.27)

Example 5.15. Suppose Xi, X, X3 are independent exponential random variables with
parameters 1, A, A3, respectively; and Y1, Y5, Y3 are i.i.d. exponential random variables with
parameter A. Then, from Theorem 5.13,

Y33 = Y23 <pr X33 — X233 (5.28)
if and only if
2A10M5 ( 1 1 1 >
A2 Ay = ) 5.29
= M+ A+ A3 )L2+)L3+)L1+)L3+)L1+)L2 ( )
From Theorem 5.12,
Y33 = Y3 <1 X33 — X3 (5.30)

if and only if

3 1 1 1\
>\ = = . 5.31
)L_)tlr 2<)LQ+.)Lg+)Ll+)L3+)Ll+)Lz> ( )
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From Theorem 5.14

Y35 — Ya;3 <gs X33 — Xa3 (5.32)
if and only if
2,42 2,42 2,42 -1
3> g = | ks rd Mk bl (533)
M+ + A3\ (A + J\3))L%)L§ A+ )L3))L%)L§ (Mg + J\1))L%)L%

It is worth noting that from (2.7), it follows that

Mir 2 Ane > Ags. (5.34)
For example, let
A =1, Ay =2, A3 =3. (5.35)
Then,
A = 1.91489 > Ay, = 1.56667 > Ags = 1.30435. (5.36)

Recently Balakrishnan and Xu [113] have established the following interesting result
which compares the degree of skewness between sample spacings according to star ordering.

Theorem 5.16. Let Xy, ..., X, be independent exponential random variables with X; having hazard
rate A, i =1,...,n,and Y1,...,Y, be a random sample of size n from an exponential distribution
with common hazard rate X. Then, for k > 2,

Hk:n <« Dk:n- (537)

Torrado and Lillo [114] considered the problem of stochastically comparing the
spacings of two heterogenous samples with independent exponential random variables. They
obtained sufficient conditions on the parameters for such comparisons to hold.

5.4. Stochastic Comparisons of Sample Ranges of Two Heterogeneous
Samples

Sample range is one of the simple criteria for comparing variabilities among distributions and
hence it is important to study its stochastic properties. First we study the stochastic properties
of the range of a random sample from a continuous distribution. Let Xj, ..., X, be a random
sample from F and let Y3, ..., Y, be an independent random sample from another distribution
G. It follows from Lemma 3(c) of Bartoszewic [42] that X>4ispY = Xiin — X1:02stYien = Y-
This observation along with Theorem 2.12 (a) leads to the following theorem.
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Theorem 5.17. Let X >y, Y and let either F or G be DFR. Then

Yn:n - Yl:n st Xum — X1n- (538)

Kochar and Rojo [21] proved the following result on stochastic properties of the
sample range when the observations are independent exponentials with unequal parameters.

Theorem 5.18. Let Xj, ..., X, be independent exponential random variables with X; having hazard
rate \j,i=1,...,n,andlet Y1,...,Y, be a random sample of size n from an exponential distribution
with common hazard rate A = 3/, Aj/n, then,

Yon = Yin <st Xoen — X1in- (539)

The next theorem due to Khaledi and Kochar [28] improves upon this result.

Theorem 5.19. Let Xj, ..., X, be independent exponential random variables with X; having hazard
rate A\j,i=1,...,n,andletY1,...,Y, be a random sample of size n from an exponential distribution

with common hazard rate X = (Hl'-'zl)q)l/ ", the geometric mean of the \'s. Then,

Yn:n - Yl:n et Xn:n - Xl:n- (540)

As a consequence of this result we get the following upper bound on the distribution
function of the sample range in terms \, the geometric mean of the parameters.

Corollary 5.20. Let X3, ..., X, be independent exponential random variables with X; having hazard
rate Aj,i=1,...,n. Then for x > 0,

~ qn-1
P[Xn = Xia S ] < [1- 7] (5.41)

This bound is better than the one obtained in Kochar and Rojo [21] in terms of X, since
the expression on the R.H.S. of (5.41) is increasing in Yand X <A

Recently, Zhao and Li [90] obtained a necessary and sufficient condition for
stochastically comparing sample ranges from heterogeneous and homogeneous exponential
samples.

Theorem 5.21. Let Xj, ..., X, be independent exponential random variables with X; having hazard
rate \j,i=1,...,n,andlet Y1,...,Y, be a random sample of size n from an exponential distribution
with common hazard rate A, then,

R ;'1_ )Li 1/(n-1)
Yn:n - Yl:n Sst Xn:n - Xl:n = > A= <H1i1 ) ’ (542)

where L = 3™ \;/n.

Note that 1 < 1, which improves upon the results of Theorem 5.19.
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Kochar and Xu [85] partially strengthened Theorem 5.18 from stochastic order to
reverse hazard rate order.

Theorem 5.22. Let Xj, ..., X, be independent exponential random variables with X; having hazard
rate \j,i=1,...,n. LetYi,...,Y, be a random sample of size n from an exponential distribution with
common hazard rate A = 3| Xj/n. Then

Yn:n - Yl:n <rn Xon = Xt (543)

They also proved the following theorem for the PHR model.

Theorem 5.23. Let Xj, ..., X, be independent random variables with X; having survival function
= P . . . . .
F,i=1,...,n LetYs,...,Y, be a random sample with common population survival distribution

f)t, where X = Sty Ai/n, then
Yn:n - Yl:n st Xn:n - Xl:n- (544)

The following result of Genest et al. [60] establishes likelihood ration ordering between
the sample ranges and improves upon all the previously known results on this problem.

Theorem 5.24. Let Xj, ..., X, be independent exponential random variables with X; having hazard
rate A, i =1,...,n,and Yi,...,Y, be a random sample of size n from an exponential distribution
with common hazard rate \ = >, Ai/n. Let Tx (x) and Fy (x) be reversed hazard rates of Xy — X1:n
and Yo, — Y1, respectively. Then

is increasing. (5.45)

The following results follow as consequences as shown in that paper.

Corollary 5.25. Let X3, ..., X, be independent exponential random variables with X; having hazard
rate \j,i=1,...,n. LetYi,..., Y, be a random sample of size n from an exponential distribution with
common hazard rate A, then,

(a)

Yo = Y1 <tr Xoen — X1, (5.46)
(b)

Youn = Yin <disp Xnin — X1:n- (5.47)

Balakrishnan and Xu [113] established a star ordering result between sample ranges
as reported in the next theorem.
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Theorem 5.26. Let Xy, ..., X, be independent exponential random variables with X; having hazard
rate A\j, i =1,...,nand let Y1,...,Y, be a random sample of size n from an exponential distribution
with common hazard rate \. Then

Yn:n - Yl:n <« Xn:n - Xl:n- (548)

Let Xj, ..., X, be independent exponential random variables with X; having hazard
rate A\;, i = 1,...,n and let Y,...,Y, be an another set of independent exponential random
variables with hazard rates i, ..., p,, respectively. Kochar and Rojo [20] proved that

()‘11 oo /)‘n) ”g (‘ul/ o /#n) == Xn:n - Xl:n st Yn:n - Yl:n- (549)

Recently Ding et al. [115] strengthened (5.49) from stochastic ordering to reverse
hazard rate ordering. Then also proved that under the above set up,

(log )‘1/ (R 10g )Ln) ; (,ull Ry //ln) == Xn:n - Xl:n st Yn:n - Yl:n- (550)

They also extended (5.49) to the PHR model.

5.5. Dependence Orderings among Spacings

It is known that spacings of a random sample from a DFR (decreasing failure rate)
distribution are conditionally increasing in sequence (cf., [49, page 151]). Karlin and Rinott
[54] have pointed out that if the DFR assumption is strengthened to assume that the parent
distribution has a log-convex density, then the spacings have the corresponding stronger
property of being MTP, dependent. Khaledi and Kochar [116] extended this result to the
case when the random variables Xj, ..., X, are dependent. It is proved that if the joint pdf
of Xj’s is permutation symmetric, TP, in pairs and log-convex in each argument, then their
spacings are MTP, dependent. They also studied the dependence properties of spacings of
independent but non-identically distributed exponential random variables and showed with
the help of a counterexample that in this case the spacings may not be MTP, dependent.
Khaledi and Kochar [116] proved that in the case of a single-outlier when all except one of
the parameters are equal, the spacings are MTP, dependent. A consequence of this result is
that in this case var(Xj.,) < var(Xp,) < -+ < var(Xy:.,). They also proved that in the case of
multiple-outliers model any pair of consecutive spacings, D;., and D;.1., are TP, dependent
fori=1,...,n-1.

6. Applications
6.1. Type-II Censoring

If n items are put on life test and the test terminated at the time of rth failure, then

r r
Ton= 3 (n=i+1)(Xin = Xictw) = 305 (6.1)
i=1 i=1
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represents the total time on test (TTT), which is a well-known concept in statistical reliability.
As pointed out in Epstein [117], if the component lifetimes are i.i.d. exponential with mean
0 or equivalently the failure rate A = 1/, the best estimator (minimum variance unbiased
estimator) of 0 is

g Im (6.2)
"
It is well-known that (cf., [117]),
2T
T.Lﬁﬂ (6.3)

where y3, denotes a chi-square distribution with 2r degrees of freedom. Based on this result,
many estimation and testing statistical procedures have been established. However, if the
components are actually from different exponential distributions with failure rates 13, ..., 1},
then it follows from Theorem 5.11 and Theorem 6.E.8 of Shaked and Shanthikumar [2] that

0" > 0, (6.4)
where
o* = —Zizer"’" (6.5)

and A = Y., A*/n. This means that based on TTT statistic, one would overestimate the
average lifetime of components using heterogeneous exponential components.

6.2. Reliability

An n-component system that fails if and only if at least k of the n components fail is called a
k-out-of-n: F system. The lifetime of such a system could be represented as Xj.,,. The k-out-of-
n system structure is a very popular type of redundancy in fault tolerant systems with wide
applications in industrial and military systems. For two different systems say a k-out-of-n: F
system and a k+1-out-of-n: F system, the engineer may be interested in the additional lifetime
Xk+1:n — Xkn for the system design and the cost purpose. Due to the complicated distribution
form, one may provide a sharp bound on the survival function of this based on Theorem 5.13.

For example, a plane has four engines, and a minimum of three engines are required
for the plane to work. Hence, this plane is a 2-out-of-4: F system. If the engineer wants to
improve the system to the 3-out-of-4: F system, he/she has to consider the cost and the
reliability of improvement simultaneously. Hence, it is important to estimate the survival
probability and the mean additional lifetime X3.4 —Xy.4. Theorem 5.13 provides a lower bound
for the survival function of the additional lifetime. Let (A1, A2, A3, A4) = (1,2,2.5,3), then,

P(Xa4 — Xoa > x) > e 9%, (6.6)

Using Theorem 5.14, the following sharp lower bound could be established,

E(X3.4 — X04) > 1.0879. 6.7)
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Table 1
A Ir/rh hr/disp/st mrl/RS/E
Doy 2.060897 2.039216 2.019271
D54 1.988454 1.909626 1.838388
Dyy 2.009722 1.674501 1.382051

In Table 1, we list the lower bounds on \'s for various partial orders to hold in
Theorems 5.12-5.14.

The values above are comparable to the arithmetic mean 2.125, geometric mean
1.96799, and harmonic mean 1.791045 of \;’s. It is interesting to note that all of the values
are less than the arithmetic mean, which coincides with the condition in Theorem 5.11.
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