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Abstract. The Cell Broadband Engine architecture is a revolutionary processor architecture well suited for many scientific codes.
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1. Introduction

In this paper, three case studies are presented in
which computationally demanding applications are
implemented on the Cell Broadband Engine
(Cell/B.E.) processor. The applications chosen for the
Cell/B.E. implementation are classic examples of the
high-performance computing (HPC) codes that are
typically executed on large-scale parallel systems.
They include:

• Nanoscale Molecular Dynamics (NAMD) [15].
The NAMD SPEC 2006 CPU benchmark [12]
code is used as the base for the Cell/B.E. im-
plementation. It is derived from the data layout
and inner loop of NAMD to form a compact
benchmark for SPEC CPU2006, a CPU-intensive
benchmark suite. NAMD belongs to a class of ap-
plications that utilize N-body methods [2].

• MIMD Lattice Computation (MILC) [22].
A MILC application that performs simulations
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with dynamical clover fermions (clover_
dynamical) using the hybrid-molecular dynam-
ics R algorithm [8] (su3_rmd) as implemented in
MILC version 7.4.0 is considered in this work.
MILC belongs to a class of applications that are
based on structured grids [2] where the majority
of computations on the grid points are vector al-
gebra operations.

• Direct self-consistent field (SCF) method quan-
tum chemistry code. The reference implementa-
tion [23] of the two-electron repulsion integrals
(ERIs) evaluation code, which is the computa-
tional core of the direct SCF method, is writ-
ten from scratch following the well-known algo-
rithms from the General Atomic and Molecular
Electronic Structure System (GAMESS) [18] and
other ab initio quantum chemistry packages. The
ERI kernel is an example of a problem whose
computational complexity is O(N4).

Some of the results described in this paper have been
presented in conference papers [19,20] while the quan-
tum chemistry code results are new.

The paper is organized as follows: Section 2 pro-
vides a brief description of the Cell/B.E. processor ar-
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chitecture. Section 3 discusses related work. Section 4
presents an overview of the computational methods
used in the applications and Section 5 gives a detailed
account of Cell/B.E. implementations of these appli-
cations. Performance results are provided in Section 6
followed by a discussion of various implementation is-
sues and lessons learned.

2. Cell/B.E. architecture overview

The Cell/B.E. system used in this study is a 3.2 GHz
dual-Cell blade QS20 server. Two Cell/B.E. processors
are used in the blade, and the applications can seam-
lessly use both of them. The system runs Fedora Core 7
Linux OS with kernel 2.6.22-BSC and the IBM SDK
for Multicore Acceleration ver. 3.0.

The Cell/B.E. is a heterogeneous system consisting
of one 64-bit PowerPC core called the Power Proces-
sor Element (PPE), eight Synergistic Processor Ele-
ments (SPEs), system memory, and an I/O controller
(Fig. 1). The processing elements are linked by an in-
ternal high-speed bus called the Element Interconnect
Bus (EIB). The PPE is a 64-bit Power-Architecture-
compliant core with 32-kB first-level instruction and
data caches and a 512-kB second-level cache. Each
SPE consists of a Synergistic Processor Unit (SPU)
and a Memory Flow Controller (MFC), which in-
cludes a DMA controller, a Memory Management Unit
(MMU), a bus interface, and an atomic unit for syn-
chronization with other SPEs and PPE. SPU is a Single
Instruction, Multiple Data (SIMD) processor whose

load and store instructions are performed in local ad-
dress space.

The SPU has two execution pipelines: The floating-
point and fixed-point units are on the even pipeline
while the rest of the functional units are on the
odd pipeline. The SPU can issue and complete up
to two instructions per cycle, one on each execution
pipeline. Simple fixed-point operations take two cy-
cles, and single-precision floating-point and load in-
structions take six cycles. Two-way SIMD double-
precision floating-point is also supported, but the max-
imum issue rate is one SIMD instruction per seven
cycles.

For the 3.2 GHz Cell/B.E., the EIB is capable of
providing peak bandwidth of 204.8 GB/s. The mem-
ory interface controller provides 25.6 GB/s to system
memory. The I/O controller provides peak bandwidths
of 25 GB/s inbound and 35 GB/s outbound. The eight
SPUs of the Cell/B.E. processor have combined theo-
retical peak performance of 204.8 GFLOPS in single
precision and 14.63 GFLOPS in double precision.

3. Related work

Several research efforts have been reported detailing
molecular dynamics (MD) code ports to the Cell/B.E.
platform. Oliver et al. [14] describe a 2.4 GHz
Cell/B.E. implementation of a GROMACS kernel opti-
mized for calculating interactions between water mole-
cules. Kernel-only speedup using eight SPEs versus a
single-core 3.4 GHz Intel Xeon processor is 15.5×;
it is only nearly 2× as fast as PPC 970 running a hand-

Fig. 1. Cell/B.E. processor architecture.
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tuned VMX code. Meredith et al. [10] report on an
implementation of a simplified MD simulation code
on the Cell/B.E. processor as well as on the GPU
and MTA-2 platforms. The kernel speedup achieved
on the Cell/B.E. processor is 5× as compared to the
code executed on a 2.2 GHz AMD Opteron processor.
De Fabritiis [6] reports on a 3.2 GHz Cell blade im-
plementation of a short-range non-bonded force field
that computes both electrostatic and L–J interactions
using single-precision floating-point arithmetic. Over-
all code speedup, as compared to the same code opti-
mized for a 2.0 GHz AMD Opteron processor, is 19×.

Bilardi et al. [4] describe a theoretical approach to
analyze tradeoffs between bandwidth, memory, and
processing for lattice QCD computations and provide
quantitative guidelines for several architectures, in-
cluding the Cell/B.E. processor. They are first to point
out the potential of the Cell/B.E. processor for lattice
QCD applications. Belletti et al. [3] propose a per-
formance model of a lattice QCD kernel on the En-
hanced Cell/B.E. processor and investigate several pos-
sible data layouts. The authors conclude that sustained
performance on the order of 20% of the theoretical
peak performance can be obtained on large machines.
Motoki and Nakamura [11] report on an attempt to
port matrix–vector multiplication calculations appear-
ing in the fermion conjugate gradient solver to the
Cell/B.E. processor from the LTKf90 QCD code writ-
ten in Fortran 90. The authors report achieving 5% of
the theoretical peak performance on a dual-Cell blade.
Wolf [24] reports on the implementation of primitives,
such as complex numbers and SU(3) matrices, used
in QCD applications as C++ class methods targeted
for the execution on the Cell/B.E. processor. Various
approaches for implementing parts of the QDP++ lat-
tice QCD library on the Cell/B.E. processor are ex-
plored by Spray [21]. In particular, the author reports
41 GFLOPS obtained on a single Cell/B.E. proces-
sor for the Wilson Dslash operator. Pleiter [16] exam-
ines performance-critical kernels in a lattice QCD ap-
plication, such as linear algebra operations and sparse
matrix–vector multiplication, and provides benchmark
results for memory access operations.

Ramdas et al. [17] discuss how extrinsic vectoriza-
tion may be unified with shell structure in ERI calcu-
lations through the exploitation of memory access lo-
cality. The authors conclude that one should be able
to take advantage of both extrinsic vectorization and
shell structure value reuse by generating ERIs accord-
ing to shell structure order and then reordering ERIs
into sets of matching class. No actual implementation

or performance results have been presented. Hayashi
et al. [9] describe the Cell/B.E. implementation of the
two electron integral calculations. The results indicate
that the performance of the Cell/B.E. implementation
of the algorithm running in the Cell/B.E. simulator is
not as good as the performance of the same algorithm
implemented on a 3.2 GHz Pentium D processor.

Our work differs in that we attempt to implement
complete applications and investigate Cell blade per-
formance rather than the performance of a single SPU
or single Cell/B.E. processor.

4. Applications and algorithms

4.1. Molecular dynamics

The computational core of any molecular dynamics
code is the non-bonded force-field calculation that in-
volves computing the van der Waal’s forces – approx-
imated by the Lennard–Jones (L–J) 6–12 potential –
and electrostatic (Coulomb) interactions between the
non-bonded atom pairs:
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In theory, these forces need to be computed between
all pairs of non-bonded atoms and are then applied to
move the atoms according to the Newtonian equation
of motion. In practice, MD programs, such as NAMD,
apply multiple optimization techniques to reduce the
time needed to compute the forces. The entire simu-
lation space is divided into 3D cells, called patches,
whose size is related to the cutoff radius beyond which
no interaction calculations are performed. The atoms
from each patch are checked against themselves and
against the atoms from the 13 neighbor patches (New-
ton’s third law of motion is applied here to eliminate
redundant calculations) and the corresponding interac-
tion calculations are performed on these patches. Cut-
off radius is applied to limit the calculations to only
those atoms that are close to each other. The smooth
particle-mesh Ewald (SPME) method is used for full
electrostatic computations with the direct component
of PME sum substituting the Coulomb equation. In-
terpolation tables are used for both L–J potential and
Coulomb.
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4.2. Lattice quantum chromodynamics

Lattice Quantum Chromodynamics (QCD) is
a quantum field theory of the strong interaction for-
mulated on a discretized space-time. The quarks are
described by fields that have three components, called
colors. The gluons, which are the force carriers and
are analogous to photons in quantum electrodynamics,
are described by matrix valued fields. Each matrix is a
3 × 3 unitary matrix with determinant 1, that is, an el-
ement of SU(3). At each space-time grid point, there is
one such gauge matrix “pointing” to each neighboring
grid point.

There are a number of ways to formulate the quarks
on the lattice. In this work, simulations with dynami-
cal clover quarks using the hybrid-molecular dynam-
ics R algorithm (su3_rmd) [8] as implemented in the
MILC version 7.4.0 code base are considered. In the
clover formulation, the quarks have a Dirac spinor in-
dex that can take the values 1–4. Thus, at each site of
the lattice the clover quark field has three color and
four spinor components for a total of 12 complex com-
ponents.

The interaction between the quarks and gluons is de-
scribed by this term in the Lagrangian:

ψ̄(x)M (U )xyψ(y)

≡ ψ̄(x)ψ(x) + κψ̄(x)
[
(1 + γμ)Ux,μψ(x + μ̂)

+ (1 − γμ)U †
x−μ̂,μψ(x − μ̂)

]
+ cSWFμν ψ̄(x)σμνψ(x).

In this formula the color indices on the quark fields ψ
and ψ̄ and the matrices Ux,μ are suppressed. The lat-
tice sites are denoted by x and y, and the directions in
space-time by μ and ν. Repeated indices are summed
over. The set of four 4 × 4 matrices γμ are known as
the Dirac gamma matrices, κ is known as the hopping
parameter and is related to the quark mass, Ux,μ is the
gauge matrix connecting the sites x and x + μ̂, cSW is
a constant, Fμν is the field strength tensor constructed
from products of U matrices, and σμν are proportional
to commutators of the Dirac gamma matrices.

A large part of the time in the calculation is spent
on inverting the matrix M (U ) as the gluon field U
evolves.

4.3. Quantum chemistry

The calculation of two-electron repulsion integrals
remains the bottleneck in many of the ab initio mole-

cular orbital (MO) or density functional theory (DFT)
electronic structure codes. For example, in direct self-
consistent field methods many millions of electron re-
pulsion integrals are recomputed every SCF iteration
and count for the vast majority of the execution time.

The two-electron repulsion integrals over contracted
basis functions can be computed as:

(μν|λσ)

=
Nμ∑
p=1

Nν∑
q=1

Nλ∑
r=1

Nσ∑
s=1

dμp dνq dλr dσs[pq|rs],

where N∗ is the contraction length, d∗∗ are contraction
coefficients, and [pq|rs] are integrals evaluated over
primitive basis functions. The Rys quadrature scheme
for a two-electron Coulomb repulsion integral is used
to evaluate primitive integrals [pq|rs] for Gaussian-
type orbitals (GTO) basis sets [7]. In this work only
(ss|ss) integrals over contracted s-orbitals are consid-
ered. The general formula for primitive [ss|ss] inte-
grals is as follows [5]:
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)
,

αk is the exponent, and 	Rk is the atomic center of the
kth primitive basis function in the integral.

Microprocessor implementation of the two-electron
repulsion integrals evaluation code is straightforward.
The four outer loops sequence through all unique com-
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binations of electron shells. For each such permutation,
the four inner loops sequence through all shell primi-
tives. Inside these four nested loops, primitive [ss|ss]
integrals are computed via the above equations and
are summed. Gauss error function, erf, is computed
via a lookup table interpolation involving just five
coefficients. Contracted integrals are stored in mem-
ory for follow-up use for constructing the Fock ma-
trix necessary to solve the electronic time-independent
Schrodinger equation.

5. Cell/B.E. implementation

5.1. NAMD

While the basic MD algorithm appears to be struc-
turally simple, the actual implementation of the algo-
rithm in NAMD is more complex. Thus, the NAMD
code that implements the actual non-bonded force field
consists of fewer than 100 lines of C code, while the
code that implements pair list and bonded force calcu-
lations is almost 500 lines of C code with special pro-
visions made for fixed atoms and atoms from hydro-
gen groups as well as memory management for pair
list data, lookup table pointers, etc. Such an implemen-
tation does not lend itself to an efficient port to the
Cell/B.E. processor because of its size and complex-
ity with non-compute-intensive operations. Therefore,
a restructured kernel is used for the implementation
in which no pair list is generated and stored and no
bonded force calculations are performed as they are re-
sponsible for only a fraction of the overall execution
time of the code. Instead, if a pair of atoms from two
patches is found to be within a cutoff distance, the non-
bonded forces are computed right away. Thus, only the
compute-intensive section of the code – short-range
non-bonded force calculation (L–J potential and PME
direct sum substituting for the Coulomb equation, both
implemented using lookup tables) – is considered for
Cell/B.E. implementation, and the bonded forces are
dealt with outside of the accelerated non-bonded force-
field kernel.

In NAMD, each patch typically consists of a few
hundred atoms, which is a small enough amount of
data to fit into SPE’s local store (LS). Therefore, all
atoms for one patch (self-compute) or two patches
(pair-compute) are loaded into SPE memory at once
after a task is started in SPE. Forces are computed,
stored in the SPE’s local store, and transferred back to
the system memory after the patch is processed. Two

lookup tables (L–J lookup table and table_four) also fit
into SPE’s local store and are loaded during the initial-
ization. Techniques for hiding communication latency
while doing the computation (e.g., double buffering)
are not necessary here as the communication time is
typically less than 1% of the overall execution time.
This is common for kernels with a substantial data
reuse.

An efficient SIMD computation kernel in SPE is the
key to successful implementation. NAMD has a sin-
gle compute kernel that can be used either for self-
compute or pair-compute depending on the input pa-
rameters. If it is invoked with a single patch of atoms
as the input, the self-compute mode is assumed, oth-
erwise, the pair-compute mode is used. These modes
of operation have different execution profiles and re-
quire different optimization techniques to derive effi-
cient implementations.

As far as the SIMD implementation of the NAMD
kernel is concerned, there are two main kernel stages:
cutoff distance test and short range force computa-
tion which is only performed if the cutoff distance test
passes. This kernel structure results in a branch diver-
gence that complicates the use of SIMD instructions.
There are two ways to deal with the branch divergence
in this case: (1) perform the short range force com-
putation without regards to the cutoff test and discard
the results at the end for those cases that fail the cut-
off test, and (2) perform the cutoff distance test, but
delay the short range force calculations until the num-
ber of atom pairs needed to fill in the SIMD instruc-
tion is found. The first technique eliminates branch
divergence but results in unnecessary computations.
The second technique eliminates unnecessary com-
putations but adds data manipulation overhead. Both
techniques were found to be applicable in the case of
NAMD.

In self-compute mode, about 50% of the time the
distance between the pairs of atoms is less than the
cutoff distance. Therefore, an efficient way to compute
and update the forces for the interacting pairs of atoms
is to compute all forces regardless of whether the dis-
tance between the considered atoms is less than the cut-
off or not. Before updating the final force values, zeros
are filled into force elements according to a selection
vector generated from comparing the vector of distance
and cutoff. In this way, computing forces for individ-
ual atom pairs is avoided and the SIMD processing
pipeline is fully utilized.

Optimizing the pair-compute kernel is more chal-
lenging because the force computations are necessary



140 G. Shi et al. / Implementation of scientific computing applications on the Cell/B.E.

in only a small number of cases. In most cases, atoms
are found to be outside the cutoff distance from each
other and no further calculations are required. Worse
is the fact that the atom pairs within the cutoff dis-
tance from each other are sparsely distributed among
the other atom pairs. Most of the time there are no in-
teracting pairs of atoms and only infrequently are there
one or two interacting pair of atoms per any four con-
secutive atom pairs. In order to overcome this diffi-
culty, it is necessary to save data when there are not
enough (fewer than four) interacting pairs of atoms and
do computations when four or more valid atom pairs
are accumulated.

When implemented as stated above, a single invo-
cation of the force computation requires 291 cycles
for the self-compute implementation and 653 cycles
for the pair-compute implementation of the kernel.
The overhead for accumulating data for the SIMD in-
struction in the pair-compute kernel is approximately
360 cycles.

The original NAMD kernel is implemented us-
ing double-precision floating-point values for distance
computation and two lookup tables. Since the theo-
retical peak performance of the Cell/B.E. processor
differs significantly for single-precision and double-
precision operations, both the single-precision and
double-precision kernels are implemented in this work
in order to understand the effects of different numeri-
cal types on overall application performance. The ba-
sic implementation strategy for the double-precision
kernel on the Cell/B.E. is the same as for the single-
precision floating-point version, with more memory
needed for atom data and lookup tables. The double-
precision floating-point code is larger than the single-
precision kernel. As with the single-precision kernel,
the compute loop iterates with the increment of four
because there are a lot of single-precision computa-
tions even in the double-precision version of the ker-
nel, and therefore they need to be scheduled four at
a time for the SIMD core to be efficiently utilized.
However, this means that the operations executed in
double-precision have to be manually unrolled two at a
time, thus resulting in a large codebase for the double-
precision floating-point implementation.

Given a group of patches, NAMD sequentially calls
the self-compute kernel for each of the patches and
then calls the pair-compute kernel for unique pairs of
neighbor patches. In the original NAMD implementa-
tion, these two sections of the code are implemented
as two independent loops. The self-compute kernels
can be safely distributed among the eight SPEs on the

Cell/B.E. processor as there is no data dependency be-
tween individual patches. However, there is data de-
pendency for different tasks in the pair-compute loop
if the pair-compute kernels work on the same patch.
Fortunately, there is no required order of execution for
the pair-compute kernels; therefore, the data depen-
dency issue for individual patches can be resolved by
simply keeping track of the status of each individual
patch and scheduling the execution of the pair-compute
kernels on the SPEs only for those patches that are
currently not processed by any other SPEs. This tech-
nique was implemented using a pool of patch pairs to
be processed and a pool of SPEs available for pair-
compute kernel execution and just looping over the un-
processed patch pairs until all of them are processed,
delaying the execution of those with current data de-
pendencies until such dependencies are cleared.

5.2. MILC

When porting the MILC code to the Cell/B.E.
processor, the main design goal was to preserve
MILC’s ability to scale on a large number of compute
nodes (in the compute cluster sense). Thus, the result-
ing design is PPE-centric: the application skeleton (in-
cluding MPI) is executed on the PPE whereas compute
kernels are executed on the SPEs. MPICH2-1.0.5p4
MPI implementation compiled for the PPE is used in
this work.

MILC’s body consists of many small compute loops
(kernels) that iterate over subsets of the 4D space-time
lattice, and MPI scatter/gather operations in between.
This structure provides the scalability necessary to ef-
ficiently execute the application on a large distributed
memory system. However, as a result, no single kernel
is responsible for more than 20% of the overall exe-
cution time. The application is composed of 27 major
subroutines (Table 1), some of which consist of a sin-
gle compute kernel, e.g., mult_su3_an, and some con-
sisting of several kernels with MPI scatter/gather oper-
ations in between, e.g., udadu_mu_nu. Just 10 of these
subroutines are responsible for about 90% of the over-
all execution time. However, once they are ported to
the SPEs, the overall execution time of the application
becomes dominated by the execution time of the re-
maining 17 subroutines left for execution on the PPE.
Therefore, all 27 subroutines need to be ported to the
SPEs in order to avoid introducing additional compu-
tational overhead on the PPE. Since many of these sub-
routines consist of multiple compute kernels with MPI
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Table 1

su3_rmd clover_dynamical application in MILC is composed of 27 major subroutines

Subroutine Description # of kernels % of overall

in the routine runtime

udadu_mu_nu Compute U dA/dU, part of the fermion force term given mu & nu 8 20.5

dslash_w_site Dirac operator implementation 4 19.2

su3_mat_copy Matrix copy 1 18.7

mult_su3_nn Matrix multiplication 1 11.4

mult_su3_na The first matrix multiplies the conjugate transpose of the second matrix 1 8.2

mult_this_ldu_site Multiply Wilson_vector by sigma_mu_nu matrix 1 4.7

udadu_mat_mu_nu Calculate udadu_mu_nu and multiply by an su3_matrix for a term 8 3.1

of the fermion force

single_action Compute single action when updating the momentum matrices 1 2.5

su3_adjoint Conjugate transpose of a matrix 1 1.8

General strided gather Compute addresses and MPI message information for exchanging 1 1.6

data with neighbors

f_mu_nu Compute the F{mu, nu} used in the clover fermion action 4 1.5

scalar_mult_add_wvec Multiply Wilson vector by a scalar and add to another Wilson vector 1 1.0

scalar_multi_su3_matrix_add Multiply matrix by a scalar and add to another matrix 1 0.9

d_congrad2_cl Conjugate gradient for clover fermions 3 0.9

set_neighbor Compute neighbor addresses within the same node 1 0.6

mult_su3_an The conjugate transpose of the first matrix multiplies the second matrix 1 0.6

update_u Update the link matrices by going to the sixth order in the exponential 1 0.6

of the momentum matrices

compute_clov Compute clover term 6 0.6

update_h_cl Update the momentum matrices 1 0.3

scalar_mult_add_wvec_magsq Multiply Wilson vector with a scalar and add it to another vector; 1 0.3

the squared magnitude of the resulting Wilson vector is computed

realtrace_su3_nn su3_matrix is multiplied by another su3_matrix. The real trace 1 0.2

of the result su3_matrix and the third matrix is computed

add_su3_matrix Addition of two matrices 1 0.2

wp_shrink Compute the Wilson projection of a Wilson fermion vector 1 0.1

magsq_wvec Compute the squared magnitude of a Wilson vector 1 0.1

gauge_action Compute a gauge action 1 0.1

set_su3_matrix_to_zero Set all elements of a su3_matrix to zero 1 0.1

Reunitarize Reunitarize a su3_matrix 1 0.1

Notes: Each such subroutine consists of one to eight compute kernels with MPI scatter-gather operations in between. In total 54 such compute
kernels were identified and re-implemented for execution on SPEs.

scatter/gather operations in between, 54 unique kernels
were identified for implementation on the SPEs.

For any given kernel, there are three types of input
data: elements in a lattice site, elements in contiguous
memory (usually a temporary memory region created
inside MILC for temporary use), and elements in the
neighboring site (neighbors in term of (x, y, z, t); they
are not physically adjacent to each other in memory).
There are only two types of output data: elements in
a lattice site and elements in contiguous memory. Be-
cause of the similarities in the data types used by all
kernels, a common DMA engine was written to load

input data into the SPEs’ LS and output data back to
the main memory.

The Cell/B.E. processor delivers the best memory-
to-local store bandwidth when both source address and
destination address are aligned at the 128-bytes bound-
aries and the amount of data to be transferred is a
multiple of 128 bytes. Non-aligned DMA requests run
at the half of the bandwidth due to the fact that two
bus requests instead of one are needed for each cache
line of data. We evaluated several approaches to deal
with the data alignment issue. The first approach is to
pack/unpack data on the PPE on the fly as needed. Data
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distributed across the lattice is packed to a contiguous
memory buffer aligned at 128-bytes boundary and the
packed data is transferred to the SPE’s LS. After com-
putations are done, the results are transferred back to
the main memory where they are unpacked by the PPE
into the corresponding locations in the lattice. The ad-
vantage of this approach is that one can easily ensure
the desirable memory alignment. However, a very sig-
nificant overhead of the data packing/unpacking on the
PPE was encountered. This is not surprising since the
data have to be transferred several times between the
PPE and the main memory over the slow interface.

The second approach was to modify the data lay-
out in the lattice array of site structures by replacing
each su3_matrix or fwilson_vector in the site structure
with a pointer to the corresponding element located in
a contiguous and properly aligned memory segment.
With this approach, the need to pack and unpack data
before transferring it between the main memory and
the SPEs is eliminated since the data is already prop-
erly aligned. However, this causes the entire program
to slow down significantly because each access to an
element now ends up being two memory accesses: one
for the pointer and the other for the actual data. More-
over, the code changes to implement this approach are
non-trivial.

The third approach, which is used in the final im-
plementation, is to add padding to align the data at the
128-byte boundaries. The lattice data structure is allo-
cated to be 128-bytes aligned, and the most commonly
used data structures are padded to 128 bytes. Two data
structures are padded for this reason: su3_matrix is
changed from a 3 × 3 matrix to a 4 × 4 matrix, thus
changing the size of the su3_matrix from 72 bytes to
128 bytes, and su3_vector is changed from a vector
of three complex variables to a vector of four com-
plex variables. This change also makes one of the
other commonly used data structures, fwilson_vector,
128 bytes. The obvious disadvantage of this approach
is that more bytes of data have to be transferred be-
tween the main memory and the SPEs’ LS. However,
padding helps both to better use the bandwidth be-
tween main memory and local store and to make writ-
ing SIMD instructions easier since the data structures
are already aligned at 16-byte boundaries.

Data from each site is usually accessed in a strided
manner, therefore, simply aligning it at the 128-bytes
boundary is not sufficient to achieve the full mem-
ory bandwidth. Each Cell blade memory node consists
of 16 banks, therefore it is important to ensure that
strided memory transactions are distributed between

the 16 banks rather than using just a few of them all the
time. This is implemented by padding the lattice site
data to the nearest odd stride size, which turned out to
be 21 in our case, in addition to the 128-byte boundary.

In the case of an 8 × 8 × 16 × 16 lattice volume,
the 54 kernels of interest are called 13,408 times. It is
therefore impractical to spawn a new SPE thread each
time a new kernel is executed because the SPE thread
execution overhead will have an adverse impact on the
overall application performance. Fortunately, the ker-
nels are small in terms of the actual lines of code, so
they can be bundled in a single library of SPE-resident
subroutines. The subroutines are invoked via a thin in-
terface running on the SPE as the main SPE thread.
Thus, only one thread per SPE is invoked at the start
of the application. Each compute kernel in the orig-
inal CPU-based code is replaced with a small wrap-
per subroutine, executed on the PPE, that sets up the
task structures specific for each individual kernel, sig-
nals the SPEs via mailboxes, and waits for the com-
pletion message from all the SPEs. The task structure
created by these subroutines is copied to a container
padded to a multiple of 128 bytes, and the pointer to
the container is sent to the SPE as a mailbox message.
Upon receiving a mailbox message, each SPE converts
the message to a pointer in the global memory space
and fetches the first eight bytes via DMA. The first
four bytes provide the unique SPE-resident subroutine
identifier and the next four bytes indicate the kernel-
specific task structure size. The SPE then transfers the
entire kernel-specific structure to its LS and passes the
control to the corresponding SPE-resident subroutine.
Once the calculations are done, results are transferred
back to the main memory and a mailbox message is
sent to the PPE indicating the completion of the SPE
task. PPE polls for the messages from SPEs and re-
sumes its work once all SPE-based kernels return. In
theory, this approach may flood EIB with mailbox read
requests from the PPE [1]. An alternative approach is
to use the interrupt mailbox to notify the PPE about
the completion of the SPE task. Both approaches were
evaluated in this work and it was found that the in-
terrupt mailbox approach introduces larger delay, thus
slowing down the entire application.

5.3. ERIs kernel

In this study, the evaluation of (ss|ss) integrals over
contracted s-orbitals is implemented on the Cell/B.E.
processor. In the reference microprocessor implemen-
tation some quantities are pre-computed outside the in-
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nermost loop in O(N2) steps and do not count for much
of the execution time. Therefore, these computations
are left to the PPE. The body of the innermost loop is
executed in O(N4) time and has a high data-reuse rate.
Therefore it is natural to implement and execute this
part of the application in the SPEs.

Memory requirements to store the pre-computed
quantities exceed SPE’s local store size. As a result,
pre-computed arrays of data are stored in the main
system memory. These pre-computed quantities are
unique for each pair of electron shells and are brought
in the SPE’s local store as needed. The SPE’s local
store is sufficient to keep this reduced amount of data.
The input data – which includes an array of coor-
dinates, an array of shell primitives and an array of
shells – is less than 32 kB combined. The Gauss error
function interpolation table contains 3,608 entries con-
sisting of five single-precision floating-point numbers
and is about 71 kB.

Code profiling shows that a large percentage of time
is spent computing the Gauss error function via the in-
terpolation table. Vectorizing this part of the code “as
is” is inefficient because the number of operands is not
a multiple of four. But since there is some room left
in the local store, the lookup table can be padded to
eight 32-bit values, thus making it much simpler to cast
operands into vectors of four values and issue SIMD
instructions on them. After padding, the total amount
of memory for the lookup table is 113 kB.

The output produced by the SPE kernels is much
larger than SPE’s LS, typically several megabytes.
Therefore, the output data is transferred back to the
main memory once the local buffer becomes filled. The
data transfer time for the input and output parame-
ters, excluding the pre-computed quantities, is negli-
gible compared to the compute time. Therefore, there
is no need for hiding DMA transfer time behind the
compute time. However, transferring the pre-computed
data from main memory to local store needs to be done
quite often and therefore double buffering is used for
this particular data transfer. Also, contrary to the refer-
ence implementation, for relatively sparse basis sets it
turns out to be more efficient to compute the quantities
on the fly in the SPE rather than to pre-compute them in
the PPE and transfer in as needed. Therefore, both ap-
proaches are implemented – pre-compute on the PPE
and DMA as needed and compute in the SPE on the
fly – and are used based on the degree of contraction
of the basis set.

A considerable effort went into analyzing the struc-
ture of basis sets and its impact on the performance.

Depending on the number of primitives in the ba-
sis sets, different optimization structures yield differ-
ent results and no single optimization strategy works
well for all cases. Therefore, we attempt to choose one
or another optimization strategy from a set of imple-
mented kernels at runtime. For example, if the number
of the iterations in the innermost loop is not a multiple
of four, the loop order is switched to find one with a
number of iterations that is a multiple of four. If this
can be done, then variables related to the innermost
loop can be cast to vector pointers and can be refer-
enced directly rather than constructing vectors from in-
dividual scalar values. In another example, the two in-
nermost loops were manually unrolled for the case of
six primitives to increase the compute density of the
kernel and to eliminate some of the inefficiencies due
to short loops.

If the number of basis primitives is the same for
all shells, the workload is distributed evenly between
the SPEs based on the number of reduction elements.
However, this is not the case for relatively uncontracted
basis sets and therefore a different load-balancing pro-
cedure is implemented: compute the total number of
integrals to be evaluated and distribute the workload
based on it. This case, however, requires more calcula-
tions on the PPE side.

6. Results and discussion

6.1. NAMD

For performance evaluation, NAMD Cell/B.E. im-
plementation is executed for a single time step on a rep-
resentative system of 92,224 atoms with a 12 Å short-
range cutoff dataset [15]. This dataset is divided into
144 patches, resulting in 144 calls to the self-compute
kernel and 144 × 13 calls to the pair-compute kernel.

The performance of individual kernels (self- and
pair-compute) for both single-precision and double-
precision numerical types is given in Table 2. Data
transfer time for single-precision and double-precision
kernels is almost identical for the self-compute kernel
(Table 2). This is because the amount of data that needs
to be transferred is small enough and the DMA latency
time is dominant. However, for the pair-compute ker-
nel, which requires twice the amount of data as the self-
compute kernel, an increase in data transfer time by al-
most a factor of 1.2 is observed when switching from
the single-precision to the double-precision numerical
type. This corresponds to the fact that the amount of
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Table 2

Performance of self- and pair-compute kernels for single- and double-precision implementations

Self-compute kernel Pair-compute kernel

Data transfer (s) Total runtime (s) Data transfer (s) Total runtime (s)

Single-precision 0.0016 0.701 0.035 6.429

Double-precision 0.0017 1.314 0.042 11.504

Note: The time is taken from running the entire simulation on just one SPE.

data that is transferred back and forth between the main
memory and the SPE for each atom changes from 44 to
56 bytes (56/44 = 1.27) when switching from single-
to double-precision. (Note that in the utilized NAMD
SPEC 2006 CPU benchmark code, force values are
stored as 32-bit integers while atom displacements are
stored as double-precision floating-point values.)

To get a more precise picture of the work per-
formed by each of the kernels, excluding the DMA data
transfer time, the SPU static timing tool, spu_timing,
is used. It instruments an SPU assembly file with
scheduling, timing, and instruction issue estimates as-
suming straight, linear execution of the program. The
total number of clock cycles spent performing five ma-
jor types of operations is counted (Fig. 2): SIMD dis-
tance and force computations, merge of scalar values
to form vectors for SIMD force calculations, and scalar
distance and force calculations (usually four pairs of
atoms at a time are processed using SIMD instructions;
however, if there are fewer than four pairs of atoms left,
they are processed one by one using the original scalar
code). One can see that in the self-compute kernels the
majority of the time is spent on the force computation
path, while in pair-compute kernels the majority of the
time is spent on the distance computation path.

A more detailed analysis of the data presented in
Fig. 2 reveals an increase of more than a factor of
two for SIMD distance compute time when switching
from single-precision to double-precision. At the same
time, actual SIMD force compute time for the double-
precision kernel is only a factor of 1.8 slower than the
single-precision kernel. As one can see from Fig. 2,
in the single-precision kernel only about one-third of
the time is spent on actual computations, while in the
double-precision kernel about two-thirds of all cycles
are computation cycles. Furthermore, not all floating-
point operations in the double-precision version re-
quire double-precision. In fact, in the full-length com-
putation, there are 21 double-precision operations and
20 single-precision operations. Thus, the expected 14×
slowdown of the double-precision kernels is not ob-
served.

Both the single-precision and double-precision ker-
nels scale well for multiple SPEs (Fig. 3). Since there
are 144 patches (or 144 × 13 patch pairs in the pair-
compute loop) in the input data, it is quite easy to find
dependency-free tasks, and therefore all SPEs are kept
busy most of the time and the speedup increases lin-
early with the addition of more SPEs. However, it is
easy to see that this trend may not hold if the dataset is
divided into only a small number of patches or a large
number of SPEs are used since a dependency-free task
may not be readily available at any given moment.

6.2. MILC

The 54 computational kernels that were ported to
the Cell/B.E. processor are responsible for 98.8% of
the overall execution time on the 2.3 GHz Intel Xeon
chip; only 1.2% of the overall execution time is due to
the remaining code (Fig. 4, “1 core Xeon” bar). How-
ever, once ported to the Cell/B.E. processor, runtime of
the remaining code increases to more than 30% of the
overall execution time (Fig. 4, “1 PPE, 8 SPEs” bar).
The execution time of the part of the code that remains
on the PPE slows down more than three times as com-
pared to the execution time on the single core of the
Intel Xeon chip, and the part of the code ported to the
eight SPEs speeds up more than 12 times as compared
to the Intel Xeon execution time. These observations
hold true for different lattice sizes tested in this work.
It is clear that PPE becomes the bottleneck in achiev-
ing any substantial performance increase beyond this
point.

The QS20 IBM Cell blade consists of two Cell/B.E.
processors mounted on the same board with a high-
speed coherent interface between the two chips run-
ning at 20 GB/s in each direction [13]. Two ways to
scale up the application on the dual-chip board are con-
sidered:

• Run the application on one PPE while offload-
ing the 54 kernels to 16 SPEs. Since the perfor-
mance is largely determined by the bandwidth be-
tween main memory and the SPEs, the memory
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Fig. 2. Static analysis of the computing kernels performed with the help of the timing tool, spu_timing, provided with the Cell SDK. The time
is taken from running the entire simulation on just one SPE, excluding DMA data transfer time. The top graph shows clock cycle distribution
between different types of computations. SIMD distance and force computation bars correspond to processing four pairs of atoms at a time using
SIMD instructions. If there are fewer than four pairs of atoms left, they are processed one by one using the original scalar code (scalar distance
and force computation bars). The bottom graph shows clock cycle distribution between actual calculations and data manipulation operations.

Fig. 3. Scaling and speedup of the Cell/B.E. NAMD force-field kernel implementation as compared to a 3.0 GHz Intel Xeon processor. Sin-
gle-precision (left) and double-precision (right) kernels exhibit similar scaling behavior.
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Fig. 4. Execution time of the PPE and SPE parts of the MILC code on the Cell blade for the lattice size of 8×8×16×16 (top) and 16×16×16×16
(bottom). Single- and multi-core Intel Xeon performance is provided for reference with the bottom part of the chart bars showing the execution
time of the code that corresponds to the code that remains executed on the PPE and the top part of the chart bars showing the execution time of
the code that is executed on the PPEs in the Cell/B.E. implementation.

is allocated alternatively between two Cell/B.E.
processors to maximize the bandwidth. In this
case, a slight increase in the time spent on the PPE
and a small decrease of the time spent on the SPEs
are observed, with overall runtime decreasing 18
to 22% for different lattice size (Fig. 4, “1 PPE,
16 SPEs (NUMA)” bar).

• Run the application on two PPEs as two MPI
processes with each MPI process computing half
of the full grid size. Each process runs on one PPE
and offloads the computational kernels to its own
eight SPEs. The two processes communicate us-

ing MPI. While the runtime for the SPE part of the
code decreases (Fig. 4, “2 PPEs, 8 SPEs per PPE
(MPI)” bar), the runtime of the remaining PPE
part of the code increases to well over 50% of the
overall execution time. Further profiling shows
the added MPI communication overhead is about
50% of the overall PPE time. The overall perfor-
mance of this implementation slightly increases
when compared to the first execution schema.

These results are as expected: by going from 8 to
16 SPEs, the number of compute engines increases
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by a factor of two, allowing the SPE-resident code to
run faster by making available more memory band-
width. However, spreading data between the memories
of two Cell/B.E. processors did not increase the effec-
tive memory-to-SPEs local store bandwidth by a fac-
tor of two because in many instances SPEs from one
Cell/B.E. chip access memory attached to the other
Cell/B.E. chip, resulting in a higher latency and a lower
bandwidth. An MPI implementation makes a better
data localization per Cell/B.E. processor, but it is still

not ideal. However, MPI itself runs quite slowly on the
PPE, thus reducing the overall performance.

Figure 5 presents measurements for both floating-
point operations per second used and data transfer
bandwidth sustained by all 27 subroutines executed on
eight PPEs. Only infrequently kernel performance of
more than 10 GFLOPS is achieved with any of the
kernels, which is just over 4% of the combined PPEs’
peak performance. At the same time, only five ker-
nels achieve less than 10 GB/s memory bandwidth

Fig. 5. Peak performance (FLOPS and bandwidth) utilization on the Cell/B.E. system for two lattice sizes. Results are consistent for both datasets.
The larger dataset typically results in slightly better resource utilization.
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utilization, and many of the kernels are sustaining a
bandwidth close to 20 GB/s, which is 78% of the
peak. To better explain these results, all kernels can
be classified into three types. Kernels of the first type
do actual floating-point calculations and usually re-
sult in non-zero FLOPs and high bandwidth utiliza-
tion, e.g., mult_su3_nn. Kernels of the second type do
not have any calculations, but move data around, e.g.,
su3mat_copy and set_su3_matrix_to_zero. For exam-
ple su3mat_copy kernel, which is responsible for about
20% of the overall runtime on the Intel Xeon plat-
form, is used to copy matrices in memory. When left
on the PPE, it results in a significant slowdown be-
cause of the limited memory-to-PPE bandwidth. How-
ever, a speedup of ∼18× as compared to the origi-
nal Intel Xeon implementation is achieved by simply
transferring the original data from source location in
memory to local store in SPEs and then transferring it
back to a new destination in main memory. Similarly,
set_su3_matrix_to_zero (functionally analogous to the
standard bzero subroutine) is implemented by transfer-
ring an array of zeroes from SPEs to main memory, re-
sulting in a speedup of ∼41× as compared to the orig-
inal Intel Xeon implementation. Kernels of the third
type do only integer calculations (and therefore do not
show any FLOPS in Fig. 5) that are needed to compute
neighboring address and construct MPI messages. Two
kernels, general_strided_gather and set_neighbor, be-
long to this type. Bandwidth utilization for these ker-
nels is low because only a small amount of data is
transferred between the main memory and the SPEs
and it is not aligned at 128-byte boundaries. However,
by implementing these kernels on the SPEs, speedups
of 16.6× and 2.6×, respectively, are achieved when
compared to the original Intel Xeon code.

Spray [21] reports 41 GFLOPS obtained on a sin-
gle Cell/B.E. processor for the Wilson Dslash op-
erator, which is functionally equivalent to MILC’s
dslash_w_site subroutine that achieves only about
5.4 GFLOPS in our implementation. Spray’s imple-
mentation, however, is “scalar in nature, in the sense
that the level of parallelization is limited to a sin-
gle Cell blade. If multiple Cell blades are to be used,
then the code would have to interleave off-node com-
munications with on-processor calculations and com-
munications” [21, p. 63]. Also, Spray’s implemen-
tation is limited to datasets that fit into SPEs’ LS,
thus making it impractical for any real problems.
MILC’s dslash_w_site subroutine, on the other hand,
consists of four kernels implemented on the SPE
and interleaved with the MPI-based inter-node gather-
scatter operations implemented on the PPE. Also, our
Cell/B.E. implementation does not impose any limits
on the dataset size. This largely explains the perfor-
mance difference between Spray’s implementation and
the work reported here.

6.3. ERIs kernel

Two test cases are considered: a molecular system
consisting of 10 water molecules (30 atoms in total)
using cc-pVDZ basis set with only s-type functions
taken into account and a molecular system composed
of 64 hydrogen atoms arranged in a lattice using the
STO-6G basis set. The first model is an example of a
relatively uncontracted basis set, whereas the second
model is an example of a highly contracted basis set.
Figure 6 presents performance results for these models.

An obvious observation is that the speedup obtained
for the model that uses a highly contracted basis set

Fig. 6. Scaling (left Y axis) and speedup (right Y axis) of the Cell/B.E. two-electron repulsion integrals kernel implementation as compared to
a 2.3 GHz Intel Xeon processor for model 1 (left) consisting of 30 atoms using cc-pVDZ basis set and model 2 (right) consisting of 64 atoms
using STO-6G basis set.
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is substantially higher than for the model that uses a
relatively uncontracted basis set. The degree at which
the basis set is contracted translates into the number of
primitive integrals to be computed for each contracted
integral. In terms of the code execution profile, this cor-
responds to the number of iterations of the innermost
loop. In the case of the highly contracted basis set,
the implementation in which the two innermost loops
are fused is used, thus yielding a much better utiliza-
tion of the SIMD engine. In the case of the relatively
uncontracted basis set, the same efficiency cannot be
achieved because there is no loop in which the num-
ber of iterations is a multiple of four. Thus, a relatively
un-optimized version of the kernel is used.

The PPE pre-compute time for the first model is
0.25 s, whereas for the second model it is 0.12 s.
The point is approaching, especially with the second
model, when the PPE’s performance is becoming a
limiting factor in improving the overall code perfor-
mance. One way to deal with this issue is to implement
the pre-computing stage on the SPEs as well.

For both models linear scaling is observed when in-
creasing the number of SPEs used to compute ERIs.
This behavior is expected since the work is assigned to
the SPEs based on the total number of integrals to be
computed.

7. Conclusions and lessons learned

In this work, the use of the Cell/B.E. processor for
implementing and running several scientific comput-
ing codes with both the single-precision and double-
precision numerical types is explored. The results point

out the potential of the Cell/B.E. processor to acceler-
ate applications by up to two orders of magnitude when
compared to mainstream microprocessors. These per-
formance improvements, however, come with substan-
tial data and code manipulations. When porting an ap-
plication to the Cell/B.E. processor, two main issues
arise:

• Uncovering application/algorithm parallelism
that can be translated into an efficient multi-core
SIMD implementation, and

• Removing obstacles in the way of approaching
hardware limits.

While the issue of uncovering application/algorithm
parallelism is beyond the scope of this paper, we would
like to point out a few lessons and techniques that we
used to approach the hardware limits. Table 3 lists main
optimization techniques applied in each of the applica-
tions.

Lesson 1: Keep code on the PPE to a minimum. Be-
cause of the limited PPE-to-main memory bandwidth,
any heavy-lifting calculations, or even memory opera-
tions, should not be executed on the PPE. In tests us-
ing the STREAM memory bandwidth benchmark, the
PPE delivers only 1–1.5 GB/s of sustained bandwidth,
whereas a single-core Intel Xeon chip sustains a trans-
fer rate of over 3.5 GB/s. Coupled with a smaller cache
size, code fragments that seem to take very little time
on a conventional processor may easily become a sub-
stantial bottleneck on the PPE. As an example, in the
case of MILC, memory copy and memory reset opera-
tions turned out to be much faster when implemented
on the SPE (Fig. 5).

Table 3

Summary of optimization techniques applied in each of the applications

NAMD MILC ERIs

Problem nature N -body simulation 4D structured grid O(N4) compute-intensive

problem

Performance limit Computation bound Memory bandwidth bound Computation bound

SPE code optimizations Explicit SIMD Explicit SIMD Explicit SIMD

Branch elimination Double buffering Double buffering

Partial loop unrolling Memory structure padding Array padding

Memory affinity Complete loop unrolling

Elimination of capacity misses Loop reordering

Load balancing A pool-based dynamic task distrib-
ution schema. Each SPE works on
separate tasks and the load balance
is achieved due to the dynamic na-
ture of the task assignment.

All SPEs work on the same task
simultaneously and the work is
evenly distributed between the
SPEs. Many kernels, multiple
calls to the kernels.

All SPEs work on the same task
simultaneously and the work is
evenly distributed between the
SPEs. Single kernel, single call
to the kernel.
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Lesson 2: Know if your SPE kernel is bandwidth-
limited or compute-limited. Knowing which hardware
limits are stopping one from improving performance
is very important in order to apply the appropriate
optimization techniques. To demonstrate the point,
compute-bound codes do not require optimizations
to speedup data transfers whereas bandwidth-limited
codes do not require optimizing computations because
doing so will not remove the main bottleneck. In the
case of the applications presented in this paper, NAMD
and the ERIs kernel are compute-bound whereas the
majority of MILC kernels are bandwidth-limited.

Lesson 3: One way to deal with bandwidth-limited
kernels is to turn them into compute-bound kernels.
This can be achieved by adding more work to the ker-
nels. As an example, in the case of the ERIs kernel for
the uncontracted basis sets, transferring pre-computed
quantities from the main memory to SPE’s local store
becomes a bottleneck. However, these quantities can
be computed directly on the SPEs as needed and the
overall performance of the kernel improves. Thus, lim-
ited bandwidth can be traded for the unused FLOPs.

Lesson 4: Efficient use of the SPE’s DMA engine
requires proper data alignment. It is not only impor-
tant to align data at 128-byte boundaries and pad it
to the nearest 128 bytes to maximize the DMA band-
width, but also to understand how strided memory
access works. This was clearly demonstrated in the
MILC implementation when accessing lattice site data
in a strided manner. Thus, with an odd stride size
(e.g., 1, 3, 5), the maximum bandwidth of 25.38 GB/s
can be achieved, whereas with the stride size of 16,
only 2.13 GB/s is achievable because only one out of
16 memory banks is used all the time [20].

Lesson 5: SIMD instructions require proper data
structures and alignments. In order to make an effi-
cient use of the SPE’s SIMD instructions, operands
need to be aligned at 16-byte boundaries and need to be
arranged as vectors. In all considered applications this
was the most time-consuming and difficult optimiza-
tion to implement. Aligning data at the 16-byte bound-
aries frequently can be achieved by simply padding the
corresponding data structures, with the obvious side ef-
fect of increasing memory size to hold the data. As-
sembling vectors for SIMD instructions is significantly
more challenging since numerous clock cycles can be
wasted to shuffle or accumulate the data before the re-
quired number of vector elements is assembled. This
was especially true in the case of NAMD. This issue
was dealt with by filling in the missing data with zeros
and discarding the unneeded results at the end. In gen-

eral, one needs to consider not only data structures, but
also algorithm selection and possibly the entire appli-
cation structure to vectorize the code efficiently.
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