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This paper proposes two multimodal fusion methods between brain and peripheral signals for emotion recognition. The input
signals are electroencephalogram and facial expression. The stimuli are based on a subset of movie clips that correspond to four
specific areas of valance-arousal emotional space (happiness, neutral, sadness, and fear). For facial expression detection, four basic
emotion states (happiness, neutral, sadness, and fear) are detected by a neural network classifier. For EEG detection, four basic
emotion states and three emotion intensity levels (strong, ordinary, and weak) are detected by two support vector machines (SVM)
classifiers, respectively. Emotion recognition is based on two decision-level fusion methods of both EEG and facial expression
detections by using a sum rule or a production rule. Twenty healthy subjects attended two experiments. The results show that
the accuracies of two multimodal fusion detections are 81.25% and 82.75%, respectively, which are both higher than that of
facial expression (74.38%) or EEG detection (66.88%). The combination of facial expressions and EEG information for emotion
recognition compensates for their defects as single information sources.

1. Introduction

Emotion plays a powerful role in social influence: not only
does it include psychological responses to external stimuli or
one’s own stimuli but it is also accompanied by physiological
responses to psychological reactions in individuals’ daily
lives. Emotional influences are manifested across a variety
of levels and modalities [1]. On the one hand, peripheral
signals are related to the somatic nervous system and show
physiological changes in emotion states. For instance, there
are physical signals that emerge: facial expressions, verbal
speech, or body language. On the other hand, there are
also influences on cognitive processes, including coping
behaviors such as wishful thinking, resignation, or blame-
shifting. The goal of our research is to perform a multimodal
fusion between EEGs and peripheral physiological signals for
emotion recognition.

Previous studies have investigated the use of peripheral
and brain signals separately, but little attention has been
paid thus far to a fusion between brain and peripheral
signals. In one study, Ekman and Friesen made a pioneering

contribution to modern facial expression recognition [2].
They defined the six basic expressions of human beings, that
is, pleasure, anger, surprise, fear, disgust, and sadness, and
identified the categories of objects to be investigated. Mase
made use of optical flow to determine the main direction
of movement of the muscles and then constructed the Face
Recognition System [3]. Picard and Daily at MIT Media
Laboratory developed pattern recognition algorithms that
attained 78.4% classification accuracy for three categories of
emotion states using the peripheral signals of galvanic skin
resistance, blood pressure, respiration, and skin temperature
[4].

Compared to periphery physiological signals, EEG sig-
nals have been proven to provide greater insights into
emotional processes and responses. Furthermore, because
EEG has been widely used in BCIs, the study of EEG-based
emotion detection may provide great value for improving
the user experience and performance of BCI applications.
Chanel et al. reported an average accuracy of 63% by using
EEG time-frequency information as features and support
vector machine (SVM) as a classifier to characterize EEG
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signals into three emotion states [5]. Nasehi et al. made
use of quadratic discriminant analysis and SVM to classify
emotions into the six categories of pleasure, surprise, anger,
fear, disgust, and sadness, achieving accuracies of 62.3% and
83.33%, respectively [6]. Ishino and Hagiwara categorized
user status into four emotion states using neural networks
with accuracies ranging from 54.5% to 67.7% for each of
the four emotion states [7]. However, the use of EEG-based
emotion recognition is still in its infancy.

In recent years, with the development of multisource
heterogeneous information fusion processing, it has become
possible to fuse features from multicategory reference emo-
tion states.Theuse of different types of signals to support each
other through supplementary information fusion processing
can be greatly improved.Therefore, people have begun to use
facial expressions, voice messages, eye movements, gestures,
and physiological signals and other channels of emotional
information between the complementarity to study iden-
tification problems, that is, based on multimodal emotion
recognition [8]. Most previous works have focused on the
fusion of audiovisual information for automatic emotion
recognition, for example, combining speech with facial
expression. Busso et al. proposed a rule-based decision-
level fusion method for combined analysis of speech and
facial expressions [9]. Wanger et al. used boosting techniques
to automatically determine adaptive weights for audio and
visual features [10]. A few studies have focused on the
multimodal fusion of EEG and physiological signals. In a
study [11], the International Affective Picture System (IAPS)
was utilized as stimuli, and the use of self-assessment labels
for arousal assessment yielded accuracies of 55%, 53%, and
54% for EEG, physiological, and fused features, respectively.
All of the studies have shown that the performances of
emotion recognition systems can be improved by employing
multimodal information fusion.

In this study, we propose two multimodal fusion meth-
ods combining brain and peripheral signals for emotion
recognition. The input signals are electroencephalogram and
facial expression. The stimuli are based on a subset of movie
clips that correspond to four specific areas of valance-arousal
emotional space (happiness, neutral, sadness, and fear). For
facial expression detection, four basic emotion states are
detected by a neural network classifier. For EEG detection,
four basic emotion states and three emotion intensity levels
(strong, ordinary, and weak) are detected by two SVM
classifiers, respectively. Emotion recognition is based on
two decision-level fusion methods of both EEG and facial
expression detections by using a sum rule or a production
rule. Twenty healthy subjects attended two experiments. The
results show that the accuracies of two multimodal fusion
detections are 81.25% and 82.75%, respectively, which are
both higher than that of facial expression or EEG detection.
The combination of facial expressions and EEG information
for emotion recognition compensates for their defects as
single information sources.

2. Methods

2.1. Data Acquisition System. A Mindwave Mobile device
(Neurosky, Inc., Abbotsford, Australia) was used to capture

scalp EEG signals, and a Logitech camera (25 FPS, 800 × 600
image size) was used to capture facial expressions. According
to the standard 10–20 system, the EEG signals are referenced
to the right mastoid. The EEG signals used for analysis were
recorded from the “Fz” electrode. The impedances of all
electrodes were maintained below 5 kΩ.
2.2. Data Processing and Algorithm. For our proposed sys-
tem, the EEG and facial expression detectors were designed
separately. The EEG and image data were fed into the two
detection procedures simultaneously. Figure 1 shows the data
processing procedure. The analysis methods and algorithms
used in this study are described below.

2.2.1. Facial Expression Detection. For the face features
extraction, the face position is detected in real-time by
the AdaBoost algorithm based on the Haar eigenvalue. The
Haar classifier uses the AdaBoost algorithm of the Boosting
algorithm, resulting in a cascade of weak classifiers trained
by the AdaBoost algorithm. We use the Haar-like feature in
image as input of the classifier. The output of the classifier
is whether this image is human face [12]. When the human
face from the input image is found, we resize it into 48-pixel
width and 48-pixel height. Next, the PCA method is used to
reduce the dimensionality. The output of this phrase is 169
dimensions (obtained by the grid search method mentioned
below) after dimensionality reduction.

The feature vectors are then fed to a feedforward neural
network. Figure 2 shows the architecture of the proposed
system for face expression classification. Applying the trained
feedforward neural network classifier to the face image
feature, we obtain four scores (the values of the objective
function of the feedforward neural network), denoted as𝑠1𝑗 (𝑗 = 1, . . . , 4). 𝑗 represents the four emotion states (hap-
piness, neutral, sadness, and fear) detected by face expression
classifier. We normalize the four scores by mapping them to
the range [0, 1].

𝑠1𝑗 = 𝑠1𝑗 −min {𝑠11, . . . , 𝑠14}
max {𝑠11, . . . , 𝑠14} −min {𝑠11, . . . , 𝑠14} (1)

𝑟1 = argmax
𝑗

(𝑠1𝑗) . (2)

The four normalized scores 𝑠1𝑗 (𝑗 = 1, 2, 3, 4) represent-
ing the output of feedforward neutral network are used in the
decision-making step described later, and 𝑟1 represents the
emotion state detected by face expression.

Note that the hyperparameters of the face expression
classifier are determined by the grid search method, a brute-
force searching through a manually specified subset of the
hyperparameters space of a learning algorithm. We initialize
the subset of the hyperparameters space in

𝐷 ∈ {121, 144, 169, 225}
𝑁 ∈ {150, 200, 250, 300}
𝑅 ∈ {0.001, 0.01, 0.1, 1} ,

(3)
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Figure 1: Data processing procedure of the multimodal emotion recognition.
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Figure 2: The architecture of the proposed system for face expression classification: the network has one hidden layer with 200 neurons.
The input of this network is 169 image features we get from dimensionality reduction, while the output is the scores of four emotion states
(happiness, neutral, sadness, and fear). The learning rate of this network is 0.1. We use sigmoid function as the activation function of this
network.

where 𝐷 is the number of the dimensions, 𝑁 is the number
of the neurons in hidden layer, and 𝑅 is the learning rate in
classification. Grid search then trains a classifier with each
pair (𝐷, 𝑁, 𝑅) in the Cartesian product of these three sets
and evaluates their performance on a held-out validation set.
We select the classifier parameters with the best performance
and apply it into our model.

2.2.2. EEG Detection. The EEG-based detection includes
two progressive stages: feature extraction based on PSD
and classification using SVM. The analysis methods and
algorithms used in this study are described below.

The EEG data are bandpass filtered over eight frequency
bands: delta (1–3Hz); theta (4–7Hz); alpha1 (8–10Hz);
alpha2 (11–13Hz); beta1 (14–20Hz); beta2 (21–30Hz);
gamma1 (31–40Hz); and gamma2 (41–50Hz). We compute
the traditional PSD features using the Short Time Fourier
Transform (STFT) with a 1-s window and no overlapping
Hanning window. For classification, we use two linear SVM
classifiers here, one for the emotion states classification,
and one for the emotion intensities classification. We train
samples (𝑥𝑖, 𝑦𝑖) and (𝑥𝑖, 𝑦𝑖 ),
𝑥𝑖 = [ DELTA,THETA,ALPHA1,ALPHA2,

BETA1,BETA2,GAMMA1,GAMMA2] (4)

𝑦𝑖 =
{{{{{{{{{{{{{{{

1 happiness

2 neutral

3 sadness

4 fear

(5)

𝑦𝑖 =
{{{{{{{{{

−1 weak

0 moderate

1 strong,
(6)

where DELTA, THETA, ALPHA1, ALPHA2, BETA1, BETA2,
GAMMA1, and GAMMA2 represent the power density spec-
trum corresponding to the eight frequency bands mentioned
above, 𝑦𝑖 represents the label of the four emotion states,𝑦𝑖 is the label of the three emotion intensity levels, and𝑥𝑖 represents the feature vectors corresponding to the four
emotion states or the three emotion intensity levels.

Applying the first trained SVM classifier to the feature
vectors, we obtain four scores (the values of the objective
function of the SVM), denoted as 𝑠2𝑗 (𝑗 = 1, . . . , 4).𝑗 represents the four emotion states (happiness, neutral,
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sadness, and fear) detected by EEG classifier. We normalize
the four scores by mapping them to the range [0, 1].
𝑠2𝑗 = 𝑠2𝑗 −min {𝑠21, . . . , 𝑠24}

max {𝑠21, . . . , 𝑠24} −min {𝑠21, . . . , 𝑠24}
𝑟2 = argmax

𝑗

(𝑠2𝑗) .
(7)

The four normalized scores 𝑠2𝑗 (𝑗 = 1, 2, 3, 4) and the
index of themaximum score 𝑟2 representing the output of the
emotion state in the EEG detection are used in the first fusion
method described later.

Applying the second trained SVM classifier to the feature
vectors, we obtain three scores 𝑠2𝑘 (𝑘 = 1, 2, 3) correspond-
ing to the three emotion intensity levels (weak,moderate, and
strong), and find the index of the maximum score.

𝑟2 = argmax
𝑘

(𝑠2𝑘) . (8)

The index of the maximum score 𝑟2 representing the
output of the emotion intensity level in the EEG detection is
used in the second fusion method described later.

2.2.3. Classification Fusion. In the decision-level fusion, the
outputs generated by two classifiers of the facial expression
and EEG detections are combined. We employ two fusion
methods of both EEG and facial expression detections as
follows.

For the first fusion method, we have applied the sum
strategy (e.g., [12]) to the decision-level fusion. Specifically,
we calculate the sum of the normalized face expression
classifier scores 𝑠1 and EEG classifier scores 𝑠2 for each of the
four emotion states. Finally, we find themaximum of the four
summed values as shown as follows:

sum𝑗 = 𝑠1𝑗 + 𝑠2𝑗 (𝑗 = 1, 2, 3, 4)
𝑟sum = argmax

𝑗

(sum𝑗) , (9)

where 𝑠1𝑗 (𝑗 = 1, 2, 3, 4) and 𝑠2𝑗 (𝑗 = 1, 2, 3, 4) are calculated
in (1) and (6), and 𝑟sum is the index corresponding to the
maximum of the summed values.

For the second fusion method, we adopt the decision-
making strategy based on production rules, which are com-
monly used as a simple expert system in the cognitive
modeling and artificial intelligence (e.g., [13, 14]). Through
the production rule, the four emotion states (happiness,
neutral, sadness, or fear) and the three emotion intensity
levels (strong, moderate, or weak) are combined to emotion
recognition. A production rule consists of an IF part (a
condition or premise) and a THEN part (an action or
conclusion). The form of production rules is

𝑅𝑖 : IF 𝑃 THEN 𝑄, (10)

where𝑅𝑖 represents the rule 𝑖,𝑃 is the antecedent of rule 𝑖, and𝑄 is the latter of rule 𝑖. In this study, 𝑃 is formed by (𝑟1, 𝑟2).𝑟1 represents the emotion state detected by facial expression,

Table 1: The production rules of combining the emotion state and
intensity level.

𝑅𝑖 𝑃 𝑄
𝑅1 (Happiness, strong) Happiness
𝑅2 (Happiness, moderate) Happiness
𝑅3 (Happiness, weak) Neutral
𝑅4 (Neutral, strong) Happiness
𝑅5 (Neutral, moderate) Neutral
𝑅6 (Neutral, weak) Neutral
𝑅7 (Sadness, strong) Fear
𝑅8 (Sadness, moderate) Sadness
𝑅9 (Sadness, weak) Sadness
𝑅10 (Fear, strong) Fear
𝑅11 (Fear, moderate) Fear
𝑅12 (Fear, weak) Sadness

while 𝑟2 represents the emotion intensity level detected by
EEG. The production rules are defined as shown in Table 1.

All the rules will be triggered as soon as their conditions
are met. For example, in the production rule 𝑅3, if the
emotion state detected by facial expression is happiness and
the emotion intensity level detected by EEG is weak, the final
result of the emotion recognition is neutral.

3. Experiment

Two experiments, offline and online, were conducted in this
study. In this study, the data of the first experiment was used
for training. Twenty healthy 19- to 33-year-old subjects from
the local research unit attended the experiments. During the
experiments, the subjects were seated in a comfortable chair
and instructed to avoid blinking or moving their bodies.

3.1. Experiment 1 (Offline). The data collected in this experi-
ment consisted of 40 trials for each subject. At the beginning
of each trial, a fixation cross was first presented at the center
of the GUI to capture the subjects’ attention. After 2 s, movie
clips inducing different emotional conditions were presented
at the center of the GUI in a random order. Each movie clip
was presented for 2-3 minutes, preceded by 5 s of a blank
screen as the start hint. At the ends of trials, subjects were
asked to view each movie clip, assign valence and arousal
ratings, and rate the specific emotions they had experienced.
The rating procedure lasted approximately 60 s. There was
a 10-s break between two consecutive trials for emotional
recovery. During each trial, we collected 100 human face
images using a camera and 200 groups of EEG signals using a
Mindwave Mobile device. Valence and arousal ratings were
obtained using the Self-Assessment Manikin (SAM) [15].
Four basic emotion states (happiness, neutrality, sadness, and
fear) and three emotion intensities (strong, ordinary, and
weak) were evaluated in this study. The given self-reported
emotion states and intensity level were used to verify the
facial and EEG emotion classifications. We used images and
corresponding emotion states to train a feedforward neural
network classifier. We used EEG signals and corresponding
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(a) A happiness emotion effect (b) A neutral emotion effect

(c) A sadness emotion effect

Figure 3: Example screenshots of face videos from Experiment 2.

emotion states to train a SVM classifier. A different neural
network classifier and a different SVM classifier were fitted to
each subject. They were both used in Experiment 2 to detect
emotion states.

3.2. Experiment 2 (Online). This experiment was composed
of 40 trials for each subject, corresponding to the 40 movie
clips evaluated in Experiment 1. The procedure of each trial
was similar to that in Experiment 1. However, at the end
of each movie clip, 3 different detectors (a face expression
detector, EEG detectors, and the first fusion detector) were
used to determine the emotion state. If the detection result
was correct, positive feedback consisting of auditory applause
occurred for 4 s. Otherwise, no feedback was given. For
performance evaluation, the online accuracy was calculated
as the ratio of the number of correct predictions to the
total number of presented trials. Figure 3 shows several
screenshots of face videos from Experiment 2. Figure 3(a)
shows a subject who was watching a lively movie clip.
Figure 3(b) shows a subject who was watching a normal
movie clip. Figure 3(c) shows a subject who was watching a
sad movie clip.

3.3. Data Analysis (Offline). To validate the second fusion
method combining type of emotion and intensity level, an
offline data analysis was conducted. For the data set of
Experiment 1, we used images and corresponding emotion
states to train a feedforward neural network classifier and
used EEG signals and corresponding emotion intensities to

train a SVM classifier. For the data set of Experiment 2, we
used the second fusion detector based on the production
rules to determine the emotion state and calculated the
corresponding offline accuracy rates.

4. Results

The average accuracies of the two fusion methods for twenty
subjects are shown in Table 2. The classification accuracies
of the face expression detection and the EEG detection are
also shown in Table 2. It shows that the accuracy of the
first fusion detection using a sum rule is 81.25% and the
accuracy of the second fusion detection using a production
rule is 82.75%, which are both higher than that of facial
expression (74.38%) or EEG detection (66.88%). Specifically,
seventeen of 20 subjects achieved the highest accuracies using
the fusion methods. Moreover, accuracies in each of the
three detections were tested using paired 𝑡-test. Results were
considered significant when 𝑝 values were below 0.05. The
statistical analysis based on 𝑡-test indicated the following: (i)
higher accuracies were achieved for the two fusion methods
than for the face expression detection or the EEG detection
(the first fusion method versus face expression detection,𝑝 = 0.03; the first fusion method versus EEG detection,𝑝 < 0.01; the second fusion method versus face expression
detection, 𝑝 = 0.03; the second fusion method versus EEG
detection, 𝑝 < 0.01); (ii) the accuracies were not significantly
different between the face expression detection and the EEG
detection (EEG detection versus face expression detection,
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Table 2: The accuracies for the detections of face expression, EEG, and two fusion methods.

Subject Face expression EEG The first fusion method (online) The second fusion method (offline)
1 92.5 67.5 92.5 87.5
2 57.5 70.0 82.5 87.5
3 50.0 72.5 87.5 87.5
4 62.5 75.0 92.5 87.5
5 60.0 60.0 75.0 75.0
6 87.5 75.0 95.0 92.5
7 72.5 72.5 72.5 80.0
8 70.0 70.0 80.0 87.5
9 92.5 60.0 75.0 80.0
10 85.0 62.5 72.5 80.0
11 67.5 72.5 80.0 80.0
12 80.0 75.0 85.0 85.0
13 92.5 57.5 92.5 87.5
14 72.5 55.0 77.5 80.0
15 70.0 52.5 75.0 77.5
16 92.5 62.5 77.5 77.5
17 77.5 57.5 90.0 87.5
18 92.5 80.0 92.5 85.0
19 50.0 62.5 60.0 75.0
20 62.5 77.5 70.0 75.0
Average 74.38 ± 14.55 66.88 ± 8.19 81.25 ± 9.47 82.75 ± 5.19

𝑝 = 0.08); (iii) the accuracies were also not significantly
different between the first and the second fusion methods
(the first fusion method versus the second fusion method,𝑝 = 0.56). Furthermore, we can see that low accuracies were
obtained for subjects 5, 19, and 20.That could be attributed to
them having less expressive facial expressions or perhaps our
approach is less sensitive to them.

5. Discussions

This paper employs information fusion technology com-
bined with facial expression recognition technology and EEG
emotion recognition technology. The stimuli are based on
a subset of movie clips that correspond to four specific
areas of valance-arousal emotional space (happiness, neutral,
sadness, and fear). The four emotion states are detected
by both facial expression and EEG. Emotion recognition
is based on a decision-level fusion of both EEG and facial
expression detection. Twenty healthy subjects attended two
experiments. The results show that the accuracies of two
information fusion detections are 81.25% and 82.75%, which
are both higher than that of facial expression (74.38%) or EEG
detection (66.88%).

The notion that combining brain and peripheral phys-
iological signals will result in a more accurate emotion
recognition compared to using these variables on their own
seems very sensible and has frequently been suggested in the
literature as a potential way to improve emotion recognition
[16]. However, a few studies explicitly mention that combi-
nation of physiological information did not result in reliable
improvement (e.g., [17–19]) or only to a modest degree in

one of multiple conditions without statistical evidence (e.g.,
[5]). In this study, the experimental results and the statistical
analysis have provided clear evidence for the benefit of
multimodal combination for emotion recognition. It could be
explained that the emotion state involves multiple processes
that are presumably reflected by different types of variables
(e.g., cognitive processes by EEG and physical change by
peripheral facial expression measures).

In this study, we did find significant improvement for the
multimodal fusion detection, compared to the single pattern
detection.The reason could be based on the fact that the facial
expression detection has a fast and strong but fluctuating
response, and the EEG detection had a smooth but stable
response over the trial time [20]. Specifically, there is high
volatility in real emotion recognition based only on facial
expressions because subjects are able to trick the machine as
long as they know how to pretend via their facial expressions.
In this respect, the drawbacks of facial expression detection
can be compensated for by the EEG detection to a very
large extent. Thus, the facial expression detection and EEG
detection were irreplaceable and complementary to each
other, and the multimodal fusion should achieve higher
accuracies using both detections than using one of the two
detections.This was demonstrated by the data analysis results
in Table 2.

While most studies combine information by fusion at
the feature level, we thought that fusion of information at
the decision level could have contributed to finding a strong
reliable advantage of combining information. One the one
hand, fusion at this level is difficult to achieve in practice
because the feature sets of the various modalities may not be
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compatible (e.g., brain and peripheral physiological signals
in this study) [21]. Most commercial biometric systems do
not provide access to the feature sets nor the raw data which
they use in their products [22]. On the other hand, the
advantage of decision-level fusion is that all knowledge about
the different signals can be applied separately [23]. In this
study, the facial expression and EEG signals have their own
capabilities and limitations as mentioned above, and we can
use this information to optimize the detection performance.
In the decision-level fusion, it is relatively easy to access and
combine the scores generated by neural network and SVM
classifiers pertaining to facial expression and EEGmodalities.
Thus, fusion at the decision level is preferred in this study.

For the decision-level fusion, the classifier selection for
facial expression and EEG detections is also important.
Several properties have to be taken into consideration, such
as the long term variability of facial expression signals and
the availability of small data sets of EEG signals. First, the
neural network-based methods are found to be particularly
promising for facial expression recognition, since the neural
networks can easily implement the mapping from the feature
space of face images to the facial expression space [24].
Second, a neural network model generally requires a large
amount of high-quality data for training. In this study, the
EEG signals recorded by a one-electrode mobile device could
lack sufficient training data for the neural network-based
method. Third, SVM is known to have good generalization
properties and to be insensitive to overtraining and to the
curse-of-dimensionality, especially in the small data set [25].
It should be noted that SVM classifier was widely used in
the EEG-based brain computer interface in practice [26–29].
Furthermore, some modified support vector classification
(SVC) methods had the advantage of using a regulariza-
tion parameter to control the number of support vectors
and margin errors. For example, Gu and Sheng developed
a modified SVC formulation based on a sum-of-margins
strategy to achieve better online accuracy than the existing
incremental SVC algorithm [30]. They further proposed a
robust SVC method based on lower upper decomposition
with partial pivoting, which results in fewer steps and less
running time than original one does [31]. Taken together, the
neural network classifier was used for the facial expression
detection, and the SVM classifier was used for EEG detection
in this study.

Two multimodal fusion methods are proposed in this
study. For the first fusion method, SVM classified the EEG
signal into the four types of emotion, and fusion is performed
using a sum rule. For the second fusion method, SVM
classified the EEG signal into three intensity levels (weak,
moderate, and strong), and fusion is performed using a
production rule. It is interesting to note that the second fusion
method combining type of emotion and intensity level yields
comparable average accuracies with the first fusion method.
Indeed, it might very well be what humans do for emotion
recognition: for example, an expression of weak happiness is
typically answered with neutral, whereas a strong expression
of sadness usually evokes fear.

For the results of Experiment 2, average accuracies of
81.25% (online) and 82.75% (offline) were achieved by two

fusion methods for four-class emotion recognition. Superior
performance was obtained compared to the results in the
state-of-the-art results [3, 11, 32]. In fact, the authors of [3]
reported an average accuracy of 78.4% by using optical flow
to determine themain direction of movement of the muscles.
In [11], the IAPS was used as stimuli, and the use of self-
assessment labels for arousal assessment yielded accuracies
of 55%, 53%, and 54% for EEG and physiological and fused
features, respectively. Zheng and his colleges presented an
emotion recognition method combining EEG signals and
pupillary response collected from eye tracker and achieved
average accuracies of 73.59% and 72.98% for three emotion
states using feature level fusion strategy and decision-level
fusion strategy, respectively.

This study still has open issues that need to be considered
in the future. At this present stage, the image data set
we obtained is very limited, and the EEG signals used for
analysis were recorded from only one electrode. In the future,
however, we will collect more image data frommore subjects
and use a more complicated model to train our data to
yield a classifier with better performance. Furthermore, we
could consider an EEG device with more electrodes to obtain
higher-quality data.
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