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With the development of compressive sensing theory, image reconstruction from few-view projections has received considerable
research attentions in the field of computed tomography (CT). Total-variation- (TV-) based CT image reconstruction has been
shown to be experimentally capable of producing accurate reconstructions from sparse-view data. In this study, a distributed
reconstruction algorithm based on TV minimization has been developed. This algorithm is very simple as it uses the alternating
directionmethod.The proposedmethod can accelerate the alternating direction total variationminimization (ADTVM) algorithm
without losing accuracy.

1. Introduction

Image reconstruction algorithms implemented in existing
computed tomography (CT) scanners require projection data
to be available in proportional space [1, 2]. However, in
CT imaging of biological specimens, data collection at a
large number of projection views may result in radiation-
induced object deformation. Recently, methods based on the
corresponding constrained total variation (TV) or 𝑙

1
-norm

minimization have been widely studied in reconstruction
from sparse-view data [3–9]. Sidky et al. [5] proposed
the adaptive steepest descent projection onto convex sets
(ASD-POCS) algorithm for CT image reconstruction. This
method can realize exact-image reconstruction using fewer
measurements. The alternating direction method (ADM) is
an efficient approach for optimization problems. And the split
Bregman-TVmethod based on alternating Bregman iterative
approach was proposed and converged well in [8] as a solu-
tion for sparse-view CT reconstruction. A TV minimization
iterative algorithm using the ADM based on augmented
Lagrangian function was also proposed [10, 11]. Li et al.
proposed a more robust and efficient algorithm nonmono-
tone alternating direction algorithm (NADA) [12] in 2012,
which integrates alternating direction and nonmonotone line
search. An alternating direction total variation minimization
(ADTVM) algorithm for few-views reconstruction [13] was
developed inspired by the literature [10–12]. The augmented
Lagrangian function-based ADM is actually equivalent to the

Bregman iterative method when the constraints are linear
[14]. However, the expression in [13] is simpler than that in
[8].

The CT image reconstruction problem is a large-scale
problem. The ADTVM algorithm [13] is not directly suitable
for distributed implementation. Boyd et al. [15] argued that
the alternating direction method of multipliers is well suited
for distributed convex optimization, in particular, for large-
scale problems arising in statistics, machine learning, and
other related areas. In this study, a distributed algorithm
called distributed alternating direction total variation min-
imization (Dis-ADTVM) is developed using ADM. The
proposed algorithm is as simple as the ADTVM algorithm
and can accelerate the latter without accuracy loss.

2. Method

The imaging model can be approximated using the following
discrete linear system:

𝑝 = 𝑊 ⃗𝑓, (1)

where the vector 𝑝 has length 𝑁
𝑑
, which is the number of

measured projection rays; the vector ⃗𝑓 has length𝑁
𝑖𝑚
, which

is the number of expansion elements used in representing the
object function𝑓( ⃗𝑟); the system matrix 𝑊 is a pixel-driven
projection operator.
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(a) Phantom (b) ASD-POCS

(c) ADTVM (d) New method

Figure 1: Image reconstruction of the Shepp-Logan phantom in a 36-view scan. Display window [0.1,0.35]. (a) Original image; (b) result of
the ASD-POCS algorithm; (c) result of the ADTVM algorithm; (d) result of the proposed distributed algorithm.

Sparse-views projection data are not sufficient for exact
reconstruction. The problem we consider in this study is ill-
posed. To solve linear system (1), we use a regularization
method with anisotropic TV minimization, as follows:

min 
⃗𝑓
𝑇𝑉

s.t. 𝑝 = 𝑊 ⃗𝑓,

(2)

where ‖ ⃗𝑓‖
𝑇𝑉
≜ ∑
𝑗
‖𝐷
𝑗
⃗𝑓‖
1
and 𝐷

𝑗
denotes the differential

operator along direction 𝑗. In particular, 𝐷
1
and 𝐷

2
denote

the horizontal and vertical differential operators, respectively,
for two-dimensional form. 𝑝 and𝑊 are separated in 𝑖 along
vertical direction as

min 
⃗𝑓
𝑇𝑉

s.t. 𝑝
𝑖
= 𝑊
𝑖
⃗𝑓, 𝑖 = 1, 2, . . . , 𝑁.

(3)

We consider a variant of (3) as follows:

min 1
2
∑

𝑖


𝑊
𝑖
⃗𝑓
𝑖
− 𝑝
𝑖



2

+ 𝜆∑

𝑗


𝑧
𝑗

1

s.t. 𝐷
𝑗
⃗𝑓
𝑖
= 𝑧
𝑗
,

(4)

where ⃗𝑓
𝑖
denotes ⃗𝑓 in node 𝑖 and ⃗𝑓

𝑖
= ⃗𝑓, 𝑖 = 1, 2, . . . , 𝑁, in

node 𝑖. Its corresponding augmented Lagrangian function is

𝐿
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1
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2
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)) ,

(5)

where 𝑢
𝑖𝑗
is Lagrange multiplier and the parameters 𝜆 and

𝜌 are both used to balance the terms. The ADM is used to
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Figure 2: Image profiles of Figure 1. (a) Horizontal profiles along the centers of the ASD-POCS result; (b) vertical profiles along the centers
of the ASD-POCS result; (c) horizontal profiles along the centers of the ADTVM result; (d) vertical profiles along the centers of the ADTVM
result; (e) horizontal profiles along the centers of the proposed distributed algorithm result; (f) vertical profiles along the centers of the
proposed distributed algorithm result.
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Figure 3:TheRMSEs as functions of iterations of three testedmeth-
ods.
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Figure 4: Speedup of the proposed distributed algorithm.

solve the problem that minimizes the augmented Lagrangian
function; that is,

⃗𝑓
𝑘+1

𝑖
= argmin

⃗𝑓𝑖
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1
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(6)

The final algorithm of Dis-ADTVM can be expressed as
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/𝜌)) ,

Table 1: Parameters in the simulation of a sparse-view scan.

Parameters Configuration
Detector elements 512
Source to axis distance 300mm
Source to detector distance 600mm
Views of projection data 36
Projection data 512 × 36
Reconstruction size 256 × 256 pixels
Pixel size 0.127 × 0.127mm2

Table 2: The RMSE of the three tested methods.

ASD-POCS ADTVM Distributed algorithm
Iteration numbers 1000 1000 1000
RMSE 8.149𝐸 − 4 6.142𝐸 − 5 4.777𝐸 − 5
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(7)

where ⃗𝑓
𝑘+1

𝑖
and 𝑢𝑘+1

𝑗𝑖
can be computed in node 𝑖 and 𝑀+

stands for the Moore-Penrose pseudoinverse of matrix 𝑀.
Computing the pseudoinverse at each iteration is too costly
to implement numerically, while we use NADA [12] to solve
“𝑓-subproblem” in (7).

The convergence analysis of ADTVM algorithm has been
well analyzed in the literature [12], and the convergence proof
of the distributed algorithms based on ADM can be found
in [15, 16]. The iterative algorithms using the ADM based on
augmented Lagrangian function decompose the optimization
problem into some simple subproblems with closed form
solution. Therefore, the algorithms are efficient and practical
for the low cost in each iteration. The NADA algorithm
enables taking full advantages of the low-cost minimization
in “easy” direction and allows relatively quick and large
steps in the “hard” direction. The distributed algorithms can
distribute some computation to individual nodes; thereby, the
algorithms reduce the running time through data distribu-
tion and computation.The proposed Dis-ADTVM algorithm
in this paper integrates above advantages and its derivation
and implementation are as simple as the ADTVM algorithm.

3. Numerical Results

3.1. Simulation Studies. We perform numerical experiments
to demonstrate and validate the proposedmethod for sparse-
view image reconstruction. Scanning and reconstruction
parameters are listed in Table 1. Detector elements are
equidistantly spaced at 0.127mm.
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(a) ASD-POCS (200 iter) (b) ADTVM (200 iter) (c) New method (200 iter)

(d) ASD-POCS (1000 iter) (e) ADTVM (1000 iter) (f) New method (1000 iter)

Figure 5: Reconstructions of the three algorithms. (a) The ASD-POCS result with 200 iterations; (b) the ADTVM result with 200 iterations;
(c) the proposed distributed algorithm result with 200 iterations; (d) the ASD-POCS result with 1000 iterations; (e) the ADTVM result with
1000 iterations; (f) the proposed distributed algorithm result with 1000 iterations.

Table 3: Running time of the three tested methods.

Iteration number ASD-POCS (s) ADTVM (s) Distributed algorithm (s) Speedup
200 35.6462 24.1902 17.5854 1.3756
400 74.8574 51.6406 36.8742 1.4005
600 119.9293 76.7743 54.9518 1.3971
800 145.3673 103.9184 74.2152 1.4002
1000 181.7170 129.4053 92.4793 1.3993

Table 4: Parameters in the real data of a sparse-view scan.

Parameters Configuration
Detector elements 640
Source to axis distance 678mm
Source to detector distance 1610mm
Views of projection data 72
Projection data 600 × 72
Reconstruction size 300 × 300 pixels
Pixel size 0.582 × 0.582mm2

The proposed method is compared with ASD-POCS
algorithm [6] and theADTVMalgorithm [13], using the same
parameters to validate their performance. Dual core is used

in implementing the proposed distributed algorithm on two
nodes.

In the experimental configuration, we use one detector
for data acquisition by taking 36 angular samples evenly
distributed over an angular range of 360∘. The size of the
phantom simulation is set as follows. Image size is 256× 256 =
65536 voxels, and projection data size is 36 views, with 512
detectors or 18432 measured rays.

The images reconstructed from this set of data using
the ASD-POCS algorithm, ADTVM algorithm, and the
proposed distributed algorithm are shown in Figure 1. The
profiles of these images along the central horizontal and
vertical rows are presented in Figure 2. The number of iter-
ations for the three algorithms is 1000 each. The parameters
of ASD-POCS are same as those in [6]. The parameters
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Table 5: Running time for reconstructing real data.

Iteration number ASD-POCS (s) ADTVM (s) Distributed algorithm (s) Speedup
200 87.2564 63.1188 45.6657 1.3822
400 184.1110 135.0983 96.6299 1.3981
600 266.1320 214.6039 153.9262 1.3942
800 356.8788 265.0989 190.7736 1.3896
1000 445.9676 334.5297 240.6383 1.3902
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Figure 6: Speedupof the proposed distributed algorithm in real data
reconstruction.

in the ADTVM algorithm and the proposed distributed
algorithm are both 𝜆 = 1/4000 and 𝜌 = 32/4000.

We use the rootmean squared error (RMSE) as ameasure
of the reconstruction error to demonstrate reconstruction
accuracy quantitatively. The RMSE is defined as

RMSE = √
∑
𝑖
∑
𝑗

𝑓 (𝑖, 𝑗) − 𝑔 (𝑖, 𝑗)

2

𝑁
,

(8)

where 𝑓 and 𝑔 are the ideal phantom and the reconstruction,
respectively, and 𝑁 is the total number of pixels in the
image.TheRMSEs of the reconstructions of the Shepp-Logan
phantom are calculated. The results of the three methods
are illustrated in Figure 3. Table 2 shows the RMSE of the
reconstructions from the projection data abovewith the three
algorithms. It is clear that the accuracy and effectivity of the
ADTVM algorithm and the proposed distributed algorithm
are both better than those of the ASD-POCS algorithm. This
is due to the use of ADM and NADA algorithms. Moreover,
we can see that the accuracies of the ADTVM algorithm
and proposed distributed algorithm are both almost the
same. This is because the derivation and implementation
of distributed algorithm are very similar as the ADTVM
algorithm.

The running time of the three algorithms is shown in
Table 3 and Figure 4 for the phantom results in the aforemen-
tioned configuration. Timing is implemented based on the
average of 10 computations.The speedup is approximately 1.4
on the average.

3.2. Reconstruction Using Real Data. We perform experi-
ments to reconstruct a head model from real data to further
validate the proposed algorithm. Scanning and reconstruc-
tion parameters are listed in Table 4. Detector elements are
equidistantly spaced at 0.635mm.

We reconstruct a 𝑧-axial slice for convenience. Images
reconstructed using the ASD-POCS algorithm, the ADTVM
algorithm, and the proposed distributed algorithm are shown
in Figure 5.Thenumbers of iterations for the three algorithms
are 200 and 1000, respectively. The experimental result sug-
gests that ADTVM algorithm and the proposed distributed
algorithm produce better reconstruction than ASD-POCS.
Hence, the results of ADTVM algorithm and the proposed
distributed algorithm are almost the same.

The running time of the three algorithms is shown
in Table 5 and Figure 6 for the reconstruction results in
the aforementioned configuration. Timing is implemented
based on the average of 10 computations. The speedup is
approximately 1.4 on the average.

We use Amdahl’s law [17] to predict the theoretical
maximum speedup as follows:

𝑆 =
1

(1 − 𝛽) /𝑛 + 𝛽
, (9)

where𝛽 denotes the fraction of the algorithmwhich is strictly
serial. In the ADTVM algorithm, 𝛽 is about 0.1, so the
theoretical maximum speedup in two nodes is 𝑆 = 1.82. The
speedup in real experiments will be less than 𝑆 as the cost on
communication exists in every iteration.The average speedup
of the proposed distributed algorithm in all the experiments
shows that the algorithm reduces the running time obviously.

All experiments are performed using C programming
language under Visual Studio 2012 and OpenMP running on
an AMAXTesla workstation with Intel Xeon E5520 dual-core
CPU 2.27GHz and 24GB memories. We partly refer to the
MATLAB solver of “TVAL3” [11] for the implementation.

4. Conclusions

The Dis-ADTVM algorithm is as simple as the ADTVM
algorithm and can accelerate the latter without accuracy loss.
The new algorithm is well suited for CT image sparse-view
reconstruction problem as a large-scale problem. It is clear
that the Dis-ADTVM algorithm can be applied to other
tomographic imaging modalities with linear system models.
We will study the relationship between the performance and
the number of nodes in a forthcoming paper.
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