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Some numerical characteristics of bipartite graphs in relation to the problem of finding all disjoint
pairs of S-permutation matrices in the general n2 ×n2 case are discussed in this paper. All bipartite
graphs of the type g = 〈Rg ∪ Cg, Eg〉, where |Rg | = |Cg | = 2 or |Rg | = |Cg | = 3, are provided. The
cardinality of the sets of mutually disjoint S-permutation matrices in both the 4 × 4 and 9 × 9 cases
is calculated.

1. Introduction

Letm be a positive integer. By [m]we denote the set

[m] = {1, 2, . . . , m}. (1.1)

We let Sm denote the symmetric group of order m, that is, the group of all one-to-one
mappings of the set [m] to itself. If x ∈ [m], ρ ∈ Sm, then the image of the element x in the
mapping ρ we will denote by ρ(x).

A bipartite graph is an ordered triple

g =
〈
Rg,Cg, Eg

〉
, (1.2)

where Rg and Cg are nonempty sets such that Rg ∩ Cg = ∅. The elements of Rg ∪ Cg will be
called vertices. The set of edges is Eg ⊆ Rg × Cg = {〈r, c〉 | r ∈ Rg, c ∈ Cg}. Multiple edges are
not allowed in our considerations.

The subject of the present work is bipartite graphs considered up to isomorphism.
We refer to [1] or [2] for more details on graph theory.
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Let n and k be two nonnegative integers, and let 0 ≤ k ≤ n2. We denote by Gn,k the set
of all bipartite graphs of the type g = 〈Rg,Cg, Eg〉, considered up to isomorphism, such that
|Rg | = |Cg | = n and |Eg | = k.

Let Pij , 1 ≤ i, j ≤ n be n2 square n × n matrices, whose entries are elements of the set
[n2] = {1, 2, . . . , n2}. The n2 × n2 matrix

P =

⎡

⎢
⎢
⎢
⎣

P11 P12 · · · P1n
P21 P22 · · · P2n
...

...
. . .

...
Pn1 Pn2 · · · Pnn

⎤

⎥
⎥
⎥
⎦

(1.3)

is called a Sudoku matrix, if every row, every column, and every submatrix Pij , 1 ≤ i, j ≤ n
comprise a permutation of the elements of set [n2], that is, every number s ∈ {1, 2, . . . , n2} is
found just once in each row, column, and submatrix Pij . Submatrices Pij are called blocks of P .

Sudoku is a very popular game, and Sudokumatrices are special cases of Latin squares
in the class of gerechte designs [3].

A matrix is called binary if all of its elements are equal to 0 or 1. A square binary matrix
is called permutation matrix if in every row and every column there is just one 1.

Let us denote by Σn2 the set of all n2 × n2 permutation matrices of the following type:

A =

⎡

⎢⎢⎢
⎣

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
An1 An2 · · · Ann

⎤

⎥⎥⎥
⎦
, (1.4)

where for every s, t ∈ {1, 2, . . . , n}, Ast is a square n × n binary submatrix (block) with only
one element equal to 1.

The elements of Σn2 will be called S-permutation matrices.
Two Σn2 matrices A = (aij) and B = (bij), 1 ≤ i, j ≤ n2 will be called disjoint if there are

not elements aij and bij with the same indices such that aij = bij = 1.
The concept of S-permutation matrix was introduced by Dahl [4] in relation to the

popular Sudoku puzzle.
Obviously, a square n2 ×n2 matrix P with entries from [n2] = {1, 2, . . . , n2} is a Sudoku

matrix if and only if there are Σn2 matrices A1, A2, . . . , An2 pairwise disjoint, such that P can
be written in the following way:

P = 1 ·A1 + 2 ·A2 + · · · + n2 ·An2 . (1.5)

In [5] Fontana offers an algorithm which returns a random family of n2 × n2 mutually
disjoint S-permutationmatrices, where n = 2, 3. For n = 3, he ran the algorithm 1000 times and
found 105 different families of nine mutually disjoint S-permutation matrices. Then, applying
(1.5), he decided that there are at least 9! · 105 = 38 102 400 Sudoku matrices. This number
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is very small compared with the exact number of 9 × 9 Sudoku matrices. In [6] it was shown
that there are exactly

9! · 722 · 27 · 27 704 267 971 = 6 670 903 752 021 072 936 960 (1.6)

number of 9 × 9 Sudoku matrices.
To evaluate the effectiveness of Fontana’s algorithm, it is necessary to calculate the pro-

bability of two randomly generated matrices being disjoint. As is proved in [4], the number
of S-permutation matrices is equal to

|Σn2 | = (n!)2n. (1.7)

Thus the question of finding a formula for counting disjoint pairs of S-permutation
matrices naturally arises. Such a formula is introduced and verified in [7]. In this paper, we
demonstrate this formula to compute the number of disjoint pairs of S-permutation matrices
in both the 4 × 4 and 9 × 9 cases.

2. A Formula for Counting Disjoint Pairs of S-Permutation Matrices

Let g = 〈Rg,Cg, Eg〉 ∈ Gn,k for some natural numbers n and k, and let v ∈ Vg = Rg ∪ Cg .
ByN(v)we denote the set of all vertices of Vg , adjacent with v, that is, u ∈N(v) if and

only if there is an edge in Eg connecting u and v. If v is an isolated vertex (i.e., there is no
edge, incident with v), then by definition N(v) = ∅ and degree(v) = |N(v)| = 0. If v ∈ Rg ,
then obviouslyN(v) ⊆ Cg , and if v ∈ Cg , thenN(v) ⊆ Rg .

Let g = 〈Rg,Cg, Eg〉 ∈ Gn,k, and let u, v ∈ Vg = Rg ∪ Cg . We will say that u and v are
equivalent, and wewill write u ∼ v ifN(u) =N(v). If u and v are isolated, then by definition
u ∼ v if and only if u and v belong simultaneously to Rg , orCg . The above introduced relation
is obviously an equivalence relation.

By Vg/∼ we denote the obtained factor set (the set of the equivalence classes) according
to relation ∼ and let

Vg/∼ = {Δ1,Δ2, . . . ,Δs}, (2.1)

where Δi ⊆ Rg , or Δi ⊆ Cg, i = 1, 2, . . . s, 2 ≤ s ≤ 2n. We put

δi = |Δi|, 1 ≤ δi ≤ n, i = 1, 2, . . . , s, (2.2)

and for every g ∈ Gn,k we define multiset (set with repetition)

[
g
]
= {δ1, δ2, . . . , δs}, (2.3)

where δ1, δ2, . . . , δs are natural numbers, obtained by the above described way.
If z1, z2, . . . , zn is a permutation of the elements of the set [n] = {1, 2, . . . , n} and we

shortly denote ρ this permutation, then in this case we denote by ρ(i) the ith element of this
permutation, that is, ρ(i) = zi, i = 1, 2, . . . , n.

The following theorem is proved in [7].
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Theorem 2.1 (see [7]). Let n ≥ 2 be a positive integer. Then the number Dn2 of all disjoint ordered
pairs of matrices in Σn2 is equal to

Dn2 = (n!)4n + (n!)2(n+1)
n2∑

k=1

(−1)k
∑

g∈Gn,k

∏
v∈Rg∪Cg

(n − |N(v)|)!
∏

δ∈[g]δ!
. (2.4)

The number dn2 of all nonordered pairs of disjoint matrices in Σn2 is equal to

dn2 =
1
2
Dn2 . (2.5)

The proof of Theorem 2.1 is described in detail in [7], and here we will miss it.
In order to apply Theorem 2.1 it is necessary to describe all bipartite graphs up to iso-

morphism g = 〈Rg,Cg, Eg〉, where |Rg | = |Cg | = n.
Let n and k are positive integers, and let g ∈ Gn,k. We examine the ordered (n+1)-tuple

Ψ
(
g
)
=
〈
ψ0

(
g
)
, ψ1

(
g
)
, . . . , ψn

(
g
)〉
, (2.6)

where ψi(g), i = 0, 1, . . . , n is equal to the number of vertices of g incident with exactly i
number of edges. It is obvious that

∑n
i=1 iψi(g) = 2k is true for all g ∈ Gn,k. Then formula (2.4)

can be presented as

Dn2 = (n!)4n + (n!)2(n+1)
n2∑

k=1

(−1)k
∑

g∈Gn,k

∏n
i=0[(n − i)!]ψi(g)
∏

δ∈[g]δ!
. (2.7)

Since (n − n)! = 0! = 1 and [n − (n − 1)]! = 1! = 1, then

Dn2 = (n!)4n + (n!)2(n+1)
n2∑

k=1

(−1)k
∑

g∈Gn,k

∏n−2
i=0 [(n − i)!]ψi(g)
∏

δ∈[g]δ!
. (2.8)

Consequently, to apply formula (2.8) for each bipartite graph g ∈ Gn,k and for the set
Gn,k of bipartite graphs, it is necessary to obtain the following numerical characteristics:

ω
(
g
)
=

∏n−2
i=0 [(n − i)!]ψi(g)
∏

δ∈[g]δ!
,

θ(n, k) =
∑

g∈Gn,k

ω
(
g
)
.

(2.9)

Using the numerical characteristics (2.9), we obtain the following variety of
Theorem 2.1.

Theorem 2.2. One has

Dn2 = (n!)4n + (n!)2(n+1)
n2∑

k=1

(−1)kθ(n, k), (2.10)

where θ(n, k) is described using formulas (2.9).



ISRN Discrete Mathematics 5

3. Demonstrations in Applying Theorem 2.2

3.1. Counting the Number D4 of All Ordered Pairs of Disjoint S-Permutation
Matrices for n = 2

3.1.1. Consider k = 1

In n = 2 and k = 1, G2,1 consists of a single graph g1 shown in Figure 1.
For graph g1 ∈ G2,1 we have

[
g1
]
= {1, 1, 1, 1},

Ψ
(
g1
)
=
〈
ψ0

(
g1
)
, ψ1

(
g1
)
, ψ2

(
g1
)〉

= 〈2, 2, 0〉.
(3.1)

Then we get

ω
(
g1
)
=

[(2 − 0)!]2

1! 1! 1! 1!
= 4, (3.2)

and therefore

θ(2, 1) =
∑

g∈G2,1

ω
(
g
)
= 4. (3.3)

3.1.2. Consider k = 2

The set G2,2 consists of three graphs g2, g3, and g4 depicted in Figure 2.
For graph g2 ∈ G2,2 we have

[
g2
]
= {1, 1, 1, 1},

Ψ
(
g2
)
=
〈
ψ0

(
g2
)
, ψ1

(
g2
)
, ψ2

(
g2
)〉

= 〈0, 4, 0〉,

ω
(
g1
)
=

[(2 − 0)!]0

1! 1! 1! 1!
= 1.

(3.4)

For graphs g3 ∈ G2,2 and g4 ∈ G2,2 we have

[
g3
]
=
[
g4
]
= {2, 1, 1},

Ψ
(
g3
)
= Ψ

(
g4
)
= 〈1, 2, 1〉,

ω
(
g3
)
= ω

(
g4
)
=

[(2 − 0)!]1

2! 1! 1!
= 1.

(3.5)

Then for the set G2,2 we get

θ(2, 2) =
∑

g∈G2,2

ω
(
g
)
= 1 + 1 + 1 = 3. (3.6)
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g1

Rg1 Cg1

Figure 1: n = 2, k = 1.

g2

Rg2 Cg2

g3

Rg3 Cg3

g4

Rg4 Cg4

Figure 2: n = 2, k = 2.

3.1.3. Consider k = 3

In n = 2 and k = 3, G2,3 consists of a single graph g5 shown in Figure 3.
For graph g5 ∈ G2,3 we have

[
g5
]
= {1, 1, 1, 1},

Ψ
(
g5
)
=
〈
ψ0

(
g5
)
, ψ1

(
g5
)
, ψ2

(
g5
)〉

= 〈0, 2, 2〉.
(3.7)

Then we get

ω
(
g5
)
=

[(2 − 0)!]0

1! 1! 1! 1!
= 1 (3.8)

and therefore

θ(2, 3) =
∑

g∈G2,3

ω
(
g
)
= 1. (3.9)

3.1.4. Consider k = 4

When n = 2 and k = 4, there is only one graph, and this is the complete bipartite graph g6
which is shown in Figure 4.

For graph g6 ∈ G2,4 we have
[
g6
]
= {2, 2},

Ψ
(
g6
)
=
〈
ψ0

(
g6
)
, ψ1

(
g6
)
, ψ2

(
g6
)〉

= 〈0, 0, 4〉.
(3.10)

Then we get

ω
(
g6
)
=

[(2 − 0)!]0

2! 2!
=

1
4
, (3.11)
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g5

Rg5 Cg5

Figure 3: n = 2, k = 3.

g6

Rg6 Cg6

Figure 4: n = 2, k = 4.

and therefore

θ(2, 4) =
∑

g∈G2,1

ω
(
g
)
=

1
4
. (3.12)

Having in mind the formulas (2.10), (3.3), (3.6), (3.9), and (3.12) for the numberD4 of
all ordered pairs disjoint S-permutation matrices in n = 2 we finally get

D4 = (2!)8 + (2!)6[−θ(2, 1) + θ(2, 2) − θ(2, 3) + θ(2, 4)]

= 256 + 64
(
−4 + 3 − 1 +

1
4

)
= 144.

(3.13)

The number d4 of all nonordered pairs disjoint matrices from Σ4 is equal to

d4 =
1
2
D4 = 72. (3.14)

3.2. Counting the Number D9 of All Ordered Pairs of Disjoint S-Permutation
Matrices for n = 3

3.2.1. Consider k = 1

Graph g7, which is displayed in Figure 5, is the only bipartite graph belonging to the set G3,1.
For graph g7 ∈ G3,1 we have

[
g7
]
= {1, 1, 2, 2},

Ψ
(
g7
)
=
〈
ψ0

(
g7
)
, ψ1

(
g7
)
, ψ2

(
g7
)
, ψ3

(
g7
)
, ψ4

(
g8
)〉

= 〈4, 2, 0, 0〉.
(3.15)
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g7

Rg7 Cg7

Figure 5: n = 3, k = 1.

Then we get

ω
(
g7
)
=

[(3 − 0)!]4[(3 − 1)!]2

1! 1! 2! 2!
=

64 · 22
1 · 1 · 2 · 2 = 1296, (3.16)

and therefore

θ(3, 1) =
∑

g∈G3,1

ω
(
g
)
= 1296. (3.17)

3.2.2. Consider k = 2

In this case G3,2 = {g8, g9, g10}. The graphs g8, g9, and g10 are shown in Figure 6.
For graph g8 ∈ G3,2 we have

[
g8
]
= {1, 1, 1, 1, 1, 1},

Ψ
(
g8
)
=
〈
ψ0

(
g8
)
, ψ1

(
g8
)
, ψ2

(
g8
)
, ψ3

(
g8
)
, ψ4

(
g8
)〉

= 〈2, 4, 0, 0〉,

ω
(
g8
)
=

[(3 − 0)!]2[(3 − 1)!]4

1! 1! 1! 1! 1! 1!
= 62 · 24 = 576.

(3.18)

For graphs g9 ∈ G3,2 and g10 ∈ G3,2 we have

[
g9
]
=
[
g10

]
= {1, 1, 2, 2},

Ψ
(
g9
)
= Ψ

(
g10

)
= 〈3, 2, 1, 0〉,

ω
(
g9
)
= ω

(
g10

)
=

[(3 − 0)!]3[(3 − 1)!]2

1! 1! 2! 2!
=

63 · 22
1 · 1 · 2 · 2 = 216.

(3.19)

Then for the set G3,2 we get

θ(3, 2) =
∑

g∈G3,2

ω
(
g
)
= 576 + 216 + 216 = 1008. (3.20)
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g8 g9 g10

Rg8 Rg9 Rg10Cg8 Cg9 Cg10

Figure 6: n = 3, k = 2.

g11

g14

g12 g13

Rg11 Rg12 Rg13Cg11 Cg12 Cg13

g15 g16

Rg14 Rg15 Rg16Cg14 Cg15 Cg16

Figure 7: n = 3, k = 3.

3.2.3. Consider k = 3

When n = 3 and k = 3, the set G3,3 = {g11, g12, g13, g14, g15, g16} consists of six bipartite graphs,
which are shown in Figure 7.

For graph g11 ∈ G3,3 we have

[
g11

]
= {1, 1, 1, 1, 1, 1},

Ψ
(
g11

)
= 〈0, 6, 0, 0〉,

ω
(
g11

)
=

[(3 − 0)!]0[(3 − 1)!]6

1! 1! 1! 1! 1! 1!
= 60 · 26 = 64.

(3.21)

For graphs g12, g13 ∈ G3,3 we have

[
g12

]
=
[
g13

]
= {1, 1, 1, 1, 2},

Ψ
(
g12

)
= Ψ

(
g13

)
= 〈1, 4, 1, 0〉,

ω
(
g12

)
= ω

(
g13

)
=

[(3 − 0)!]1[(3 − 1)!]4

1! 1! 1! 1! 2!
=

61 · 24
2

= 48.

(3.22)
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For graph g14 ∈ G3,3 we have

[
g14

]
= {1, 1, 1, 1, 1, 1},

Ψ
(
g14

)
= 〈2, 2, 2, 0〉,

ω
(
g14

)
=

[(3 − 0)!]2[(3 − 1)!]2

1! 1! 1! 1! 1! 1!
= 62 · 22 = 144.

(3.23)

For graphs g15, g16 ∈ G3,3 we have

[
g15

]
=
[
g16

]
= {1, 2, 3},

Ψ
(
g15

)
= Ψ

(
g16

)
= 〈2, 3, 0, 1〉,

ω
(
g15

)
= ω

(
g16

)
=

[(3 − 0)!]2[(3 − 1)!]3

1! 2! 3!
=

62 · 23
2 · 6 = 24.

(3.24)

Then for the set G3,3 we get

θ(3, 3) =
∑

g∈G3,3

ω
(
g
)
= 64 + 48 + 48 + 144 + 24 + 24 = 352. (3.25)

3.2.4. Consider k = 4

When n = 3 and k = 4, the set G3,4 = {g17, g18, g19, g20, g21, g22, g23} consists of seven bipartite
graphs, which are shown in Figure 8.

For graph g17 ∈ G3,4 we have

[
g17

]
= {1, 1, 2, 2},

Ψ
(
g17

)
= 〈2, 0, 4, 0〉,

ω
(
g17

)
=

[(3 − 0)!]2[(3 − 1)!]0

1! 1! 2! 2!
=

62 · 20
22

= 9.

(3.26)

For graph g18 ∈ G3,4 we have

[
g18

]
= {1, 1, 2, 2},

Ψ
(
g18

)
= 〈0, 4, 2, 0〉,

ω
(
g18

)
=

[(3 − 0)!]0[(3 − 1)!]4

1! 1! 2! 2!
=

60 · 24
22

= 4.

(3.27)
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g17 g18 g19

Rg17 Cg17 Rg18 Cg18 Rg19 Cg19

g20 g21

Rg20 Cg20 Rg21 Cg21

g22 g23

Rg22 Cg22 Rg23 Cg23

Figure 8: n = 3, k = 4.

For graph g19 ∈ G3,4 we have

[
g19

]
= {1, 1, 1, 1, 1, 1},

Ψ
(
g19

)
= 〈0, 4, 2, 0〉,

ω
(
g19

)
=

[(3 − 0)!]0[(3 − 1)!]4

1! 1! 1! 1! 1! 1!
= 60 · 24 = 16.

(3.28)

For graphs g20 ∈ G3,4 and g21 ∈ G3,4 we have
[
g20

]
=
[
g21

]
= {1, 1, 1, 1, 1, 1},

Ψ
(
g20

)
= Ψ

(
g21

)
= 〈1, 2, 3, 0〉,

ω
(
g20

)
= ω

(
g21

)
=

[(3 − 0)!]1[(3 − 1)!]2

1! 1! 1! 1! 1! 1!
= 61 · 22 = 24.

(3.29)

For graphs g22 ∈ G3,4 and g23 ∈ G3,4 we have
[
g22

]
=
[
g23

]
= {1, 1, 1, 1, 2},

Ψ
(
g22

)
= Ψ

(
g23

)
= 〈1, 3, 1, 1〉,

ω
(
g22

)
= ω

(
g23

)
=

[(3 − 0)!]1[(3 − 1)!]3

1! 1! 1! 1! 2!
=

61 · 23
2

= 24.

(3.30)
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Then we get

θ(3, 4) =
∑

g∈G3,4

ω
(
g
)
= 9 + 4 + 16 + 24 + 24 + 24 + 24 = 125. (3.31)

3.2.5. Consider k = 5

When n = 3 and k = 5, the set G3,5 consists of seven bipartite graphs g24 ÷ g30, which are
shown in Figure 9.

For graph g24 ∈ G3,5 we have
[
g24

]
= {1, 1, 2, 2},

Ψ
(
g24

)
= 〈0, 4, 0, 2〉,

ω
(
g18

)
=

[(3 − 0)!]0[(3 − 1)!]4

1! 1! 2! 2!
=

60 · 24
22

= 4.

(3.32)

For graph g25 ∈ G3,5 we have
[
g25

]
= {1, 1, 2, 2},

Ψ
(
g25

)
= 〈0, 2, 4, 0〉,

ω
(
g18

)
=

[(3 − 0)!]0[(3 − 1)!]2

1! 1! 2! 2!
=

60 · 22
22

= 1.

(3.33)

For graph g26 ∈ G3,5 we have
[
g26

]
= {1, 1, 1, 1, 1, 1},

Ψ
(
g26

)
= 〈0, 2, 4, 0〉,

ω
(
g26

)
=

[(3 − 0)!]0[(3 − 1)!]2

1! 1! 1! 1! 1! 1!
= 60 · 22 = 4.

(3.34)

For graphs g27 ∈ G3,5 and g28 ∈ G3,5 we have
[
g27

]
=
[
g28

]
= {1, 1, 1, 1, 1, 1},

Ψ
(
g27

)
= Ψ

(
g28

)
= 〈0, 3, 2, 1〉,

ω
(
g27

)
= ω

(
g28

)
=

[(3 − 0)!]0[(3 − 1)!]3

1! 1! 1! 1! 1! 1!
= 60 · 23 = 8.

(3.35)

For graphs g29 ∈ G3,5 and g30 ∈ G3,5 we have

[
g29

]
=
[
g30

]
= {1, 1, 1, 1, 2},

Ψ
(
g29

)
= Ψ

(
g30

)
= 〈1, 1, 3, 1〉,

ω
(
g29

)
= ω

(
g30

)
=

[(3 − 0)!]1[(3 − 1)!]1

1! 1! 1! 1! 2!
=

61 · 21
2

= 6.

(3.36)
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g24

Rg24 Cg24

g25

Rg25 Cg25

g28

Rg28 Cg28

g30

Rg30 Cg30

g26

Rg26 Cg26

g27

Rg27 Cg27

g29

Rg29 Cg29

Figure 9: n = 3, k = 5.

Then we get

θ(3, 5) =
∑

g∈G3,5

ω
(
g
)
= 4 + 1 + 4 + 8 + 8 + 6 + 6 = 37. (3.37)

3.2.6. Consider k = 6

When n = 3 and k = 6, the set G3,6 = {g31, g32, g33, g34, g35, g36} consists of six bipartite graphs,
which are shown in Figure 10.

For graph g31 ∈ G3,6 we have
[
g31

]
= {1, 1, 1, 1, 1, 1},

Ψ
(
g31

)
= 〈0, 0, 6, 0〉,

ω
(
g31

)
=

[(3 − 0)!]0[(3 − 1)!]0

1! 1! 1! 1! 1! 1!
= 1.

(3.38)

For graphs g32 ∈ G3,6 and g33 ∈ G3,6 we have

[
g32

]
=
[
g33

]
= {1, 1, 1, 1, 2},

Ψ
(
g32

)
= Ψ

(
g33

)
= 〈0, 1, 4, 1〉,

ω
(
g32

)
= ω

(
g33

)
=

[(3 − 0)!]0[(3 − 1)!]1

1! 1! 1! 1! 2!
=

60 · 21
2

= 1.

(3.39)
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g31

g34

g32

g35

g33

g36

Rg31 Cg31

Rg34 Cg34

Rg32 Cg32

Rg35 Cg35

Rg33 Cg33

Rg36 Cg36

Figure 10: n = 3, k = 6.

For graph g34 ∈ G3,6 we have

[
g34

]
= {1, 1, 1, 1, 1, 1},

Ψ
(
g34

)
= 〈0, 2, 2, 2〉,

ω
(
g34

)
=

[(3 − 0)!]0[(3 − 1)!]2

1! 1! 1! 1! 1! 1!
=

60 · 22
1

= 4.

(3.40)

For graphs g35 ∈ G3,6 and g36 ∈ G3,6 we have

[
g35

]
=
[
g36

]
= {1, 2, 3},

Ψ
(
g35

)
= Ψ

(
g36

)
= 〈1, 0, 3, 2〉,

ω
(
g35

)
= ω

(
g36

)
=

[(3 − 0)!]1[(3 − 1)!]0

1! 2! 3!
=

61 · 20
2 · 6 =

1
2
.

(3.41)

Then for the set G3,6 we get

θ(3, 6) =
∑

g∈G3,6

ω
(
g
)
= 1 + 1 + 1 + 4 +

1
2
+
1
2
= 8. (3.42)

3.2.7. Consider k = 7

When n = 3 and k = 7 the set G3,7 = {g37, g38, g39} consists of three bipartite graphs, which are
shown in Figure 11.
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g37 g38 g39

Rg37 Cg37 Rg38 Cg38 Rg39 Cg39

Figure 11: n = 3, k = 7.

For graph g37 ∈ G3,7 it is true that
[
g37

]
= {1, 1, 1, 1, 1, 1},

Ψ
(
g37

)
= 〈0, 0, 4, 2〉,

ω
(
g37

)
=

[(3 − 0)!]0[(3 − 1)!]0

1! 1! 1! 1! 1! 1!
=

60 · 20
1

= 1.

(3.43)

For graphs g38 ∈ G3,7 and g39 ∈ G3,7 we get

[
g38

]
=
[
g39

]
= {1, 1, 2, 2},

Ψ
(
g38

)
= Ψ

(
g39

)
= 〈0, 1, 2, 3〉,

ω
(
g38

)
= ω

(
g39

)
=

[(3 − 0)!]0[(3 − 1)!]1

1! 1! 2! 2!
=

60 · 21
22

=
1
2
.

(3.44)

Then for the set G3,7 we get

θ(3, 7) =
∑

g∈G3,7

ω
(
g
)
= 1 +

1
2
+
1
2
= 2. (3.45)

3.2.8. Consider k = 8

Graph g40, which is displayed in Figure 12, is the only bipartite graph belonging to the set
G3,8 in the case n = 3 and k = 8.

For graph g40 ∈ G3,8 it is true that

[
g40

]
= {1, 1, 2, 2},

Ψ
(
g40

)
= 〈0, 0, 2, 4〉,

ω
(
g40

)
=

[(3 − 0)!]0[(3 − 1)!]0

1! 1! 2! 2!
=

60 · 20
22

=
1
4
.

(3.46)

Therefore,

θ(3, 8) =
∑

g∈G3,8

ω
(
g
)
=

1
4
. (3.47)
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g40

Rg40 Cg40

Figure 12: n = 3, k = 8.

g41

Rg41 Cg41

Figure 13: n = 3, k = 9.

3.2.9. Consider k = 9

When n = 3 and k = 9 there is only one graph, and this is the complete bipartite graph g41
which is shown in Figure 13.

For graph g41 it is true that

[
g41

]
= {3, 3},

Ψ
(
g41

)
= 〈0, 0, 0, 6〉,

ω
(
g41

)
=

[(3 − 0)!]0[(3 − 1)!]0

3! 3!
=

60 · 20
62

=
1
36
.

(3.48)

Therefore

θ(3, 9) =
∑

g∈G3,9

ω
(
g
)
=

1
36
. (3.49)

Having in mind the formula (2.10) and formulas (3.17) ÷ (3.49) for the number D9 of
all ordered pairs disjoint S-permutation matrices in n = 3 we finally get

D9 = (3!)12 + (3!)8
[

9∑

k=1

(−1)kθ(n, k)
]

= 2 176 782 336 + 1 679 616
(
−1296 + 1008 − 352 + 125 − 37 + 8 − 2 +

1
4
− 1
36

)

= 1 260 085 248.
(3.50)
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The number d9 of all nonordered pairs disjoint matrices from Σ9 is equal to

d9 =
1
2
D9 = 630 042 624. (3.51)

3.3. On a Combinatorial Problem of Graph Theory Related to the Number of
Sudoku Matrices

Problem. Let n ≥ 2 be a natural number, and let G be a simple graph having (n!)2n vertices.
Let each vertex of G be identified with an element of the set Σn2 of all n2 × n2 S-permutation
matrices. Two vertices are connected by an edge if and only if the corresponding matrices are
disjoint. The problem is to find the number of all complete subgraphs ofG having n2 vertices.

Note that the number of edges in graph G is equal to dn2 and can be calculated using
formulas (2.4) and (2.5) (resp., formulas (2.9), (2.10), and (2.5)).

Denote by zn the solution of the Problem ??, and let σn be the number of all n2 × n2
Sudoku matrices. Then according to formula (1.5) and the method of construction of the
graph G, it follows that the next equality is valid:

zn =
σn

(n2)!
. (3.52)

We do not know a general formula for finding the number of all n2 × n2 Sudoku
matrices for each natural number n ≥ 2, and we consider that this is an open combinatorial
problem. Only some special cases are known. For example in n = 2 it is known that σ2 = 288
[8]. Then according to formula (3.52)we get

z2 =
σ2
4!

=
288
24

= 12. (3.53)

In [6] it has been shown that in n = 3 there are exactly,

σ3 = 6 670 903 752 021 072 936 960

= 9! × 722 × 27 × 27 704 267 971

= 220 × 38 × 51 × 71 × 27 704 267 9711 ∼ 6.671 × 1021,

(3.54)

a number of Sudoku matrices. Then according to formula (3.52)we get

z3 =
σ3
9!

=
6 670 903 752 021 072 936 960

362 880
= 18 383 222 420 692 992. (3.55)
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