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One of the main advantages of predictive control approaches is the capability of dealing explicitly with constraints on the
manipulated and output variables. However, if the predictive control formulation does not consider model uncertainties, then the
constraint satisfaction may be compromised. A solution for this inconvenience is to use robust model predictive control (RMPC)
strategies based on linear matrix inequalities (LMIs). However, LMI-based RMPC formulations typically consider only symmetric
constraints. This paper proposes a method based on pseudoreferences to treat asymmetric output constraints in integrating SISO
systems. Such technique guarantees robust constraint satisfaction and convergence of the state to the desired equilibrium point. A
case study using numerical simulation indicates that satisfactory results can be achieved.

1. Introduction

Model-based predictive control (MPC) is a strategy in which
a sequence of control actions is obtained by minimizing a
cost function considering the predictions of a process model
within a certain prediction horizon. At each sample time,
only the first value of this sequence is applied to the plant,
and the optimization is repeated in order to use feedback
information [1, 2]. One of the main advantages of MPC is the
possibility to consider explicitly the physical and operational
constraints of the system during the design of the control
loop [1–3]. However, if there are mismatches between the
nominal model and the actual behavior of the process, then
the performance of the control loop can be degraded and the
optimization problem may even become unfeasible. Thus,
the study of new strategies for design of robust MPC
(RMPC) with guaranteed stability and constraint satisfaction
properties even in the presence of uncertainties is an area
with great potential for research [4–7].

In this context, Kothare et al. [7] proposed an RMPC
strategy with infinite horizon employing linear matrix in-
equalities (LMIs) for dealing with model uncertainty and
symmetric constraints on the manipulated and output vari-
ables. This approach was later extended to encompass mul-
timodel representations [8, 9], setpoint management [10],
integrator resetting [11], and offline solutions [12, 13].

Within this scope, Cavalca et al. [4] proposed a heuristic
procedure that allows the inclusion of asymmetric con-
straints on the plant output, but without stability or con-
straint satisfaction guarantees. The present paper presents
a formal strategy to handle asymmetric output constraints
in the control of integrating single input, single output
(SISO) systems, for the case where the output is linear
in states. It is shown that robust constraint satisfaction is
achieved, as well as convergence of the state trajectory to
the desired equilibrium point. The effectiveness of the pro-
posed method is illustrated by means of numerical simula-
tions.
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The remainder of this paper is organized as follows.
Section 2 reviews the design of RMPC based on LMI.
Section 3 formalizes the proposed technique for the inclusion
of asymmetric constraints. Section 4 presents a case study
consisting of a discrete time model of a double integrator.
The results are evaluated through numerical simulations as
presented in Section 5. Concluding remarks are presented in
Section 6.

Throughout the text, I represents an identity matrix,
the notation (· | k) is used in predictions with respect to
time k, and the ∗ superscript indicates an optimal solution.
For brevity of notation, only the upper triangular part of
symmetric matrices is explicitly presented.

2. LMI-Based RMPC

Consider a linear time-invariant system described by an un-
certain model of the following form:

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k),
(1)

where x(k) ∈ Rn, u(k) ∈ Rp, and y(k) ∈ Rq are the
states, the manipulated and the output variables, respectively,
for each time k, and A, B, and C are constant matrices of
appropriate dimensions. The uncertainty is represented in
polytopic form; that is, matrices A and B are unknown to the
designer, but they are assumed to belong to a convex polytope
Ω with L known vertices (Ai,Bi), i = 1, 2, . . . ,L, so that [2, 7]:

(A,B) =
L∑

i=1

λi(Ai,Bi) (2)

for some unknown set of coefficients λ1, λ2, . . . , λL that satisfy

L∑

i=1

λi = 1 λi ≥ 0, i = 1, . . . ,L. (3)

At each time k, the sequence of future controls U∞ =
{u(k | k),u(k+1 | k),u(k+2 | k), . . .} is obtained as solution
of the following min-max optimization problem:

min
U∞

max
(A,B)∈Ω

J∞(A,B,U∞), (4)

where

J∞(A,B,U∞) =
∞∑

j=0

[∥∥x
(
k + j | k)∥∥2

Wx
+
∥∥u
(
k + j | k)∥∥2

Wu

]

(5)

in which Wx > 0 and Wu > 0 are symmetric weighting
matrices. By assumption, all states are available for feedback
so that x(k | k) = x(k).

This min-max problem can be replaced with the fol-
lowing convex optimization problem with variables γ ∈ R,
Q ∈ Rn×n, Σ ∈ Rp×n, and LMI constraints [2, 7]:

min
γ,Q,Σ

γ (6)

subject to

⎡
⎣
Q x(k)

· 1

⎤
⎦ > 0, (7)

⎡
⎢⎢⎢⎢⎢⎢⎣

Q 0 0 AiQ + BiΣ

· γI 0 W1/2
x Q

· · γI W1/2
u Σ

· · · Q

⎤
⎥⎥⎥⎥⎥⎥⎦
> 0, i = 1, 2, . . . ,L.

(8)

If the problem (6)–(8) has a solution γ∗k , Q∗k , Σ∗k , then
the optimal control sequence is given by

u
(
k + j | k) = K∗k x

(
k + j | k), (9)

where

K∗k = Σ∗k
(
Q∗k
)−1

. (10)

Symmetric constraints on the manipulated variables of
the form |ul(k + j | k)| < ul, l = 1, 2, . . . , p, j ≥ 0 and on the
output variables of the form |ym(k + j + 1 | k)| < ym, m =
1, 2, . . . , q, j ≥ 0 can be imposed by including additional
LMIs [7]

⎡
⎣
X Σ

· Q

⎤
⎦ > 0 (11)

with

Xll < ul
2, l = 1, 2, . . . , p,

⎡
⎣Q [AiQ + BiΣ]TCT

m

· y2
m

⎤
⎦ > 0, i = 1, 2, . . . ,L

(12)

for m = 1, 2, . . . , q, where Cm denotes the mth row of C.
Let P(x(k)) denote the optimization problem (6) with

constraints (7), (8), (11), and (12). Suppose that the control
law uses the concept of receding horizon; that is, u(k) =
K∗k x(k) with K∗k recalculated at each sampling time k. The
following lemma is concerned with convergence of the state
trajectory to the origin under the constraints imposed on the
operation of the plant.

Lemma 1. If P(x(k0)) is feasible at some time k = k0, then
‖x(k)‖ → 0 as k → ∞ with satisfaction of the input and
output constraints.

The proof of Lemma 1 follows directly from the recursive
feasibility and asymptotic stability properties demonstrated
in [7].
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Remark 2. As shown in Appendix A of Kothare et al. [7],
P(x(k)) is equivalent to minimizing a function V(x(k | k)) =
x(k | k)TPkx(k | k) with Pk = γ∗k (Q∗k )−1 > 0. Such V(x(k |
k)) function is found to be an upper bound for the cost
function J∞(A,B,U∞) in (5) and can be used as a candidate
Lyapunov function in the proof of asymptotic stability.

Remark 3. For a regulation problem around a point different
from the origin, a change of variables can be used, so that the
new origin corresponds to the desired equilibrium point
[7]. In the present work, the new value for the reference
signal will be termed a pseudoreference. It is assumed that
the process is integrating, and, therefore, the control value in
steady state (uss) is zero for any value of the pseudoreference.
Otherwise, the determination of uss would not be trivial
since the system matrices A and B are subjected to model
uncertainties.

Remark 4. The RMPC problem formulation presented in
this section considers that the matrices A and B are unknown
but dot not vary with time. This is a particular case of the
general framework introduced in [7], which was concerned
with time-varying matrices A(k) and B(k).

3. Treatment of Asymmetric Constraints

The present work is concerned with regulation problems
around the origin involving a SISO system with output vari-
able y(k) = Cx(k). This is a particular case of the problem
described in Section 2, with p = q = 1. Therefore, the
indexes l and m in (12) can be omitted. Moreover, the system
is assumed to be integrating, so that uss = 0 regardless of
the pseudoreference, as discussed in Remark 3. It is also
considered that the manipulated variable u(k) is subjected
to a symmetric constraint u as in Section 2. Suppose that the
constraints on y are of the following form:

ymin < y(k) < ymax (13)

with ymin < 0 and ymax > 0. If |ymin| = ymax, then the
symmetric constraint formulation presented in Section 2 can
be applied directly by making y = ymax. If |ymin| /= ymax, a
different approach is required. One alternative is to adopt a
more conservative constraint, that is,

y =
⎧
⎨
⎩
ymax, if ymax <

∣∣ymin
∣∣

−ymin, if ymax >
∣∣ymin

∣∣.
(14)

However, this procedure may not be convenient in the
following cases:

(i) ymax < |ymin| with ymin ≤ y(k) < −ymax,

(ii) ymax > |ymin| with −ymin < y(k) ≤ ymax.

In these cases, the initial value of the output is admissible
under the original asymmetric constraints, but not under the
more conservative constraint (14). Figure 1(a) provides an
illustration for case (i). As can be seen, the imposition of the

more conservative constraint −ymax < y(k) < ymax makes
the output variable y(k) be located outside of the range of
admissible values.

Cavalca et al. [4] proposed a heuristic solution, based on
a time-varying pseudoreference r(k) = min{(ymax + y(k))/
2, 0} as shown in Figure 1(b). The problem of asymmetric
output constraints is then redefined in terms of new sym-
metric constraints (a/a) around r(k). However, it should
be noted that this technique does not lead to guaranteed
stability and constraint satisfaction.

Unlike the approach described above, which involves a
pseudoreference r(k) that may change at each sampling time
k, the solution proposed in the present paper employs a
sequence of pseudoreferences ri (i = 1, 2, . . . , imax) which
are defined at k = 0 on the basis of the initial output
value y(0). As illustrated in Figure 2, symmetric constraints
(a/a, b/b, c/c, . . .) are established around each pseudorefer-
ence. It will be shown that the use of such pseudoreferences,
together with a convenient commutation rule, provides ro-
bust constraint satisfaction and ensures that the state tra-
jectory converges to the origin. For sake of brevity of pres-
entation, only case (i) will be treated. Case (ii) can be recast
into case (i) by defining y̆(k) = −Cx(k) and replacing
constraints ymin ≤ y(k) ≤ ymax with −ymax ≤ y̆(k) ≤ −ymin.

Given an initial state x(0) such that y(0) = Cx(0) falls
within the scope of case (i), the following algorithm defines
the pseudoreferences ri, as well as a sequence of associated
matrices Q̃∗i . These matrices will be subsequently employed
in the control law to establish a rule of commutation from
one pseudoreference to the next.

It is assumed that the setXs of possible equilibrium values
xs for the state of the plant is known from the physics of the
process to be controlled.

Algorithm for Determination of the Pseudoreferences and
Associated Ellipsoids (PR Algorithm).

Step 1. Define the pseudoreferences ri as follows:

Step 1.1. Let r0 = [ymax + y(0)]/2

Step 1.2. Let i = 1

Step 1.3. While |ri−1| > ymax do

ri = (ymax + ri−1)/2

i = i + 1

End While

Step 1.4. Let imax = i

Step 1.5. Let rimax = 0.

Step 2. For each ri determine xs,i such that:

Cxs,i = ri, (15)

xs,i ∈ Xs. (16)
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Figure 1: (a) Illustration of the more conservative constraint (14) in case (i). (b) Heuristic solution proposed by Cavalca et al. [4].
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Figure 2: Illustration of the proposed pseudoreference scheme.

Step 3. Let

ξ0 = x(0)− xs,0

ξi = xs,i−1 − xs,i, 1 ≤ i ≤ imax

yi = ymax − ri, 0 ≤ i ≤ imax.

Step 4. Solve the problem P(ξi) with the constraints yi, u for
each i (i = 0, 1, . . . , imax) and denote the resulting solution by
(γ̃∗i , Q̃∗i , Σ̃∗i ).

x1

x2

˜Q∗1

˜Q∗imax−2

˜Q∗imax−1

˜Q∗imaxxs,imax−1

· · ·

· · ·

· · ·
· · ·

xs,imax−2

xs,imax = 0

Figure 3: Result of the PR algorithm.

The matrices Q̃∗i obtained in Step 4 define ellipsoids of
the form (x − xs,i)

T(Q̃∗i )−1(x − xs,i) < 1, as illustrated in
Figure 3 for the case of a second-order system. It is
noteworthy that, by construction (in view of LMI (7) with
x(k) = ξi), the ellipsoid i contains the center of the ellipsoid
(i− 1).

The PR algorithm is said to be feasible if (15) and (16)
in Step 2 and the optimization problem P(ξi) in Step 4
are feasible for every i = 1, 2, . . . , imax. In this case, the re-
sulting xs,i, yi, Q̃∗i , i = 0, 1, . . . , imax are used in the control
algorithm proposed below.

Algorithm for Control Using the Pseudoreferences (CPR Algo-
rithm).

Initialization. Let k = 0 and i = 0.

Step 1. Read the state x(k).
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Step 2. If i < imax then

Let x̃i+1(k) = x(k)− xi+1,s

If x̃Ti+1(k)(Q̃∗i+1)−1x̃i+1(k) < 1 (condition of transi-
tion) then

Let i = i + 1

End If

End If.

Step 3. Let x̃i(k) = x(k) − xs,i and solve the problem
P(x̃i(k)) with the constraints yi and u in order to obtain
(γ∗k , Q∗k , Σ∗k ).

Step 4. Calculate K∗k = Σ∗k (Q∗k )−1 and u(k) = K∗k x̃i(k).

Step 5. Apply u(k) to the plant.

Step 6. Let k = k+1, wait a sample time and return to Step 1.

The main result of this work is stated in the following the-
orem, which is concerned with the satisfaction of constraints
and convergence of the state trajectory to the origin under
the control law given by the CPR algorithm.

Theorem 5. If the PR algorithm is feasible and the CPR
algorithm is applied to control the plant, then ‖x(k)‖ → 0 as
k → ∞, with satisfaction of the input and output constraints.

Proof. For k = 0, the state x(k) lies in the ellipsoid associated
with Q̃∗0 , which was obtained by solving problem P(x(0) −
xs,0) in the PR algorithm. Therefore, problem P(x̃0(0))
is feasible by hypothesis. Lemma 1 then guarantees that
‖x̃0(k)‖ → 0 (i.e., ‖x(k) − xs,0‖ → 0) as k → ∞, with
satisfaction of the input and output constraints, under the
control law stated in Steps 3 and 4 of the CPR algorithm with
i = 0. Since the ellipsoid associated with Q̃∗1 contains xs,0,
by construction, it can be concluded that the condition of
transition stated in Step 2 of the CPR algorithm with i = 1
will be satisfied in finite time. Let k1 be the first time when
this condition is satisfied, that is,

x̃T1 (k1)
(
Q̃∗1
)−1

x̃1(k1) < 1. (17)

This condition ensures that the optimization problem
P(x̃1(k1)) is feasible, since, by construction, the solution
(γ̃∗1 , Q̃∗1 , Σ̃∗1 ) of P(ξ1) satisfies the constraints of P(x̃1(k1)).
In fact, condition (17) ensures that LMI (7) is satisfied
with x(k) and Q replaced with x̃1(k1) and Q̃∗1 , respectively.
Moreover, the remaining LMIs (8),(11)-(12) are satisfied by
Q̃∗1 and Σ̃∗1 by hypothesis. Therefore, after switching from
i = 0 to i = 1, Lemma 1 ensures that ‖x̃1(k)‖ → 0
(i.e., ‖x(k) − xs,1‖ → 0) as k → ∞ with satisfaction of
the input and output constraints. As a result, the condition
of transition with i = 1 will be satisfied in finite time. A
similar reasoning can be applied to show that the condition
of transition will be satisfied for all i = 0, 1, . . . , imax − 1 in
finite time. Finally, when i = imax, the state x(k) will be inside
the last ellipsoid, centered at xs,imax = [0 0 · · · 0]T , and then
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Figure 4: Simulation results using relaxed output constraints.

Lemma 1 will ensure that ‖x(k)‖ → 0 as k → ∞, again with
satisfaction of the constraints.

4. Numerical Example

A discrete state-space model of a double integrator will be
employed to illustrate the proposed strategy. The matrices of
the model are given by

A =
⎡
⎣

1 T

0 1

⎤
⎦, B =

⎡
⎣
T2/2

T

⎤
⎦κ, C =

[
1 0.2

]
,

(18)

where T is the sampling time, and κ is an uncertain gain
parameter.

The initial condition is set to x(0) = [−10 0T], the
sampling time is T = 0.5 s, and the constraints are defined
as u = umax = umin = 5, ymin = −10 and ymax = 0.1. The
uncertain parameter κ is assumed to be in the range 0.9−1.1.
The weight matrices of the controller are defined as

Wx =
⎡
⎣

100 0

0 0.01

⎤
⎦, Wu = 100. (19)

In this case, the set Xs of possible equilibrium points is
given by

Xs = {(x1, x2) | x2 = 0}. (20)



6 Journal of Control Science and Engineering

12 16 20 24

0

0.1

0.2

−10

−8

−6

−4

−2

0

2
y(
k)

0 5 10 15 20 25

k

κ = 0.9
κ = 1.1
ymax

−0.2

−0.1

(a)

0 5 10 15 20 25

0

0.5

1

1.5

2

2.5

3

3.5

−1.5

−1

−0.5

u
(k

)

k

κ = 0.9
κ = 1.1

(b)

Figure 5: Simulation results using the proposed strategy: (a) output and (b) control signals.

Table 1: Pseudoreferences and associated output constraints.

i ri yi

0 −4.95 5.05

1 −2.425 2.525

2 −1.1625 1.2625

3 −0.53125 0.63125

4 −0.21563 0.31562

5 −0.057813 0.15781

6 0 0.1

In fact, the state variables x1 and x2 can be regarded as
position and velocity, respectively, and thus the equilibrium
can only be achieved if the velocity x2 is zero.

The pseudoreferences ri and associated symmetric out-
put constraints yi, which define the controllers i = 0, . . . , 6,
are presented in Table 1. The simulations were performed in
the Matlab environment.

5. Results and Discussions

As discussed in Section 3, a possible approach to address
asymmetric constraints consists of adopting the conservative
bounds defined in (14). In the present example, such
procedure amounts to setting y = ymax = 0.1. However, the

resulting optimization problem P(x(0)) becomes infeasible.
In fact, given the control constraint −5 < u(k) < 5, it is not
possible to steer the output from y(0) = −10 to the range
[−0.1, 0.1] in a single sampling period.

On the other hand, if the constraints are relaxed by set-
ting y = −ymin = 10, there is no guarantee that the resulting
output trajectory will remain within the original (ymin, ymax)
bounds. In fact, the inset in Figure 4 shows that such a
relaxation of the output constraints does lead to a violation
of the original upper bound for κ = 0.9.

These findings motivate the adoption of the proposed
strategy for handling the asymmetric output constraints.
Figures 5(a) and 5(b) present the simulation results obtained
by using the CPR algorithm. As can be seen, both the output
and control constraints were properly enforced, even by
using the extreme values of κ in the simulation.

The commutation between the successive pseudorefer-
ences is illustrated in Figure 6. This graph indicates that the
commutation from one pseudoreference to the next occurs
in finite time, as expected. The final pseudoreference (i = 6)
corresponds to the origin, which is the desired equilibrium
point for the regulation problem.

6. Conclusion

This paper presented a strategy for handling asymmetric
output constraints within the scope of an LMI-based RMPC
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Figure 6: Commutation between pseudoreferences.

scheme. For this purpose, a procedure for defining a se-
quence of pseudoreferences was devised, along with a rule
for commutation from one pseudoreference to the next. The
proposed approach guarantees constraint satisfaction and
convergence of the state trajectory to the origin, provided
that the algorithm for determination of the pseudoreferences
is feasible. The results of a numerical simulation study
indicated that the proposed procedure may be a suitable al-
ternative to the use of either more conservative constraints
(which may lead to infeasibility issues) or more relaxed
constraints (which do not guarantee satisfaction of the
original restrictions). Future research could be concerned
with the extension of the proposed approach to multiple
input-multiple output (MIMO) systems. In this case, it may
be necessary to define different pseudoreferences for each
constrained output under consideration.
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