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The approximate solution of the doubly periodic wave solutions of the coupled Drinfel’d-Sokolov-Wilson equations has been
considered by using the optimal homotopy asymptotic method (OHAM). We obtained the numerical solution of the problem
and compared that with the OHAM solution.The obtained solutions show that OHAM is effective, simpler, easier, and explicit and
gives a suitable way to control the convergence of the approximate solution.

1. Introduction

Thecoupled nonlinear partial differential equations (NPDEs)
are widely used in applied mathematics, physics, and engi-
neering sciences to offer the description of complex phenom-
ena. Here we consider doubly periodic wave solutions of the
coupled Drinfel’d-Sokolov-Wilson equation of the form [1]

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ 3V (𝑥, 𝑡)

𝜕V (𝑥, 𝑡)

𝜕𝑥
= 0,

𝜕V (𝑥, 𝑡)

𝜕𝑡
+ 2

𝜕
3V (𝑥, 𝑡)

𝜕𝑥3

+ 2𝑢 (𝑥, 𝑡)
𝜕V (𝑥, 𝑡)

𝜕𝑥
+
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
V (𝑥, 𝑡) = 0,

(1)

with

𝑢 (𝑥, 0) = 𝑥, V (𝑥, 0) = −𝑥. (2)

The exact and explicit solution of theNPDEs inmathematical
physics, engineering, and science plays an important role.
The exact solution of NPDEs cannot be found easily as
all NPDEs have infinitely many solutions. The analytical
and exact solution of such problems is either not available
in the literature or may be found by using transformation

based on the invariance group analysis method [2], the Lie
infinitesimal criterion [3], the symbolic computation [4], and
the Backlund transformation [5]. All these methods reduced
the complex equations into simple equations by using the
transformation. In the literature most of the methods like
the variational iterative method (VIM) [6], Adomian decom-
position method (ADM) [7], differential transform method
(DTM) [8], and homotopy perturbation method (HPM) [9]
have been used for the solution of weakly NPDEs and few
for strongly NPDEs. To tackle the strongly NPDEs the per-
turbation methods were introduced [10, 11]. These methods
contain a small parameter which cannot be found easily. New
analytic methods such as the artificial parameters method
[12], homotopy analysis method (HAM) [13], and homotopy
perturbation method (HPM) [9] were introduced. These
methods combined the homotopy with the perturbation
techniques. Recently, VasileMarinca et al. introducedOHAM
[14–18] for the solution of nonlinear problems which made
the perturbation methods independent of the assumption of
small parameters and huge computational work.

The motivation of this paper is to boost OHAM for the
solution of coupled NPDEs. In [19–24] OHAM has been
proved to be valuable for obtaining an approximate solution
of the single partial differential equation (PDE). Before these
coupled NPDEs were not solved by OHAM. We have proved
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that OHAM is useful and reliable for NPDEs, showing its
validity and great potential for the solution of transient
physical phenomena in science and engineering.

In the succeeding section, the basic idea of OHAM is
formulated for the solution of NPDEs. The effectiveness and
efficiency of OHAM are shown in Section 3.

2. Fundamental Mathematical
Theory of OHAM

Let us see the partial differential equation of the following
form:

A (𝑢 (𝑥, 𝑡)) + 𝑓 (𝑥, 𝑡) = 0, 𝑥 ∈ Ω,

B(𝑢,
𝜕𝑢

𝜕𝑥
) = 0, 𝑥 ∈ Γ,

(3)

where A is a differential operator, 𝑢(𝑥, 𝑡) is an unknown
function, 𝑥 and 𝑡 denote spatial and temporal independent
variables, respectively, Γ is the boundary ofΩ, and 𝑓(𝑥, 𝑡) is a
known analytic function.A can be divided into two partsL
andN such that

A =L +N. (4)

L is the simpler part of the partial differential equationwhich
is easier to solve, andN contains the remaining part ofA.

According to OHAM, one can construct an optimal
homotopy 𝜙(𝑥, 𝑡; 𝑝) : Ω × [0, 1] → R which satisfies

𝐻(𝜙 (𝑥, 𝑡; 𝑝) , 𝑝) = (1 − 𝑝) {L (𝜙 (𝑥, 𝑡; 𝑝)) + 𝑓 (𝑥, 𝑡)}

− 𝐻 (𝑝) {A (𝜙 (𝑥, 𝑡; 𝑝)) + 𝑓 (𝑥, 𝑡)} = 0,

(5)

where the auxiliary function 𝐻(𝑝) is nonzero for 𝑝 ̸= 0 and
𝐻(0) = 0. Equation (5) is called an optimal homotopy equa-
tion. Clearly, we have

𝑝 = 0 󳨐⇒ 𝐻(𝜙 (𝑥, 𝑡; 0) , 0) =L (𝜙 (𝑥, 𝑡; 0)) + 𝑓 (𝑥, 𝑡) = 0,

𝑝 = 1 󳨐⇒ 𝐻(𝜙 (𝑥, 𝑡; 1) , 1)

= 𝐻 (1) {A (𝜙 (𝑥, 𝑡; 𝑝)) + 𝑓 (𝑥, 𝑡)} = 0.

(6)

Obviously, when 𝑝 = 0 and 𝑝 = 1 we obtain

𝜙 (𝑥, 𝑡; 0) = 𝑢
0
(𝑥, 𝑡) , 𝜙 (𝑥, 𝑡; 1) = 𝑢 (𝑥, 𝑡) , (7)

respectively. Thus, as 𝑝 varies from 0 to 1, the solution
𝜙(𝑥, 𝑡; 𝑝) approaches from 𝑢

0
(𝑥, 𝑡) to 𝑢(𝑥, 𝑡), where 𝑢

0
(𝑥, 𝑡)

is obtained from (5) for 𝑝 = 0:

L (𝑢
0
(𝑥, 𝑡)) + 𝑓 (𝑥, 𝑡) = 0, B(𝑢

0
,
𝜕𝑢
0

𝜕𝑥
) = 0. (8)

Next, we choose the auxiliary function𝐻(𝑝) in the form

𝐻(𝑝) = 𝑝𝐶
1
+ 𝑝
2
𝐶
2
+ ⋅ ⋅ ⋅ . (9)

To get an approximate solution, we expand 𝜙(𝑥, 𝑡; 𝑝, 𝐶
𝑖
)

by Taylor’s series about 𝑝 in the following manner:

𝜙 (𝑥, 𝑡; 𝑝, 𝐶
𝑖
) = 𝑢
0 (𝑥, 𝑡) +

∞

∑

𝑘=1

𝑢
𝑘
(𝑥, 𝑡; 𝐶

𝑖
) 𝑝
𝑘
,

𝑖 = 1, 2, . . . .

(10)

Substituting (10) into (5) and equating the coefficient of the
like powers of𝑝, we obtain the zeroth order problem, given by
(8), the first and second order problems are given by (11)-(12),
respectively, and the general governing equations for 𝑢

𝑘
(𝑥, 𝑡)

are given by (13):

L (𝑢
1
(𝑥, 𝑡)) = 𝐶

1
N
0
(𝑢
0
(𝑥, 𝑡)) , B(𝑢

1
,
𝜕𝑢
1

𝜕𝑥
) = 0,

(11)

L (𝑢
2 (𝑥, 𝑡)) −L (𝑢

1 (𝑥, 𝑡))

= 𝐶
2
N
0
(𝑢
0
(𝑥, 𝑡))

+ 𝐶
1
[L (𝑢

1 (𝑥, 𝑡)) +N
1
(𝑢
0 (𝑥, 𝑡) , 𝑢1 (𝑥, 𝑡))] ,

B(𝑢
2
,
𝜕𝑢
2

𝜕𝑥
) = 0,

(12)

L (𝑢
𝑘 (𝑥, 𝑡)) −L (𝑢

𝑘−1 (𝑥, 𝑡))

= 𝐶
𝑘
N
0
(𝑢
0
(𝑥, 𝑡))

+

𝑘−1

∑

𝑖=1

𝐶
𝑖
[L (𝑢

𝑘−𝑖
(𝑥, 𝑡))

+N
𝑘−𝑖
(𝑢
0
(𝑥, 𝑡) , 𝑢

1
(𝑥, 𝑡) , . . . , 𝑢

𝑘−𝑖
(𝑥, 𝑡))] ,

𝑘 = 2, 3, . . . , B(𝑢
𝑘
,
𝜕𝑢
𝑘

𝜕𝑥
) = 0,

(13)

where N
𝑘−𝑖
(𝑢
0
(𝑥, 𝑡), 𝑢

1
(𝑥, 𝑡), . . . , 𝑢

𝑘−𝑖
(𝑥, 𝑡)) are the coeffi-

cients of 𝑝𝑘−𝑖 in the expansion of N(𝜙(𝑥, 𝑡; 𝑝)) about the
embedding parameter 𝑝:

N (𝜙 (𝑥, 𝑡; 𝑝, 𝐶
𝑖
))

=N
0
(𝑢
0 (𝑥, 𝑡)) + ∑

𝑘≥1

N
𝑘
(𝑢
0
, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
) 𝑝
𝑘
.

(14)

It should be underscored that the 𝑢
𝑘
for 𝑘 ≥ 0 are governed

by the linear equations with linear boundary conditions that
come from the original problem, which can be easily solved.

It has been observed that the convergence of the
series equation (10) depends upon the auxiliary constants
𝐶
1
, 𝐶
2
, . . .. If it is convergent at 𝑝 = 1, one has

𝑢̃ (𝑥, 𝑡; 𝐶
𝑖
) = 𝑢
0
(𝑥, 𝑡) + ∑

𝑘≥1

𝑢
𝑘
(𝑥, 𝑡; 𝐶

𝑖
) . (15)
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Substituting (15) into (1), it results the following expression
for the residual:

𝑅 (𝑥, 𝑡; 𝐶
𝑖
) =L (𝑢̃ (𝑥, 𝑡; 𝐶

𝑖
)) + 𝑓 (𝑥, 𝑡) +N (𝑢̃ (𝑥, 𝑡; 𝐶

𝑖
)) .

(16)

In actual computation 𝑘 = 1, 2, 3, . . . , 𝑚.
If 𝑅(𝑥, 𝑡; 𝐶

𝑖
) = 0, then 𝑢̃(𝑥, 𝑡; 𝐶

𝑖
) is the exact solution

of the problem. Generally it does not happen, especially in
nonlinear problems.

For the determinations of auxiliary constants, 𝐶
𝑖
, 𝑖 =

1, 2, . . . , 𝑚, there are different methods like Galerkin’s
method, the Ritz method, the least squares method, and, the
collocation method. One can apply the method of least
squares as under

𝐽 (𝐶
𝑖
) = ∫

𝑡

0

∫
Ω

𝑅
2
(𝑥, 𝑡; 𝐶

𝑖
) 𝑑𝑥 𝑑𝑡, (17)

𝜕𝐽

𝜕𝐶
1

=
𝜕𝐽

𝜕𝐶
2

= ⋅ ⋅ ⋅ =
𝜕𝐽

𝜕𝐶
𝑚

= 0. (18)

The 𝑚th order approximation can be obtained by these
constants. The constants 𝐶

𝑖
can also be determined by

another method as under

𝑅 (ℎ
1
; 𝐶
𝑖
) = 𝑅 (ℎ

2
; 𝐶
𝑖
) = ⋅ ⋅ ⋅ = 𝑅 (ℎ

𝑚
; 𝐶
𝑖
) = 0,

𝑖 = 1, 2, . . . , 𝑚,

(19)

at any time 𝑡, where ℎ
𝑖
∈ Ω.

The more general auxiliary function 𝐻(𝑝) is useful for
convergence, which depends upon constants 𝐶

1
, 𝐶
2
, . . ., can

be optimally identified by (18), and is useful in error mini-
mization.

3. Application of OHAM to Doubly
Periodic Wave Solutions of the Coupled
Drinfel’d-Sokolov-Wilson Equation

To demonstrate the effectiveness of the extended formulation
ofOHAM for coupled nonlinear partial differential equations
(NPDEs), we consider the doubly periodic wave solutions of
the coupled Drinfel’d-Sokolov-Wilson equations (1) with the
boundary condition (2).

Applying the method formulated in Section 2 leads to the
following:

L (𝑢 (𝑥, 𝑡)) =
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
, N (V (𝑥, 𝑡)) = 3V (𝑥, 𝑡)

𝜕V (𝑥, 𝑡)

𝜕𝑥
,

L (V (𝑥, 𝑡)) =
𝜕V (𝑥, 𝑡)

𝜕𝑡
,

N (𝑢, V) = 2
𝜕
3V (𝑥, 𝑡)

𝜕𝑥3
+ 2𝑢 (𝑥, 𝑡)

𝜕V (𝑥, 𝑡)

𝜕𝑥
+
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
V (𝑥, 𝑡) ,

(1 − 𝑝)
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡

− 𝐻
1
(𝑝) [

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ 3V (𝑥, 𝑡)

𝜕V (𝑥, 𝑡)

𝜕𝑡
] = 0,

(1 − 𝑝)
𝜕V (𝑥, 𝑡)

𝜕𝑡

− 𝐻
2
(𝑝)

[
[
[
[

[

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
+ 2

𝜕
3V (𝑥, 𝑡)

𝜕𝑥3
+ 2𝑢 (𝑥, 𝑡)

𝜕V (𝑥, 𝑡)

𝜕𝑥

+
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
V (𝑥, 𝑡)

]
]
]
]

]

= 0.

(20)

We consider

𝑢 = 𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
,

V = V
0
+ 𝑝V
1
+ 𝑝
2V
2
,

𝐻
1
(𝑝) = 𝑝𝐶

11
+ 𝑝
2
𝐶
12
,

𝐻
2
(𝑝) = 𝑝𝐶

21
+ 𝑝
2
𝐶
22
.

(21)

3.1. Zeroth Order System. We have

𝜕𝑢
0
(𝑥, 𝑡)

𝜕𝑡
= 0,

𝜕V
0 (𝑥, 𝑡)

𝜕𝑡
= 0,

(22)

with initial conditions

𝑢
0
(𝑥, 0) = 𝑥, V

0
(𝑥, 0) = −𝑥. (23)

Its solution

𝑢
0
(𝑥, 𝑡) = 𝑥, V

0
(𝑥, 𝑡) = −𝑥. (24)
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3.2. First Order System. We have

𝜕𝑢
1
(𝑥, 𝑡)

𝜕𝑡
= (1 + 𝐶

11
)
𝜕𝑢
0 (𝑥, 𝑡)

𝜕𝑡
+ 3𝐶
11
V
0 (𝑥, 𝑡)

𝜕V
0 (𝑥, 𝑡)

𝜕𝑥
,

𝜕𝑣
1 (𝑥, 𝑡)

𝜕𝑡

= {
𝜕V
0
(𝑥, 𝑡)

𝜕𝑡
+ 𝐶
21
V
0
(𝑥, 𝑡) (1 +

𝜕𝑢
0
(𝑥, 𝑡)

𝜕𝑡
)

+ 2𝐶
21
𝑢
0
(𝑥, 𝑡)

𝜕V
0
(𝑥, 𝑡)

𝜕𝑥
+ 2𝐶
21

𝜕
3V
0
(𝑥, 𝑡)

𝜕𝑥3
} ,

𝑢
1
(𝑥, 0) = 0, V

1
(𝑥, 0) = 0.

(25)

Its solutions

𝑢
1 (𝑥, 𝑡) = 3𝑡𝑥𝐶11,

V
1
(𝑥, 𝑡) = −𝑡 (𝑥 + 4𝑥𝐶

21
) .

(26)

3.3. Second Order System. We have

𝜕𝑢
2 (𝑥, 𝑡)

𝜕𝑡

= {(1 + 𝐶
11
)
𝜕𝑢
1
(𝑥, 𝑡)

𝜕𝑡
+ 𝐶
21

𝜕𝑢
0
(𝑥, 𝑡)

𝜕𝑥

+ 3 (𝐶
12
V
0 (𝑥, 𝑡) + 𝐶11V1 (𝑥, 𝑡))

𝜕V
0
(𝑥, 𝑡)

𝜕𝑥

+ 3𝐶
11
V
0
(𝑥, 𝑡)

𝜕V
1 (𝑥, 𝑡)

𝜕𝑥
} ,

𝜕V
2
(𝑥, 𝑡)

𝜕𝑡

= {
𝜕V
1
(𝑥, 𝑡)

𝜕𝑡
+ 𝐶
21
V
1
(𝑥, 𝑡) + 𝐶

22
V
0
(𝑥, 𝑡)

+ (𝐶
22
V
0
(𝑥, 𝑡) + 𝐶

21
V
1
(𝑥, 𝑡))

×
𝜕𝑢
0
(𝑥, 𝑡)

𝜕𝑥
+ 2 (𝐶

22
𝑢
0
(𝑥, 𝑡) + 𝐶

21
𝑢
1
(𝑥, 𝑡))

𝜕V
0
(𝑥, 𝑡)

𝜕𝑥

+ 2𝐶
21
𝑢
0
(𝑥, 𝑡)

𝜕V
1 (𝑥, 𝑡)

𝜕𝑥

+ 2𝐶
22

𝜕
3V
0 (𝑥, 𝑡)

𝜕𝑥3
+ 2𝐶
21

𝜕
3V
1
(𝑥, 𝑡)

𝜕𝑥3
} ,

(27)

with

𝑢
2
(𝑥, 0) = 0, V

2
(𝑥, 0) = 0. (28)

Its solutions

𝑢
2
(𝑥, 𝑡) =

3

2
[𝐶
11
(1 + 2𝑥) 𝑡

2
+ 2𝐶
2

11
𝑥𝑡 (1 + 4𝑡) + 𝐶

12
𝑥𝑡] ,

V
2
(𝑥, 𝑡) =

1

2
[ − 2𝑥𝑡 − 4𝐶

21
𝑥𝑡 (2 + 𝑡)

− 9𝐶
11
𝐶
21
𝑥𝑡
2
− 16𝐶

2

21
𝑥𝑡
2
− 8𝐶
22
𝑥𝑡] .

(29)

Adding (26), (29), and (28), we obtain

𝑢 (𝑥, 𝑡) = 𝑥 + 3𝑡𝑥𝐶
11

+
3

2
[𝐶
11
(1 + 2𝑥) 𝑡

2
+ 2𝐶
2

11
𝑥𝑡 (1 + 4𝑡) + 𝐶

12
𝑥𝑡] ,

V (𝑥, 𝑡) = −𝑥 − 𝑡 (𝑥 + 4𝑥𝐶21)

+
1

2
[ − 2𝑥𝑡 − 4𝐶

21
𝑥𝑡 (2 + 𝑡)

− 9𝐶
11
𝐶
21
𝑥𝑡
2
− 16𝐶

2

21
𝑥𝑡
2
− 8𝐶
22
𝑥𝑡] .

(30)

For the calculations of the constants 𝐶
11
, 𝐶
12
, 𝐶
21
, and 𝐶

22

using (30) in (1) and applying the procedure mentioned in
(16)–(19), we get

𝐶
11
= 0, 𝐶

12
= −0.6282197208603675,

𝐶
21
= 0.3177122963169145,

𝐶
22
= −1.689990604397596,

𝑢 (𝑥, 𝑡) = 𝑥 − 1.88466𝑥𝑡,

V (𝑥, 𝑡) = −𝑥 − 2.27085𝑥𝑡 +
1

2
(8.97823𝑥𝑡 − 2.88591𝑥𝑡

2
) .

(31)

4. Results and Discussions

The formulation presented in Section 2 provides highly accu-
rate solutions for the problems demonstrated in Section 3.
We have used Mathematica 7 for most of our computational
work. In Tables 1 and 3, we have presented absolute errors for
𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) at a spatial domain [0, 0.4] for 𝑡 = 0.01,
𝑡 = 0.015, 𝑡 = 0.1, 𝑡 = 0.2, 𝑡 = 0.3, and 𝑡 = 0.4, while
in Tables 2 and 4 the convergence of the OHAM solution is
given, through first and second order absolute errors at time
𝑡 = 0.1 and 0 ≤ 𝑥 ≤ 1. Here we observe that the OHAM
solution converges rapidly with increasing order of approxi-
mation. FromTables 1–4 and Figures 1, 2, 3, 4, 5, 6, 7, 8, 9, and
10 it is evident that the OHAM results are nearly identical to
the numerical results.Here the results are very consistentwith
the increasing time.

5. Conclusion

In this paper, we have seen the effectiveness of OHAM
[16–20] in doubly periodic wave solutions of the coupled
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Table 1: Absolute error of OHAM solution of 𝑢 (𝑥, 𝑡) corresponding to the numerical solution.

𝑥
𝑡

𝑡 = 0.01 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 𝑡 = 0.4

0.1 4.10634 × 10
−6

4.10654 × 10
−5

5.52825 × 10
−6

3.36769 × 10
−6

1.28783 × 10
−6

0.2 1.83012 × 10
−6

7.75201 × 10
−5

2.39901 × 10
−6

4.39072 × 10
−6

1.49213 × 10
−6

0.3 4.78801 × 10
−6

4.78851 × 10
−5

7.84255 × 10
−6

1.46108 × 10
−6

1.06140 × 10
−6

0.4 4.90183 × 10
−6

2.39950 × 10
−6

6.03249 × 10
−6

7.54685 × 10
−6

1.23535 × 10
−6

0.5 6.43592 × 10
−6

6.58079 × 10
−6

2.84924 × 10
−6

1.11220 × 10
−6

3.14244 × 10
−6

0.6 7.97001 × 10
−6

8.11025 × 10
−6

2.85555 × 10
−6

7.02914 × 10
−6

9.25554 × 10
−6

0.7 4.95914 × 10
−6

4.95414 × 10
−6

6.48274 × 10
−6

9.22908 × 10
−7

4.49099 × 10
−7

0.8 6.03249 × 10
−7

1.49270 × 10
−6

3.29949 × 10
−6

5.25885 × 10
−7

6.18914 × 10
−7

0.9 5.59132 × 10
−7

6.83350 × 10
−6

2.27285 × 10
−7

7.90433 × 10
−7

1.41393 × 10
−7

1.0 2.84925 × 10
−7

2.17437 × 10
−7

6.93298 × 10
−7

1.00563 × 10
−7

4.59537 × 10
−8

Table 2: Comparison of first order and second order errors of 𝑢 (𝑥, 𝑡) corresponding to the numerical solution at time 𝑡 = 0.1, and 0 ≤ 𝑥 ≤ 1.

𝑥 First order absolute error Second order absolute error
0.1 1.60818 × 10

−2
4.10654 × 10

−5

0.2 3.39636 × 10
−2

7.75201 × 10
−5

0.3 5.18454 × 10
−2

4.78851 × 10
−5

0.4 6.97272 × 10
−2

2.39950 × 10
−6

0.5 8.76090 × 10
−2

6.58079 × 10
−6

0.6 1.05491 × 10
−1

8.11025 × 10
−6

0.7 1.23373 × 10
−1

4.95414 × 10
−6

0.8 1.41254 × 10
−1

1.49270 × 10
−6

0.9 1.59136 × 10
−1

6.83350 × 10
−6

1.0 1.77018 × 10
−1

2.17437 × 10
−7

Table 3: Absolute error of OHAM solution of V (𝑥, 𝑡) corresponding to the numerical solution.

𝑥
𝑡

𝑡 = 0.01 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 𝑡 = 0.4

0.1 −8.38255 × 10
−5

−7.99845 × 10
−6

−8.50767 × 10
−5

−1.17209 × 10
−4

−1.25237 × 10
−3

0.2 −4.70697 × 10
−5

−8.90496 × 10
−6

−1.58744 × 10
−5

−2.24198 × 10
−4

−3.79536 × 10
−3

0.3 −1.19722 × 10
−5

−1.34145 × 10
−6

−9.61422 × 10
−5

−1.02833 × 10
−4

−6.03144 × 10
−3

0.4 −1.94189 × 10
−5

−9.51779 × 10
−6

−1.93986 × 10
−5

−1.02833 × 10
−4

−8.46213 × 10
−3

0.5 −4.28514 × 10
−5

−1.08137 × 10
−5

−2.03181 × 10
−5

−1.01524 × 10
−4

−1.40224 × 10
−3

0.6 −1.15699 × 10
−5

−7.64659 × 10
−5

−1.78514 × 10
−5

−9.06291 × 10
−3

−6.36149 × 10
−3

0.7 −7.91541 × 10
−4

−9.20329 × 10
−5

−2.25841 × 10
−4

−6.88889 × 10
−3

−1.54670 × 10
−2

0.8 −1.50929 × 10
−4

−6.25928 × 10
−5

−9.04686 × 10
−4

−8.30865 × 10
−2

−9.92225 × 10
−2

0.9 −1.12584 × 10
−4

−1.06202 × 10
−4

−2.26639 × 10
−4

−7.63087 × 10
−2

−8.63452 × 10
−1

1.0 −7.34287 × 10
−4

−2.96571 × 10
−4

−5.29813 × 10
−3

−1.67205 × 10
−2

−1.34788 × 10
−1

Table 4: Comparison of first order and second order errors of V (𝑥, 𝑡) corresponding to the numerical solution at time 𝑡 = 0.1, and 0 ≤ 𝑥 ≤ 1.

𝑥 First order absolute error Second order absolute error
0.1 5.67234 × 10

−2
2.25631 × 10

−6

0.2 1.13447 × 10
−2

1.58864 × 10
−6

0.3 1.70170 × 10
−1

2.38296 × 10
−6

0.4 2.26894 × 10
−1

3.17721 × 10
−6

0.5 2.83617 × 10
−1

2.91721 × 10
−5

0.6 3.40341 × 10
−1

1.25812 × 10
−5

0.7 3.97064 × 10
−1

2.50126 × 10
−5

0.8 4.53787 × 10
−1

1.28317 × 10
−4

0.9 5.10510 × 10
−1

1.29810 × 10
−4

1.0 5.67234 × 10
−1

2.94185 × 10
−4
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Figure 1: 3D approximate solution of 𝑢(𝑥, 𝑡) for 𝑡 = 0.1.
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Figure 2: 3D numerical solution of 𝑢(𝑥, 𝑡) for 𝑡 = 0.1.
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Figure 3: 2D approximate solution of 𝑢(𝑥, 𝑡) for 𝑡 = 0.1.
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Figure 4: 2D numerical solution for 𝑡 = 0.1.

0.0 0.5 1.0

0.0

0.5

1.0

u
(x

,t
)

x

Numerical solution
First order solution
Second order solution

−0.5

−1.0

−0.5−1.0

Figure 5: 2D numerical, zeroth, first, and second order solutions of
𝑢(𝑥, 𝑡) for 𝑡 = 0.5.
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Figure 6: 3D approximate solution of V(𝑥, 𝑡) for 𝑡 = 0.1.
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Figure 7: 3D exact solution of V(𝑥, 𝑡) for 𝑡 = 0.1.
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Figure 8: 2D approximate solution of V(𝑥, 𝑡) for 𝑡 = 0.1.
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Figure 9: 2D numerical solution of V(𝑥, 𝑡) for 𝑡 = 0.1.

Drinfel’d-Sokolov-Wilson equation. By applying the basic
idea of OHAM to doubly periodic wave solutions of the cou-
pled Drinfel’d-Sokolov-Wilson equation, we found it simpler
in applicability, more convenient to control convergence, and
involving less computational overhead. Therefore, OHAM

0.0 0.5 1.0
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1.0

�
(x

,t
)

x

Numerical solution
First order solution
Second order solution

−0.5

−1.0

−0.5−1.0

Figure 10: 2D numerical, zeroth, first, and second order solution of
V(𝑥, 𝑡) for 𝑡 = 0.5.

shows its validity and great potential for the solution of time
dependant problems in science and engineering.
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