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Microbial enzymes from extremophilic regions such as hot spring serve as an important source of various stable and valuable
industrial enzymes.The present paper encompasses the modeling and optimization approach for production of halophilic, solvent,
tolerant, and alkaline lipase from Staphylococcus arlettae through response surface methodology integrated nature inspired genetic
algorithm. Response surface model based on central composite design has been developed by considering the individual and
interaction effects of fermentation conditions on lipase production through submerged fermentation. The validated input space
of response surface model (with 𝑅2 value of 96.6%) has been utilized for optimization through genetic algorithm. An optimum
lipase yield of 6.5U/mL has been obtained using binary coded genetic algorithm predicted conditions of 9.39% inoculum with the
oil concentration of 10.285% in 2.99 hrs using pH of 7.32 at 38.8∘C.This outcome could contribute to introducing this extremophilic
lipase (halophilic, solvent, and tolerant) to industrial biotechnology sector andwill be a probable choice for different food, detergent,
chemical, and pharmaceutical industries. The present work also demonstrated the feasibility of statistical design tools integration
with computational tools for optimization of fermentation conditions for maximum lipase production.

1. Introduction

Hydrolases particularly lipases (triacylglycerol acylhydro-
lases, EC 3.1.1.3) from extremophilic microorganisms are
experiencing a growing demand, due to their versatile cat-
alytic activities (regio- and enantioselectivity) coupled mul-
tifold industrial applications [1]. Among different sources,
microbial lipases have gained special industrial attention due
to their stability, selectivity, broad substrate specificity, and
their cost-effective production. The extracellular bacterial
lipases are of considerable commercial importance, due to
their substrate specificity, their ability to function in extreme
environments, and their bulk production being much easier.
Currently bacterial lipases are of great demand because they
tend to have neutral or alkaline pH optima and are often
thermostable [2, 3].

Lipases from extremophiles are capable of functioning
in presence of salts, oxidizing agents, and organic solvents

and can withstand the harsh industrial conditions whichmay
permit their use in some specialized industrial applications,
such as novel substrates catalysis reactions [4]. Production
of lipases through submerged fermentation (SmF) avoids the
unwanted metabolites production (usually produced under
solid state fermentation) which facilitates easier downstream
processing of lipases. Bacterial lipases aremostly extracellular
and are greatly influenced bynutritional andphysicochemical
factors [5–7]. The usual cumbersome variable at a time
approach (OVAT) of selecting fermentation conditions for
enzyme production fails to give interaction effects of inde-
pendent variables on the final production yield of enzymes.
Response surface methodology (RSM) is a statistical coupled
mathematical tool, in which a response of interest is influ-
enced by several variables and the objective is to optimize this
response and generates a mathematical model that describes
the process by taking individual and interaction effects of
the process variables [8]. Several researchers acknowledged
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the modeling efficiency of RSM for different industrial
enzyme production along with the bacterial lipases produc-
tion from Bacillus and Burkholderia sp. [9]. Genetic algo-
rithm (GA) is a powerful stochastic search and optimization
technique which works on “Survival of Fittest” concept of
Darwinian Evolution, which has received considerable atten-
tion and replaced the gradient based optimization approaches
[10]. It can be used to optimize fermentation conditions
without the need of statistical designs and empirical models
due to its flexibility in selection of objective function and
constraints. The successful utilization of RSM integration
with GA for enzyme production has been acknowledged in
case of lipase production from Staphylococcus xylosus [11] and
Geobacillus sp. strainARM [12]. Having amultifold industrial
application, a continuous search for extremophilic lipases is
underway which can withstand the harsh industrial process
conditions. Hence, in the present investigation we have
utilized RSM integrated GA based approach for optimization
of lipase production by extremophilic [13] S. arlettae through
SmF for enhanced lipase yield.

2. Materials and Methods

2.1. Microorganism and Inoculum Preparation. The strain
Staphylococcus arlettae JPBW-1, previously isolated from rock
salt mine Darang Mandi (Himachal Pradesh, India) and
identified as a lipase producer, was maintained on the slants
of Luria Agar and subculturing was done on every week
to maintain its viability. Staphylococcus arlettae JPBW-1 was
cultivated in LB medium at 35∘C for 2 days for spore
production.

2.2. Chemicals. p-nitrophenyl palmitate (Sigma-Aldrich,
USA) and LB Broth, Miller (Merck, India) were used for the
present study. All other solvents and reagents were either of
HPLC grade or AR grade and were obtained fromMerck.

2.3. Lipase Production through SmF. SmF was carried out
by seeding the spore suspension (5mL) in Erlenmeyer
flasks (250mL) containing 50mL of the L.B medium, sup-
plemented with soyabean oil (12% v/v). The flasks were
incubated at 35∘C under agitation (100 rpm) for 3 h. After
incubation the fermentation medium was harvested by cen-
trifugation at 6314×g for 10min at 4∘C. The supernatant was
collected and subjected to estimate the lipase activity.

2.4. Lipase Assay. The lipase activity was evaluated spec-
trophotometrically by measuring p-nitrophenol produced by
hydrolysis of p-nitrophenyl palmitate at 410 nm [14]. One unit
(U) of lipase activity was expressed as the amount of enzyme
that liberates one micromole of p-nitrophenol released per
minute under the assay conditions.

2.5. Modeling through RSM. RSM is a combination of
mathematical and statistical techniques for empirical model
building and optimization, which examines the relationships
between one or more response parameters and a set of

experimental input parameters.Thismodel is only an approx-
imation, but it is used extensively because such a model is
easy to estimate and apply, even when little is known about
the process. RSM had been used not only for optimization of
culture parameters in the fermentation process but also for
studying the combined effects of medium components [15].

2.5.1. Selection of Process Parameters for Central Composite
Design. Production of lipase through SmF mainly depends
on fermentation process variables, namely, temperature (30–
40∘C), oil concentration (10–14), inoculum size (8–12%), pH
(7–9), and incubation time (2–4 h). In the present study based
on the central composite design of RSM, design of exper-
iments (DOE) was planned and performed for developing
a polynomial response surface model after considering the
above-mentioned fermentation variables at three levels.

2.5.2. Statistical Analysis. Based on the one variable at time
approach experimental results coupled with literature survey
and prior experience in statistical modeling, in the present
study, CCD was used by taking five variables at three levels.
Nonlinear regression analysis was carried out based on the
data collected as per CCD (Table 1) planning for response,
namely, lipase activity using MINITAB 14 software which
resulted in a second-order polynomial equation.

The coefficient of the nonlinear regression model can be
determined using the method of least squares. The effect of
the parameters and their interaction terms on the response
have been studied by conducting the significance tests and
analysis of variance (ANOVA) has been carried out on each
response to check the adequacy of the model. The detailed
analysis of the effect of parameters and their interactions on
the response were also done through the surface plots using
MINITAB 14 software.

2.6. Artificial Intelligence Based Binary Coded GA Optimiza-
tion Approach. Optimization is described as the simulation
performed aiming to maximize a certain process objective.
The search for the desired optimum is usually done using
mathematical algorithms. Generally in case of optimization,
the problem of interest must be formulated as amathematical
model which describes the system and its performance.
The simulation of the process with a mathematical model
facilitates the process optimization against highly expen-
sive experiments, predicting process results for any set of
decision variables. The simplicity, robustness, and higher
convergence rates in lesser computational time account for
their popularity in solving the complex, nonlinear problems.
These algorithms differ with traditional and gradient based
approaches, in searching a population of points in parallel not
just a single point and utilizing the probabilistic transition
rules instead of deterministic ones. In this context, the
present work aims to optimize the nonlinear RSM model
of lipase production using artificial intelligence based GA
approach. GA is the most popular evolutionary algorithm
(EA) which mimics the principle of natural evolution. In
GA, the optimization search proceeds through three oper-
ators, namely, reproduction, crossover, and mutation [16].
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Table 1: Central composite design with the experimental, predicted responses and its 𝑅-studentized residuals.

Run
Input parameters Response, La (U/mL)

𝑅-studentized residualTemp.a (∘C) OCb (%) ISc (%) pH ITd (h) Exp. Predict.
(𝑋
1
) (𝑋

2
) (𝑋

3
) (𝑋

4
) (𝑋

5
)

1 35 12 10 8 4 3.06 2.973 0.479
2 30 14 12 7 4 4.62 4.708 −2.195
3 30 10 12 9 4 3.86 3.862 −0.042
4 30 10 8 7 4 3.74 3.761 −0.437
5 30 14 12 9 2 5.68 5.722 −0.884
6 35 12 10 8 3 3.26 3.528 −1.111
7 35 10 10 8 3 4.92 4.978 −0.318
8 40 14 8 9 2 4.87 4.843 0.561
9 40 14 8 7 4 3.91 3.929 −0.402
10 35 12 10 8 3 3.27 3.522 −1.064
11 35 12 8 8 3 2.90 2.923 −0.128
12 40 10 8 9 4 5.38 5.313 1.509
13 30 12 10 8 3 3.71 3.458 1.533
14 40 10 12 9 2 4.33 4.294 0.748
15 35 12 10 8 3 3.26 3.522 −1.111
16 35 12 10 8 2 3.86 3.522 1.491
17 30 10 8 9 3 4.78 4.754 0.525
18 35 12 10 9 2 4.42 4.520 −0.556
19 30 14 8 7 3 3.16 3.221 −1.351
20 40 12 8 7 2 3.37 3.434 −0.355
21 30 10 10 8 4 3.39 3.442 −1.338
22 40 10 12 7 3 3.19 3.201 −0.224
23 35 14 12 7 4 5.46 5.214 1.484
24 40 14 10 8 2 4.70 4.700 −0.009
25 40 14 12 9 3 3.15 3.200 −1.093
26 35 12 12 7 4 2.93 2.719 1.240
27 30 14 12 8 2 4.56 4.577 −0.219
28 35 12 8 9 3 3.05 2.949 0.561
29 35 12 10 8 3 3.78 3.492 1.815
30 35 12 10 7 3 3.35 3.522 −0.705
31 35 12 10 8 3 3.38 3.522 −0.577
32 35 12 10 8 3 3.35 3.522 −0.705
33 35 12 10 8 3 3.38 3.522 −0.577
aTemperature; boil concentration; cinoculum size; dincubation time.

The reproduction (selection) operator selects good strings
in a population and forms mating pool. The chromosomes
are copied based on their fitness value. No new strings are
produced in this operation. Crossover operation generates a
child chromosome by exchanging some portion of the strings
(chosen randomly) with string of another chromosome in
the mating pool using a crossover probability (𝑃

𝑐
). If the

child chromosome is less fit than the parent chromosome,
then it will slowly die in the subsequent generation. Mutation
was the last operation of GA optimization and used further
to perturb the child vector using mutation probability (𝑃

𝑚
).

It alters the string locally to create a better string and to

create a point in the neighborhood of the current point,
thereby achieving a local search andmaintaining the diversity
in the population. The entire process is repeated till some
termination criterion is met [10]. The mechanics of GA is
simply involving coping of the strings. This new population
is further evaluated and tested for some termination criteria.
In the present study, an attempt has been made to maximize
the lipase activity of S. arlettae JPBW-1 using binary coded
GA by utilizing the input space of the developed RSMmodel
of lipase production through SmF. Taking ten bits for one
variable, 50 bits (five input variables) were used to represent a
GA string. Based on the concept of duality, the maximization
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problem is converted to minimization problem.This simula-
tion has been executed through C program.

3. Results and Discussion

3.1. Modeling Studies through RSM and Statistical Analysis.
Most lipases are inducible enzymes and addition of oils
proved to enhance lipase activity [17]. RSM is a successive
exploratory approach which allows the establishment of
the relationship between multiple variables with obtained
responses more efficiently than traditional design [18]. The
process variables of SmF, that is, incubation temperature,
pH, incubation time, inducer concentration (soybean oil
%), and inoculum size (%) have been selected as input
variables and experiments have been executed based on CCD
for developing a second order polynomial response surface
model for lipase production by S. arlettae (Table 1) using the
experimental knowledge of one variable at a time approach
for taking the range of each variable.

These experimentswere performed in triplicate and lipase
activity (𝐿

𝑎
) of S. arlettae JPBW-1 has been expressed as a

nonlinear function of the input process parameters in coded
form as follows:

𝐿
𝑎
= 3.52179 − 0.01167𝑋

1
+ 0.11833𝑋

2

− 0.10222𝑋
3
+ 0.51389𝑋

4
+ 0.01222𝑋

5

− 0.18187𝑋
1
𝑋
2
− 0.28062𝑋

1
𝑋
3
+ 0.04188𝑋

1
𝑋
4

+ 0.04188𝑋
1
𝑋
5
+ 0.32312𝑋

2
𝑋
3
+ 0.08312𝑋

2
𝑋
4

+ 0.10313𝑋
2
𝑋
5
− 0.01062𝑋

3
𝑋
4
− 0.03562𝑋

3
𝑋
5

− 0.15813𝑋
4
𝑋
5
− 0.07564𝑋

2

1
+ 1.57436𝑋

2

2

− 0.70064𝑋
2

3
+ 0.48436𝑋

2

4
− 0.56064𝑋

2

5
,

(1)

where 𝑋
1
, 𝑋
2
, 𝑋
3
, 𝑋
4
, and 𝑋

5
represent temperature, oil

concentration, inoculum size, pH, and incubation time,
respectively.

Based on the significance test results (Table 2), the 𝑃
values of𝑋

4
, 𝑋2
2
, 𝑋2
3
, 𝑋2
4
, 𝑋
1
𝑋
2
, 𝑋
1
𝑋
3
, 𝑋
2
𝑋
3
,𝑋
4
𝑋
5
, and𝑋2

5

(found to be less than 0.05, considering 95% (𝑎 = 0.05) as a
level of confidence) are considered as significant terms with
impact final lipase activity. The 𝑃 value of the factors𝑋

1
,𝑋
2
,

𝑋
5
, and 𝑋

2
𝑋
5
is found to be more than the confidence level

(0.05) but their square terms𝑃 values are found to be less than
the confidence level indicating their nonlinear relationship
with the response, lipase activity.The significant contribution
of linear, square, and interaction terms towards the response,
lipase activity, has been revealed through ANOVA results
(Table 3), where the 𝑃 values of all the terms were found to
be less than the significance level 𝛼 = 0.05. The coefficient
of multiple regression (𝑅2) was seen to be equal to 96.6%
which shows the developedmodel is an adequate predictor of
the experimental conditions and confirmed that the selected
SmF process variables significantly influence lipase yield
[8]. Moreover, 𝑅2 was found to be in reasonable agreement

with adjusted 𝑅2 (90.5%). The three dimensional response
surfaces were plotted to study the interaction among the
various factors selected which was found to be its nonlinear
relationship with the response, lipase activity (Figure 1). The
interaction effect of temperature with oil concentration and
pH on lipase activity has been shown in Figures 1(a) and
1(c). In both cases higher lipase activity has been observed
nearby high levels (+1) of temperature, oil concentration, and
pH. Figures 1(b) and 1(d) illustrate cumulative effect of tem-
perature inoculums size and inoculation time, respectively.
Initially, lipase activity (U/mL) increases with time till the
maximum value and then again starts decreasing. Interaction
of oil concentration with inoculums size (Figure 1(e)) and
incubation time (Figure 1(g)) and pH with incubation time
(Figure 1(j)) on lipase activity follows the same pattern, where
higher lipase activities have been noticed nearby high levels
(+1) of oil concentration with inoculums size and incubation
time and pHwith incubation time compared to the respective
low (−1) and middle (0) levels. Interaction effect of oil
concentration and Ph with lipase activity has been depicted
in Figure 1(f). When operating at high oil concentration
and Ph, lipase activity seems to be higher when compared
with the initial and middle levels of oil concentration and
pH. Therefore, the interaction effect of oil concentration
and pH was tested as an important variable to enhance the
lipase activity in SmF. Figure 1(h) showed the interactive
effect of inoculums size and Ph on lipase activity. It revealed
that the higher lipase activity has been observed at higher
Ph at all inoculums sizes. As shown in Figure 1(i), lipase
activity was influenced by inoculums size and incubation
time. The maximum lipase activity has been achieved when
inoculums size and incubation time near their zero levels.
The nonlinear relationship of fermentation process variables,
namely, inoculum concentration and temperature on lipase
yield from Geobacillus thermoleovorans CCR11 has been also
found through the RSM approach [19]. Significant and com-
bined effects of polydimethylsiloxane (PDMS) and oxygen
volumetric mass transfer coefficient through RSM have been
acknowledged by Rech et al. [20] for lipase production by
Staphylococcus warneri EX17.

3.2. GA Based Optimization. Genetic algorithm is a stochas-
tic optimization technique that searches for an optimal
value of a complex objective function and is used to solve
complicated optimization problems by simulation or mim-
icking a natural evolution process [21]. The application of
genetic algorithms in bioprocess optimization had been
reported by researches which are more flexible tool used
here for minimization of reaction time while maximizing
product concentration [22]. The selection of population size,
number of generations, mutation probability, and crossover
mechanism plays an important role in exploring the input
space of the problem of interest by GA. In the present study,
RSM model of lipase extraction is posed as an optimization
problem for maximizing the lipase activity. A systematic
study was conducted to determine the GA parameters
responsible for optimal value of lipase activity. The results
of parametric study of GA have been shown in Figure 2 for
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Table 2: Results of significance test on the nonlinearmodel coefficients, standard errors,𝑇 statistics, and𝑃 values for the lipase activity (coded
form).

SI. no. Standard
Terms Coefficient Error coefficient 𝑇 𝑃

1 Constant 3.528 0.071 49.618 0.000
2 𝑋

1
−0.0117 0.058 −0.199 0.846

3 𝑋
2

0.118 0.058 2.021 0.068
4 𝑋

3
−0.102 0.058 −1.746 0.109

5 𝑋
4

0.514 0.058 8.778 0.000
6 𝑋

5
0.012 0.058 0.209 0.838

7 𝑋
1

2
−0.075 0.158 −0.478 0.642

8 𝑋
2

2 1.574 0.158 9.944 0.000
9 𝑋

3

2
−0.707 0.158 −4.425 0.001

10 𝑋
4

2 0.484 0.158 3.059 0.011
11 𝑋

5

2
−0.560 0.158 −3.541 0.005

12 𝑋
1
𝑋
2

−0.182 0.062 −2.929 0.014
13 𝑋

1
𝑋
3

−0.287 0.062 −4.520 0.001
14 𝑋

1
𝑋
4

0.049 0.062 0.674 0.514
15 𝑋

1
𝑋
5

0.041 0.062 0.674 0.514
16 𝑋

2
𝑋
3

0.323 0.062 5.204 0.000
17 𝑋

2
𝑋
4

0.083 0.062 1.339 0.208
18 𝑋

2
𝑋
5

0.103 0.062 1.661 0.125
19 𝑋

3
𝑋
4

−0.010 0.062 −0.171 0.867
20 𝑋

3
𝑋
5

−0.035 0.062 −0.574 0.578
21 𝑋

4
𝑋
5

−0.158 0.062 −2.547 0.027
SS = 0.2484 𝑅

2 = 96.6% 𝑅
2 (adj) = 90.5%

Table 3: Results of ANOVA-lipase activity.

Source DF Sequential Adjusted
𝐹 𝑃

SS SS MS
Regression 20 19.5268 19.5268 0.97634 15.83 0.000
Linear 5 5.1987 5.1987 1.03975 16.86 0.000
Square 5 10.1093 10.1093 2.02185 32.78 0.000
Interaction 10 4.2188 4.218 0.42188 6.84 0.002
Residual error 11 0.6785 0.6785 0.06168
Lack-of-fit 6 0.4080 0.4080 0.06800 1.26 0.410
Pure error 5 0.2705 0.2705 0.05411
Total 31 20.2053

searching optimal fermentation process variables to predict
the final lipase yield. Figure 2 shows the parametric analysis
of𝑃
𝑚
(0.001–0.0031), population size (10–350), andmaximum

generations (25–1000) versus fitness value; from this analysis
we have selected the optimum values of 𝑃

𝑚
, population size,

and maximum generation number at which optimum fitness
value has been noticed one by one. In the present study,
tournament selection of size two, uniform crossover proba-
bility (𝑃

𝑐
) of 0.5, bitwisemutational probability (𝑃

𝑚
) of 0.0015,

population size of 210, and maximum number of generations
of 815 were employed in search of optimal values of the
lipase extraction from the fermented broth for enhanced
lipase activity. These optimized parametric parameters (𝑃

𝑐
,

𝑃
𝑚
, pop. Size, and max. gen) have been utilized for final run

of binary coded GA, which results in 50-bit length string
that represents the five optimized input variables (10 bits
for each variable) of SmF. After decoding these strings to
real values through linear mapping, the optimum values of
process parameters were seen to be equal to 38.82∘C, 10.285%,
9.392%, 7.32, and 2.995 h for fermentation variables such
as temperature, oil concentration, inoculums size, pH, and
incubation time, respectively. Moreover, the maximum value
of lipase activity for S. arlettae JPBW-1 was found to be equal
to 6.456375U/mL.

3.2.1. Experimental Validation of GA Proposed Optimization
Results. To confirm these results, lipase production was
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Figure 1: Surface plots of lipase activity with: (a) temperature and oil concentration, (b) temperature and inoculum size, (c) temperature and
pH, (d) temperature and incubation time, (e) oil concentration and inoculum size, (f) oil concentration and pH, (g) oil concentration and
incubation time, (h) inoculum size and pH, (i) inoculum size and incubation time, and (j) pH and incubation time.

conducted with the optimum levels of the significant fac-
tors representing the maximum lipase yield 6.45U/mL. The
lipase yield improved about 1.8-fold than the one at a time
approach for optimization of lipase production in which
the lipase yield was 3.54U/mL. The significant correlation
between predicted and observed values of lipase yield in
these experiments justified the validity of the response model
and the existence of an optimum point. Among the vari-
ous artificial intelligence techniques, genetic algorithms, a
powerful stochastic search and optimization technique, have
received considerable attention. Genetic algorithms can be
used to optimize fermentation conditions without the need

of statistical designs and empirical models. Implementation
of a GA for multiobjective experimental optimization was
recently demonstrated [23] and, thus, offers the chance for
further reduction of the experimental effort. Ebrahimpour
et al. [12] have also utilized artificial intelligence techniques
for enhanced lipase production from a newly isolated ther-
mophilic Geobacillus sp. strain ARM. The better search
criteria of GAs for optimal conditions have been acknowl-
edged in case of polyhydroxybutyrate (PHB) production by
Azohydromonas lataMTCC2311 [24] and in laccasemediated
biodegradation of 2,4-dichlorophenol [25]. Moreover, pre-
liminary results show that lipase from Staphylococcus arlettae
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Figure 2: Results of parametric study of GA (a) mutation probability (𝑃
𝑚
) versus fitness, (b) population size versus fitness, and (c) maximum

number of generations versus fitness.

JPBW-1 showed stability in presence of salt (up to 30% NaCl)
and organic solvents (up 30% benzene, xylene, n-hexane, and
toluene) and has ability to work in extreme conditions of
temperature (up to 70∘C) and pH (8–12) [13].

4. Conclusion

To summarize, this study presents evaluation of RSM inte-
grated GA in modeling and optimization of lipolytic activity
production from S. arlettae. A second order polynomial
response surface model has been developed successfully and
utilized in search of optimal conditions for lipase production
through SmF using binary coded GA.The optimum fermen-
tation conditions obtained for the synthesis of lipase from
S. arlettae were 38.8∘C, oil concentration 10.2%, inoculum
volume 9.3%, pH 7.32, and incubation time 3 h for obtaining

a maximum lipase activity of 6.45U/mL. An overall 1.8-fold
increase in lipase activity was achieved after fermentation
variables optimization, following the statistical approach.
The high tolerance of this lipolytic enzyme under extreme
conditions will make it an enzyme of choice for many
industries and considered to be a good candidate for its
viability for commercialization.
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