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We investigate the phase transitions of black holes with conformal anomaly in canonical ensemble. Some interesting and novel
phase transition phenomena have been discovered. It is shown that there are striking differences in both Hawking temperature and
phase structure between black holes with conformal anomaly and those without it. Moreover, we probe in detail the dependence of
phase transitions on the choice of parameters. The results show that black holes with conformal anomaly have much richer phase
structure than those without it. There would be two, only one, or no phase transition points depending on the parameters. The
corresponding parameter regions are derived both numerically and graphically. Geometrothermodynamics are built up to examine
the phase structure we have discovered. It is shown that Legendre invariant thermodynamic scalar curvature diverges exactly where
the specific heat diverges. Furthermore, critical behaviors are investigated by calculating the relevant critical exponents. And we

prove that these critical exponents satisfy the thermodynamic scaling laws.

1. Introduction

Black hole thermodynamics has long been one of the excit-
ing and challenging research fields ever since the pioneer
research made by Bekenstein and Hawking [1, 2]. A variety of
thermodynamic quantities of black holes have been studied.
In 1983, Hawking and Page [3] discovered that pure thermal
radiation in AdS space becomes unstable above certain
temperature and collapses to form black holes. This is the
well-known Hawking-Page phase transition which describes
the phase transition between the Schwarzschild AdS black
hole and the thermal AdS space. This phenomenon can
be interpreted in the AdS/CFT correspondence [4] as the
confinement/deconfinement phase transition of gauge field
[5]. Since then, phase transitions of black holes have been
investigated from different perspectives. For recent papers,
see [6-26].

One of the elegant approaches is the thermodynamic
geometry method, which was first introduced by Wein-
hold [27] and Ruppeiner [28]. Weinhold proposed met-
ric structure in the energy representation as gle =

0;0;M(U, N*) while Ruppeiner defined metric structure as
g =
tively, the Hessian matrix of the internal energy U and
the entropy S with respect to the extensive thermodynamic
variables N®. And Weinhold’s metrics were found to be
conformally connected to Ruppeiner’s metrics through the
map dS}Zz = dS%V/T [29]. Ruppeiner’s metric has been
applied to investigate various thermodynamics systems for
its profound physical meaning. For more details, see the
nice review in [30]. Recently, Quevedo [31] presented a new
formalism called geometrothermodynamics, which allows us
to derive Legendre invariant metrics in the space of equi-
librium states. Geometrothermodynamics presents a unified
geometry where the metric structure describes various types
of black hole thermodynamics [32-41].

Apart from the thermodynamic geometry, critical behav-
ior also plays a crucial role in the study of black hole
phase transitions. The critical points of phase transitions
are characterized by the discontinuity of thermodynamic
quantities. So, it is important to investigate the behavior

—a,.a].S(U, N%). These metric structures are, respec-



in the neighborhood of the critical point, especially the
divergences of various thermodynamic quantities. In classical
thermodynamics, this goal is achieved by taking into account
a set of critical exponents, from which we can gain qualitative
insights into the critical behavior. These critical exponents
are found to be universal to a large extent (only depending
on the dimensionality, symmetry, etc.) and satisty scaling
laws, which can be attributed to scaling hypothesis. Critical
behavior of black holes accompanied with their critical
exponents has been investigated not only in asymptotically
flat space time [42-48] but also in the de Sitter and anti-de
Sitter space [49-55].

In this paper, we would like to focus our attention on the
critical behavior and geometrothermodynamics of static and
spherically symmetric black holes with conformal anomaly.
As we know, conformal anomaly, an important concept with
a long history, has various applications in quantum field
theory in curved spaces, string theory, black hole physics,
and cosmology. So it is worth probing its influences in phase
transitions of black holes. Recently, Cai et al. [56] found a
class of static and spherically symmetric black holes with
conformal anomaly, whose thermodynamic quantities were
also investigated in the same paper. It was found that there
exists a logarithmic correction to the well-known Bekenstein-
Hawking area entropy. This discovery is quite important in
the sense that with this term one is able to compare black
hole entropy up to the subleading order, in the gravity side
and in the microscopic statistical interpretation side [56].
Based on the metrics in that paper, phase transitions of a
spherically symmetric Schwarzschild black hole have been
investigated by taking into account the back reaction through
the conformal anomaly of matter fields recently [57]. It has
been shown that there exists an additional phase transition
to the conventional Hawking-Page phase transition. The
entropy of these black holes has also been investigated by
using quantum tunneling approach [58]. Moreover, Ehrenfest
equation has been applied to investigate this class of black
holes [59] and it has been found that the phase transition
is a second-order one. Despite these achievements, there are
still many issues left to be explored. Reference [57] mainly
focuses on the uncharged case. So, it is natural to ask what
would happen to the charged black holes. In [59], the authors
concentrated their efforts on the Ehrenfest equation in the
grand canonical ensemble. So it is worthwhile to study the
phase transition in canonical ensemble. The dependence of
the phase structure on the parameter deserves to be further
investigated. One may also wonder whether the thermody-
namic geometry and scaling laws still work to reveal the phase
structure and critical behavior when conformal anomaly is
taken into consideration. Motivated by these, we would like to
investigate the phase transition, geometrothermodynamics,
and critical exponents in canonical ensemble.

The organization of our paper is as follows. In Section 2,
the thermodynamics of black holes with conformal anomaly
will be briefly reviewed. In Section 3, phase transitions
will be investigated in detail in canonical ensemble, and
some interesting and novel phase transition phenomena will
be disclosed. In Section 4, geometrothermodynamics will
be established to examine the phase structure we find in
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Section 3. In Section 5, critical exponents will be calculated
and the scaling laws will be examined. In the end, conclusions
will be drawn in Section 6.

2. A Brief Review of Thermodynamics

The static and spherically symmetric black hole solution with
conformal anomaly has been proposed as [56]

dr?

2 2
ds* = f(r)dt o

-7 (d92 + sin29dg02) , 1)

where

2 ~ ~ 2
f<>(JMﬂ> o

r
x r r

The Newton constant G has been set to one. Both M and Q

are integration constants. And the coefficient & is positive.

The physical meanings of M and Q were discussed in [56].

M is nothing but the mass of the solution while Q should be

interpreted as U(1) charge of some conformal field theory.
When M = Q = 0, the metric above reduces to

ds’ = dt* - dr® — r* (d6® + sin’0dg) , 3)

implying that the vacuum limit is the Minkowski space-time.
In the large r limit, (2) becomes

oM @ -
f(r)z1—7+r—2+0(r2), (4)

which behaves like the Reissner-Nordstrom solution.
When & — 0, (2) reduces into

2
f(r)=1—¥+?—2. (5)

Equations (1) and (5) consist of the metric of Reissner-
Nordstrém black hole.

Solving the equation f(r) = 0, we can get the radius of
black hole horizon r,, with which the mass of the black hole
can be expressed as

2 ~
M=, L& 6)
2 2r, 1,
The Hawking temperature can be derived as
' 2 = 2
+20 -
T= f (r+) — T+ o Q~ . (7)
4 d7r, (r? - 4@)

The potential difference between the horizon and the infinity
can be written as

o-< 8)
Ty

The entropy was reviewed in [59] as

S= mgzr —4n&In ri. 9)
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3. Novel Phase Transition Phenomena

In this section, we would like to investigate the phase tran-
sition of black holes with conformal anomaly in canonical
ensemble where the charge of the black hole is fixed.

The corresponding specific heat can be calculated as

2n(r? - 4&) (@ - 2a - 72)

oS
Co=T(=) = . (10)
Q <8T )Q rt — 8@ + 1072& + Q2 (4 — 312)
Apparently, C, may diverge when
ry—8a’ +10ra+Q* (46— 3r2) =0, (1)

which suggests a possible phase transition. However, the
phase transition point characterized by (11) is not apparent.
To gain an intuitive understanding, we plot Figure 1(a) using
(10). To check whether the phase transition point locates in
the physical region, we also plot the Hawking temperature
using (7) in Figure 1(b). It is shown that the phase transition
pointlocates in the positive temperature region. From Figures
1(a) and 1(b), we find that there have been striking differences
between the case @#0 and the case & = 0. In the case
Q = 1,& = 0.1, there are two phase transition points while
there is only one in the case & = 0. The temperature in
the case @ = 0 increases monotonically while there exists
local minimum temperature in the case Q = 1,& = 0.1
Figure 1(a) can be divided into four phases. The first one
is thermodynamically stable (C, > 0) with small radius.
The second one is unstable (C, < 0) with medium radius.
The third one is thermodynamically stable (C, > 0) with
medium radius while the fourth one is thermodynamically
unstable (Cq, < 0) with large radius. So the phase transition
takes place not only from an unstable large black hole to a
locally stable medium black hole but also from an unstable
medium black hole to a locally stable small black hole. From
Figure 1(b), we notice that the Hawking temperature has a
local minimum value. And the corresponding location can
be derived through

oT  ri—8& +10ra+Q’ (4a - 3r])

or. 4re(r} - 4r,&)°

=0. (12)

It is quite interesting to note that the numerator of (12)
is the same as (11), which implies that the location which
corresponds to the minimum Hawking temperature also
witnesses the existence of phase transition.

To probe the dependence of phase transition location on
the choice of parameter, we solve (11) and obtain the location
of phase transition point as

. \stz - 10 + V13282 - 76aQ* +9Q* (13
.= :
2

With (13) at hand, we plot Figures 2(a) and 2(b) which
show the influence of parameters Q and &, respectively. It can
be observed from Figures 2(a) and 2(b) that black holes with
conformal anomaly have much richer phase structure than

that without conformal anomaly. When & = 0, the location
of the phase transition r, is proportional to the charge Q.
However, the cases of black holes with conformal anomaly
are quite complicated. For & = 0.1, the curve can be divided
into three regions. Through numerical calculation, we find
that black holes have only one phase transition point when
Q € (0,0.4472). When 0.4472 < Q < 0.7746, there would be
no phase transition at all. When Q > 0.7746, there exist two
phase transition points, just as what we show in Figure 1(a).
And the distance between these two phase transition points
becomes larger with the increasing of Q. Figure 2(b) shows
the case that the charge Q has been fixed at one. We notice
that there would be two phase transition points when 0 < & <
1/6, which is consistent with Figure 1(a). And the distance
between these two phase transition points becomes narrower
with the increasing of & When & ¢ (1/6,1/2), there would
be no phase transition. When & > 1/2, there would be
only one phase transition point. To gain a three-dimensional
understanding, we also include a three-dimensional figure of
Cq in Figures 3(a) and 3(b).

Apart from the specific heat, we would also like to
investigate the behavior of the inverse of the isothermal
compressibility, which is defined as

o aq>>
K :Q<— . 14
T 30 ), (14)
Utilizing the thermodynamic identity relation
(or) (e Go) o e
oT Jo\9Q o\ 0D /1 (15)
we obtain
(), (& )fa)y
oQ/r T Jo\0Q /o’

where the second term on the right hand side can be
calculated through

(5a). o) (%) () w
aQ o) ar+ Q aQ o) aQ .,.+‘

Utilizing (7), (8), (14), (16), and (17), we obtain the explicit
form of K;l as

L Qrf-Qr - 4Q7@ +10Qria - 8Q&

. 18
T, [rt - 82 +10r2& + Q2 (4& — 3r2)] (18)

We show the behavior of x;' in Figure 4. Comparing
Figure 4 with Figure 1(a), we find that the inverse of the
isothermal compressibility ;' also diverges at the critical
point.

4. Geometrothermodynamics

According to geometrothermodynamics [31], the (2n + 1)-
dimensional thermodynamic phase space I can be coordi-
nated by the set of independent quantities {¢, E?, I}, where
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FIGURE 2: (a) r, versus Q for @ = 0.1 and & = 0. (b) r, versus & for Q = 1.
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FIGURE 3: (a) Cq versus Q and r, for & = 0.1. (b) Cq, versus @ and r, for Q = 1.
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FIGURE 4: The inverse of the isothermal compressibility x7.' versus
r,forQ=1,& =0.1.

¢ corresponds to the thermodynamic potential and E?, I”
are the extensive and intensive thermodynamic variables,
respectively. The fundamental Gibbs 1-form defined on I
can then be written as ® = d¢ — 8,,1°dE’, where §,, =
diag(1,...,1). Considering a nondegenerate Riemannian
metric G, a contact Riemannian manifold can be defined
from the set (7,0,G) if the condition ® A (®)"#0 is
satisfied. Utilizing a smooth map ¢ : & — 7, that
is, ¢ (E") +— (¢,E", 1%), a submanifold ¢ called the
space of thermodynamic equilibrium states can be induced.
Furthermore, a thermodynamic metric g can be induced in
the equilibrium manifold & by the smooth map ¢.

As proposed by Quevedo et al., the nondegenerate metric
G and the thermodynamic metric g can be written as follows
[38]:

G = (d¢ - 8, I"dE") + (8,4 E°I°) (negdESdI®),  (19)

* c a¢ be az(p
g=9 (G) < OE¢ > <’1ub aECaEd

dE°dE? ) . (20)

where 1, = diag(-1,...,1).

To construct geometrothermodynamics of black holes
with conformal anomaly in canonical ensemble, we choose
M to be the thermodynamic potential and S,Q to be the
extensive variables. Then the corresponding thermodynamic
phase space is a 5-dimensional one coordinated by the set
of independent coordinates {M, S, Q, T, ®}. The fundamental
Gibbs 1-form defined on I can then be written as

® =dM - TdS - ©dQ. (21)
The nondegenerate metric G from (19) can be changed into

G = (dM - TdS — ®dQ)* + (TS + ®Q) (-dSAT + dQdD).
(22)

Introducing the map

oM oM

¢:{5,Q} — {M(S,Q),S,Q,E,E

}, (23)

the space of thermodynamic equilibrium states can be
induced. According to (19), the thermodynamic metric g can
be written as follows:

(oM OM M ,, M, ,

Utilizing (6) and (9), we can easily calculate the relevant
quantities in (24) as

oM i +28-Q

oM _Lreer 25
oS  4nr, (r2 - 4a) @)
oM Q
E = r+’ (26)
M 8& —ri-10ria - Q (4@ - 3r7) o)
as? 8r2r, (r2 - 4&)° ’
M 1
_— = —. 28
o 7 (28)
Comparing (25) and (26) with (7) and (8), we find
oM oM
— =T, — =, 29
oS 0Q (29)

which proves the validity of the first law of black hole ther-
modynamics dM = TdS + ®dQ. Substituting (25)-(28) into
(24), we can calculate the component of the thermodynamic
metric g as

Iss
- 1
327272 (r2 - 4&)"
x [r} - 86 + 10r7a + Q* (46 - 3r7 )|
X [rjlr + ZTi& +Q? (3132r - 16&) + 8 (Q2 - ri - 2&) In r+] ,
C/ele)
| ri-16Q7a+2rE + 3Q7r + (8Q& ~ 8ri@ - 16&° ) Inr,

4r2 (r? - 4&)

(30)

Utilizing (30), we can obtain the Legendre invariant scalar
curvature as

Ro= %, (31)

where
B(x,,Q)
- [+ 10%a - 85 + Q* (4@ - 3]’

x[rt+Q? (312 - 16&)+2r%& + 8% (Q* - 1> - 2&) Inr, |,
(32)
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FIGURE 5: Thermodynamic scalar curvature Ry, versus r, for Q =
L,a=0.1.

The numerator of the Legendre invariant scalar curvature
is too lengthy to be displayed here. From (32), we find that
the Legendre invariant scalar curvature shares the same factor
ri + lOri& - 8a° + Q*(4& - 3ri) with the specific heat Cy,
in its denominator, which implies that it would diverge when
ri + IOriéc' -8a?+Q*(4& —3ri) = 0. That is the exact condition
that the phase transition point satisfies. To get an intuitive
sense on this issue, we plot Figure 5 showing the behavior
of thermodynamic scalar curvature R,. From Figure 5, we
find that thermodynamic scalar curvature R, diverges at
three locations. Comparing Figure 5 with Figure 1(b), we
find that the second diverging point which corresponds
to negative Hawking temperature does not have physical
meaning. Furthermore, the first and the third diverging
points coincide exactly with the phase transition point, which
can be witnessed by comparing Figure 5 with Figure 1(a). So
we can safely draw the conclusion that the Legendre invariant
metric constructed in geometrothermodynamics correctly
produces the behavior of the thermodynamic interaction
and phase transition structure of black holes with conformal
anomaly.

5. Critical Exponents and Scaling Laws

In order to have a better understanding of the phase transition
of black holes with conformal anomaly, we would like to
investigate their critical behavior near the critical point by
considering a set of critical exponents in this section.

Before embarking on calculating critical exponents, we
would like to reexpress physical quantities near the critical
point as

r,=r.(1+4), (33)
T(r,)=T.(1+¢), (34)
Q(r,)=Q.(1+n), (35)

where |A| < 1, [e] <« 1, [y < 1. Note that the subindex “c” in
this section denotes the value of the physical quantity (or the
expression) at the critical point. For example, T, corresponds
to the temperature at the critical point.
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Critical exponent « is defined through

Co~|T-T|™ (36)
To obtain T'— T, we would like to carry out Taylor expansion
as below:
oT
T(r+):TC+|:<a_) ] (7’+—1"C)
"+/eq

ry=r,

2
oT (r,—r )2 (37)
or? Joq L e

+ higher order terms,

1
+_
2

from which we obtain

At \/ 2eT (38)

where

D=

7T
ol )

rS+ 24ria - 24r2@ + 328 - 2Q7 (3r! — 6rla + 8&°)

r =T,

21(r3 - 4r.&)°
(39)

In the above derivation, we have considered the fact that Cq,
diverges at the critical point, making the second term at the
right hand side of (37) vanish. Substituting (33) into (10) and
keeping only the linear terms in its denominator, we obtain

2n(r? - 4@)" (Q? - 2a-1?)

C, = (40)
QT A(4rt + 202 - 6Q21

>

which can be transformed via (38) into

aV2D(r? - 4&) (@ - 28~ 1?)

C, = i (41)
(4r3 +20r.@ - 6Q2r,) (T - T.)

Comparing (41) with (36), we can obtain « = 1/2.
Critical exponent f is defined through the following
relation when Q is fixed:

®(r,) - @ (r) ~ [T - .|/, (42)

The above definition motivates us to carry out the Taylor

expansion as
(@) ]
"+ /q=q (43)

T =T,

O(r,) =0, +

+ higher order terms.
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Utilizing (8) and (43) and neglecting higher order terms of

(42), we get
)] e
o, Joq, e, D

Q [2 1/2
= ——2\/5(T—Tc) :
rC

Comparing (42) with (44), we can obtain § = 1/2.
Critical exponent y is defined through the following
relation:

O(r,)- 0, =

(44)

Ky~ |T-T]™. (45)

Substituting (33) and (38) into (18) and keeping only the linear
term of A, we obtain

» VD (Q.r! - Qlr? - 4Qd + 10Q.r2a — 8Q.&°)

K = .
T Va5t - 8@ + 302 + Q2 (4@ - 92)] (T - T.)"

(46)

From (45) and (46), we find that y = 1/2.
Critical exponent § is defined for the fixed temperature T,
through

O(r,)-o(r)~ Q- " (47)

To obtain Q- Q,, we would like to carry out Taylor expansion
as

ar)=a+|(52) ] nr)

Ty

1[(*Q 2 (48)
3((5),], e

+ higher order terms.

Utilizing the thermodynamic identity again, we get

)] @] -

ry=r,

(49)
In the above derivation, we have taken into account the fact
that Cy, diverges at the critical point, making the first term at

the right hand side of (37) vanish. Substituting (33) and (35)
into (48) and neglecting the high order terms, we obtain

2Q.n
A= , 50
\/ Er? (50)
where

_[(2a
e |(55),).

22rta+32& + 16 (r] - Q1) -1t (3Q +12)

(51)

Cc

2Q.(r3 - 4r.&)°

Performing Taylor expansion of the function ® near the
critical point, we get

o

mm=q+Kw)J“faﬁa

+ higher order terms,

(52)

where the coeflicient of the second term on the right hand
side can be derived as follows:

[CIA (CINI(CIN

r =T,

(53)
N <a£> __Q
or, Jol, _, oo
Utilizing (50), (52), and (53), we get
O(r,) -, = _Q_ZC\/M, (54)
re E

from which we can draw the conclusion that § = 2.
Critical exponent ¢ is defined through

Co~lo-Ql™. )
Substituting (50) into (40), we obtain
c it \/ﬁ(rcz - 4&)2 (Qg - 20 — rf)
QT Q-Q (4rf + 20126 - 6Q3r2)
Comparing (56) and (55), we find that ¢ = 1/2.
Critical exponent v is defined through
S(r,)-S.~|Q-Q". (57)

Performing Taylor expansion of the function S near the
critical point, we obtain

s = [(3),)

Utilizing (9), (33), (50), and (58), we get

S(r,)-S. = (2711’5—8:T—5Z> \j@, (59)

from which we obtain v = 1/2.

Till now, we have finished the calculations of six critical
exponents. They are also equal to 1/2 except § = 2. Our
results are in accordance with those in classical thermody-
namics. And it can be easily proved that critical exponents
we obtain in our paper satisfy the following thermodynamic
scaling laws:

(56)

(r, —r.) + higher order terms.
ry=r.

(58)

a+2p+y=2, a+p+1)=2,
Q-a)(y-1)+1=(1-a)d,
(60)
pO+1)=2-a)(d-1), y=p1G-1),
p+2y -8 =1



6. Conclusions

The phase transition of black holes with conformal anomaly
has been investigated in canonical ensemble. Firstly, we
calculate the relevant thermodynamic quantities and discuss
the behavior of the specific heat at constant charge. We
find that there have been striking differences between black
holes with conformal anomaly and those without conformal
anomaly. In the case Q = 1,& = 0.1, there are two phase
transition points while there is only one in the case & = 0.
The temperature in the case & = 0 increases monotonically
while there exists local minimum temperature in the case
Q = 1,a& = 0.1. Thislocal minimum temperature corresponds
to the phase transition point. We also find that the phase
transitions of black holes with conformal anomaly take place
not only from an unstable large black hole to a locally stable
medium black hole but also from an unstable medium black
hole to a locally stable small black hole. We also study the
behavior of the inverse of the isothermal compressibility ;"
and find that x;' also diverges at the critical point.

Secondly, we probe the dependence of phase transitions
on the choice of parameters. The results show that black holes
with conformal anomaly have much richer phase structure
than that without conformal anomaly. When & = 0, the
location of the phase transition r. is proportional to the
charge Q. By contrast, the case of black holes with conformal
anomaly is more complicated. For & = 0.1, the curve can be
divided into three regions. Through numerical calculation,
we find that black holes have only one phase transition point
when Q ¢ (0,0.4472). When 0.4472 < Q < 0.7746, there
would be no phase transition at all. When Q > 0.7746, there
exist two phase transition points. And the distance between
these two phase transition points becomes larger with the
increasing of Q. In the case that the charge Q has been fixed at
one, we notice that there would be two phase transition points
when 0 < @ < 1/6. And the distance between these two phase
transition points becomes narrower with the increasing of &.
When & ¢ (1/6,1/2), there would be no phase transition.
When & > 1/2, there would be only one phase transition
point.

Thirdly, we build up geometrothermodynamics in canon-
ical ensembles. We choose M to be the thermodynamic
potential and build up both thermodynamic phase space
and the space of thermodynamic equilibrium states. We
also calculate the Legendre invariant thermodynamic scalar
curvature and depict its behavior graphically. It is shown that
Legendre invariant thermodynamic scalar curvature diverges
exactly where the specific heat diverges. Based on this, we
can safely conclude that the Legendre invariant metrics con-
structed in geometrothermodynamics can correctly produce
the behavior of the thermodynamic interaction and phase
transition structure even when conformal anomaly is taken
into account.

Furthermore, we calculate the relevant critical exponents.
They are also equal to 1/2 except § = 2. Our results are
in accordance with those of other black holes. And it has
been proved that critical exponents we obtain in our paper
satisfy the thermodynamic scaling laws. We conclude that the
critical exponents and the scaling laws do not change even
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when we consider conformal anomaly. This may be attributed
to the mean field theory.
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