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This paper investigates the channel coordination of a supply chain (SC) consisting of a loss-averse retailer and a risk-neutral supplier
under yield and demand uncertainties. Three existing contracts are analyzed. Our results demonstrate that the buyback (BB) and
quantity flexibility (QF) contracts can not only coordinate the supply chain but also lead to Pareto improvement for each player,
while thewholesale price (WP) contract fails to coordinate the chain due to the effects of doublemarginalization and risk preference.
For comparison, a chain with a risk-neutral retailer is also analyzed. Furthermore, numerical examples are provided to demonstrate
the effectiveness of the coordination contracts, and the impacts of loss aversion and random yield on the decision-making behaviors
and system performance are then discussed.

1. Introduction

Due to various factors, such as unpredictable machine break-
downs, complicated production processes, and labor strikes,
the output quantity of production or logistics processes is
often related to random yield; this is prevalent in the agri-
cultural and high-tech industries [1]. For example, the yield
of automotive plastic bumpers typically does not exceed 75%
and that of chips in semiconductor manufacturing is usually
less than 50% [2]. The demand side is affected by various
factors (e.g., extreme weather events and economic crises)
and thus can never be anticipated exactly. In general, the
existence of yield and demand uncertainties results in lower
systemperformance [3].Therefore, the issues of randomyield
and demand arematters of great concern in supply chain (SC)
management.

It is well known that double marginalization prevails in
SC management [4] and negatively affects SC performance.
To resolve this problem, various contracts have been pro-
posed to coordinate the behavior of SC agents and improve
the system-wide efficiency. The majority of SC literature
focuses on a few popular types of contracts, such as wholesale
price (WP), buyback (BB), revenue sharing (RS), quantity
discount (QD), sales rebate (SR), and quantity flexibility

(QF). Cachon [5] and Tsay et al. [6] provided good reviews
of these studies.

Traditional SC contract models are based on risk neu-
trality such that decision makers will select production/order
quantities to maximize their expected profit. However, con-
siderable evidence indicates that their decisions frequently
deviate from maximizing expected profit [7–9]. Anupindi
and Bassok [10] noted that relaxing the assumption of risk
neutrality is useful in understanding SC behaviors. Recently,
researchers have employed loss aversion in place of risk
neutrality to describe agents’ decision-making behaviors.
Loss aversion is a key feature of prospect theory and indicates
that people are more averse to losses when confronted
with equivalent losses and gains [11]. Since loss aversion is
intuitively appealing and supported in fields such as finance,
marketing, and economics, SC management based on loss
aversion has gradually attracted considerable attention in
academia [12–19].

This study investigates channel coordination by consid-
ering both the loss-averse preference and random yield. As
shown in the literature review (Section 2), the effect of loss
aversion is well understood for SC with stochastic demand
and reliable supply, but little is known about the role of
loss aversion in channel coordination with unreliable supply
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and random demand. As stated by Bassok et al. [20], this
setting is realistic in many industries, especially those with
make-to-order operation. We consider a single-period, two-
echelon SC consisting of a supplier and a retailer facing yield
and demand uncertainty. Assume that the supplier, which
is a large firm, is risk-neutral, and the retailer, which is a
smaller firm, is loss-averse. To the best of our knowledge,
this problem has not yet been studied in the literature. We
focus on the following questions: (1) how will a loss-averse
retailer determine his optimal order quantity under random
yield and demand?, (2) does the coordination ability of the
existing contracts change?, and (3) howwill the retailer’s level
of loss aversion and random yield affect the decision-making
behaviors and the SC performance?

The primary contributions of this study are as follows.
First, SCmodels are developed by jointly considering random
yield and loss aversion. Second, we analyze the optimal order
policy and coordination ability of decentralized SC under
three traditional coordination contracts (WP, BB, and QF).
These three contracts are selected because they are popular
and have been extensively studied in the SC literature. Our
analyses show that the BB and QF contracts can coordinate
the SC and achieve Pareto improvement for each member
firm, while the WP contract fails to coordinate the chain.
Finally, our results provide insights into the effects of loss
aversion and random yield on decision-making behaviors
and system performance.

The remainder of this paper is organized as follows. We
review the related literature in Section 2.Then, ourmodel and
the centralized solution are proposed in Section 3.We present
the contracts that coordinate the chain for the decentralized
case in Section 4. The numerical experiments are given to
provide some insights in Section 5. Finally, we present some
concluding comments and suggestions for future research in
Section 6.

2. Literature Review

Our work touches upon two areas of SC management
research. The research that considers SC management with
random yield and stochastic demand is discussed first. Shih
[26] initially studied the stochastically proportional yield
model and provided closed-form solutions for the optimal
quantity under a centralized SC. Wang [27] compared the
traditional SC model (WP contract) with a vendor-managed
inventory arrangement under random yield and demand.
He characterized the optimal production/inventory decisions
under both arrangements. Mukhopadhyay and Ma [28]
proposed a model to evaluate the optimal procurement and
production decisions with random yield of returned prod-
ucts and random demand under three different scenarios.
Güler and Bilgic [29] considered the coordination of an
assembly system for an arbitrary number of suppliers with
random yield and proposed two mixed types of contracts
to coordinate the chain under forced compliance. Güler
[30] studied the same setting, but he employed only two
payment schemes and proposed four contracts. He showed
that the contracts can coordinate the chain and enable
arbitrary profit allocation. He and Zhang [31] studied the

supplier commitment contract in the risk sharing case and
further addressed the SC with a non-yield-dependent and
a yield-dependent secondary market price. He and Zhao
[32] investigated the inventory, production, and contracting
decisions of a three-echelon SCwith both demand and supply
uncertainty. However, the decision makers in these studies
were generally assumed to be risk-neutral.

Many alternative optimization objectivemodels that were
originally proposed in finance field, such as mean-variance
analysis [33, 34], value-at-risk [35, 36], and conditional value-
at-risk [35, 37], have been used by various researchers for
risk analysis. In particular, research on SC management with
loss-averse agents has received increasing interest over the
past decade and is most related to our paper. Schweitzer and
Cachon [8] initially addressed the loss-averse newsvendor
problem without shortage cost. Since then, considerable
effort has been devoted to extending their model to different
aspects of inventory management. For example, Wang and
Webster [14] considered shortage cost and investigated the
impact of loss aversion on the optimal order quantity. Ma et
al. [17] studied the loss-averse newsvendor model with two
ordering opportunities and demand information updating.
They derived the optimal ordering decisions at both ordering
stages. Ma et al. [18] addressed the loss-averse inventory
problem with financial constraints in a periodic review
setting. Lee et al. [19] used an S-shaped utility function to
investigate agile SC optimal design problems in the presence
of strategic and loss-averse consumers.

Nonetheless, studies on SC coordination with a loss-
averse decision maker are relatively limited. Zhang et al. [38]
studied the issue of channel coordination with a loss-averse
newsvendor and demonstrated that the SC can achieve chan-
nel coordination under BB, target rebate, and incremental
BB contracts. Wang and Webster [21] analyzed an SC in
which a risk-neutral manufacturer sells a perishable product
to a loss-averse retailer. There are distribution-free gain/loss-
sharing and buyback contracts that can coordinate the SC
and arbitrarily allocate the expected SC profit between the
members. Liu et al. [22] discussed the coordination issue
of the SC with a loss-averse retailer under a QF contract
and demonstrated that the SC can achieve coordination by
regulating the degree of flexibility and adjusting thewholesale
price. Li andWang [23] investigated the channel coordination
with a loss-averse retailer facing stochastic demand that is
sensitive to sales efforts. However, these studies only inves-
tigated demand uncertainty while neglecting random yield.

In addition to the studies mentioned above, the works by
Liu et al. [24] and Güler and Keskin [25] are similar to our
study. Liu et al. [24] investigated a loss-averse newsvendor
model with random yield and demand that considered both
a shortage cost setting and no shortage cost setting. They
derived the optimal order quantity and analyzed the impact
of loss aversion. However, the coordination mechanism
between the supplier and the retailer was not considered.
Güler and Keskin [25] analyzed the coordination ability of
contracts (WP, BB, QF, RS, and QD) in an SC with random
yield and random demand. They found that the randomness
of the yield does not affect the coordination ability but
changes the structure of the contract parameters. However,
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Table 1: Similarities and key differences between our paper and
other relevant papers.

Literature [17] [18] [19] [21] [22] [23] [24] [25] Our
paper

Loss-averse
player Yes Yes Yes Yes Yes Yes Yes No Yes

Random yield No No No No No No Yes Yes Yes
Random demand Yes Yes Yes Yes Yes Yes Yes Yes Yes
Coordination No No No Yes Yes Yes No Yes Yes
Multiple retailers No No Yes No No No No No No
Demand
information
updating or
financial
constraint

Yes Yes No No No No No No No

the risk preference of decision makers is not considered in
their study. In our paper, we integrate these two studies
and investigate the SC coordination problem of the existing
contracts where the loss-averse retailer faces both random
yield and demand. The objective is to design the contracts
to provide a win-win situation between the two members.
Table 1 summarizes the similarities and key differences
between the most relevant literature and our paper.

3. Model and Centralized Setting

We consider an SC consisting of a risk-neutral supplier and a
loss-averse retailer. At the beginning of the selling season, the
retailer orders products from the supplier to meet a random
demand. The supplier employs a make-to-order policy, and
the retailer is assumed to be subject to a random yield risk.
We depict the risk with a stochastically proportional yield
model, that is, the fraction of good units is a random variable
that is independent from the production amount [26, 39].
After the products are delivered, the retailer performs a 100%
inspection; then the retailer pays for the good units and
returns the defective units to the supplier. If the realized
demand is smaller than the nondefective products, then the
remaining products are salvaged. Otherwise, the unsatisfied
demand is lost. For convenience, the notations used in this
paper are defined as follows:

𝑄: order/production quantity.
𝑋: random demand with mean 𝜇

𝑎
. Its probability

density function (PDF) is 𝑓(𝑥), and its cumulative
distribution function (CDF) is 𝐹(𝑥). Let 𝐹(𝑥) = 1 −

𝐹(𝑥) denote the tail distribution.
𝑌: random yield rate; that is, the amount of good
units is YQ. Its PDF and CDF are 𝑔(𝑦) and 𝐺(𝑦),
respectively. 𝑌 ∈ [𝑦

1
, 𝑦
2
] (0 < 𝑦

1
< 𝑦
2
≤ 1) is

independent of𝑋 and its mean is 𝜇
𝑏
.

𝑐: the unit production cost of the supplier.
𝑝: the retail price of the retailer per unit.
𝑤: the wholesale price of the supplier per unit.
V: the unit salvage value of unsold products.

In addition, assuming that the inspection time, inspection
cost, shortage cost, and salvage of defective products are
negligible, the following relationship is obtained: 𝑝 > 𝑤 >

𝑐/𝜇
𝑏

> V, where 𝑐/𝜇
𝑏
is the supplier’s effective per unit

production cost.We use the superscriptsT, S, andR to denote
the joint firm, supplier, and retailer, respectively. Subscripts
1, 2, and 3 are used to indicate WP, BB, and QF contracts,
respectively.

To establish a performance benchmark, we first analyze
the optimal solution of an integrated chain. In the centralized
setting, the supplier owns a retail channel and acts as central
planner for the whole SC. The objective is to maximize the
total expected profit by selecting the production quantity 𝑄.
The expected integrated SC profit is given by

𝐸 [𝜋
𝑇

(𝑄)]

= ∫

𝑦
2

𝑦
1

∫

𝑦𝑄

0

[𝑝𝑥 + V (𝑦𝑄 − 𝑥)] 𝑓 (𝑥) d𝑥 d𝐺 (𝑦)

+ ∫

𝑦
2

𝑦
1

∫

∞

𝑦𝑄

𝑝𝑦𝑄𝑓 (𝑥) d𝑥 d𝐺 (𝑦) − 𝑐𝑄.

(1)

The first and second terms in (1) correspond to over-
stock and out-stock scenarios, respectively. The third term
is the total production cost. Güler and Keskin [25] have
demonstrated that 𝐸[𝜋𝑇(𝑄)] is concave in 𝑄 and the optimal
production/order quantity 𝑄∗ for an integrated firm satisfies

∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

) d𝐺 (𝑦) =
𝑝 ⋅ 𝜇
𝑏
− 𝑐

𝑝 − V
. (2)

4. Decentralized Setting

In the decentralized setting, the risk-neutral supplier and
the loss-averse retailer are independent agents.Therefore, the
loss-averse retailer considers only his/her own objectives and
will select an optimal order quantity to maximize his/her
expected utility. Similar to Ma et al. [17] and Shen et al. [40],
the retailer’s loss-aversion utility function can be defined as
follows:

𝑈(𝜋
𝑅

) = 𝜋
𝑅

− (𝜆 − 1) (𝛽 − 𝜋
𝑅

)
+

, (3)

where 𝜆 ≥ 1 is the loss aversion coefficient, 𝛽 is the reference
target profit, and (𝛽 − 𝜋

𝑅

)
+

= max(𝛽 − 𝜋
𝑅

, 0). If 𝜆 = 1,
then the retailer is risk-neutral. Higher values of 𝜆 imply
higher levels of loss aversion. Without loss of generality, we
normalize 𝛽 = 0. Wang and Webster [21] showed that due
to the presence of double marginalization and a loss-averse
preference, the retailer’s decision in the decentralized setting
always results in system inefficiency. To encourage the retailer
to order more and coordinate the SC, the supplier should
provide proper contracts. Similar to Gan et al. [41] and Chen
and Xiao [42], SC coordination with a loss-averse retailer is
defined as follows.
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Definition 1. TheSC is coordinated if the following conditions
are satisfied:

(1) The order quantity of the decentralized system is
equivalent to that of the centralized one.

(2) Under the contract, both the risk-neutral supplier and
loss-averse retailer obtain payoffs that are not less
than their respective payoffs without coordination.

It is worth mentioning that if the mechanism achieves
channel coordination (the first condition) but cannot assure
Pareto improvement for each player (the second condition),
then the contract will be infeasible because achieving channel
coordination may result in one of the members being worse
off. In the following, three different contracts are investigated
to coordinate the SC.

4.1. Wholesale Price Contract. The WP contract is popular
because of its simplicity and lower administration cost. With
aWP contract, the retailer pays an exogenous wholesale price
𝑤
1
for each product. The retailer’s expected profit function

under a WP contract is

𝜋
𝑅

1
=
{

{

{

𝑝𝑥 + V (𝑦𝑄 − 𝑥) − 𝑤
1
𝑦𝑄, 𝑥 < 𝑦𝑄,

𝑝𝑦𝑄 − 𝑤
1
𝑦𝑄, 𝑥 ≥ 𝑦𝑄.

(4)

Then, the expected utility function of the retailer, denoted by
𝐸[𝑈(𝜋

𝑅

1
)], can be written as

𝐸 [𝑈 (𝜋
𝑅

1
)] = ∫

𝑦
2

𝑦
1

∫

∞

0

𝑈(𝜋
𝑅

1
) 𝑓 (𝑥) 𝑔 (𝑦) d𝑥 d𝑦. (5)

To calculate𝐸[𝑈(𝜋𝑅
1
)], we divide the region of integration

into three subregions, as illustrated in Figure 1. Let 𝑄(𝑤
1
) =

(𝑤
1
− V)𝑦𝑄/(𝑝 − V) denote the retailer’s breakeven selling

quantity function. If the realized demand 𝑥 is less than𝑄(𝑤
1
),

then the retailer faces losses in S
1
. Otherwise, the retailer

realizes gains in S
2
and S
3
.Thus,we can rearrange the retailer’s

expected utility as follows:

𝐸 [𝑈 (𝜋
𝑅

1
)] = 𝜆∬

𝑆
1

𝜋
𝑅

1
𝑓 (𝑥) 𝑔 (𝑦) d𝑥 d𝑦

+∬
𝑆
2
∪𝑆
3

𝜋
𝑅

1
𝑓 (𝑥) 𝑔 (𝑦) d𝑥 d𝑦 = (𝜆 − 1)

⋅ ∫

𝑦
2

𝑦
1

∫

𝑄(𝑤
1
)

0

[𝑝𝑥 + V (𝑦𝑄 − 𝑥) − 𝑤
1
𝑦𝑄]𝑓 (𝑥)

⋅ 𝑔 (𝑦) d𝑥 d𝑦

+ ∫

𝑦
2

𝑦
1

∫

𝑦𝑄

0

[𝑝𝑥 + V (𝑦𝑄 − 𝑥) − 𝑤
1
𝑦𝑄]𝑓 (𝑥)

⋅ 𝑔 (𝑦) d𝑥 d𝑦 + ∫
𝑦
2

𝑦
1

∫

+∞

𝑦𝑄

(𝑝𝑦𝑄 − 𝑤
1
𝑦𝑄)

⋅ 𝑓 (𝑥) 𝑔 (𝑦) d𝑥 d𝑦.

(6)

The following proposition shows the concavity of
𝐸[𝑈(𝜋

𝑅

1
)] and the coordination ability of the WP contract.

y

1

y2

y1

0
x

S1 S2 S3

x − yQ = 0

(p − �)x − (w1 − �)yQ = 0

Figure 1: A graphical presentation of the demand and the yield rate
under a WP contract.

Proposition 2. Under the WP contract, 𝐸[𝑈(𝜋𝑅
1
)] is concave

in 𝑄, and there is a finite and unique optimal order quantity
𝑄
∗

1
that satisfies

[(𝑝 − 𝑤
1
) ⋅ 𝜇
𝑏
− (𝑝 − V) ∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

1
) d𝐺 (𝑦)]

− (𝜆 − 1) (𝑤
1
− V) ∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
1
− V) 𝑦𝑄∗

1

𝑝 − V
] d𝐺 (𝑦)

= 0.

(7)

Furthermore, the retailer’s optimal order quantity𝑄∗
1
is smaller

than the integrated firm’s optimal order quantity 𝑄∗. Thus, the
WP contract cannot coordinate the SC.

All the proofs are shown in the Appendix. Proposition 2
shows that the loss-averse retailer will order less than the
integrated SC’s optimal inventory level; thus SC cannot be
coordinated.This can be explained by two aspects: the double
marginalization that is reflected in the first term of (7) and
the loss aversion that is reflected in the second term of (7).
Specifically, the retailer becomes more conservative as the
level of loss aversion increases, which explains the existence
of decision bias in the experiment conducted by Brown and
Tang [43]. Note that, in the case with risk-averse players,
although the double marginalization effect will reduce the
retailer’s order quantity, the risk-averse characteristic may
eliminate this effect and improve the system performance
under certain conditions (see, e.g., [37, 44, 45]). Thus, the
risk-averse player may have different behavior than the loss-
averse one.

4.2. Buyback Contract. The BB agreement is commonly used
in SC and known as a return policy. The BB contract (𝑤

2
, 𝑏)

specifies that the retailer orders products at wholesale price
𝑤
2
, and the supplier pays the retailer 𝑏 for each unsold unit at

the end of the selling season. It is assumed that V < 𝑏 < 𝑤
2
for
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obvious reasons. For any given realized demand 𝑥 and yield
rate 𝑦, the retailer’s expected profit and utility are

𝐸 [𝜋
𝑅

2
] = ∫

𝑦
2

𝑦
1

(∫

𝑦𝑄

0

[𝑝𝑥 + 𝑏 (𝑦𝑄 − 𝑥)] 𝑓 (𝑥) d𝑥

+ ∫

∞

𝑦𝑄

𝑝𝑦𝑄𝑓 (𝑥) d𝑥 − 𝑤
2
𝑦𝑄) d𝐺 (𝑦) ,

(8)

𝐸 [𝑈 (𝜋
𝑅

2
)] = (𝜆 − 1)

⋅ ∫

𝑦
2

𝑦
1

∫

𝑄(𝑤
2
,𝑏)

0

[𝑝𝑥 + 𝑏 (𝑦𝑄 − 𝑥) − 𝑤
2
𝑦𝑄]

⋅ 𝑓 (𝑥) d𝑥 d𝐺 (𝑦) + 𝐸 [𝜋𝑅
2
] ,

(9)

respectively, where𝑄(𝑤
2
, 𝑏) = (𝑤

2
−𝑏)𝑦𝑄/(𝑝−𝑏) denotes the

retailer’s breakeven quantity function under the BB contract.
By replacing V and𝑤

1
with 𝑏 and𝑤

2
in (6), respectively, we can

obtain (9). Similar to the proof of Proposition 2, the following
proposition for the retailer’s optimal order quantity under the
BB contract can be directly derived.

Proposition 3. Under a BB contract,

(1) there is a finite and unique optimal order quantity 𝑄∗
2

that satisfies

(𝑝 − 𝑤
2
) 𝜇
𝑏
− (𝑝 − 𝑏)∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

2
) d𝐺 (𝑦)

− (𝜆 − 1) (𝑤
2
− 𝑏)∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
2
− 𝑏) 𝑦𝑄

∗

2

𝑝 − 𝑏
] d𝐺 (𝑦)

= 0;

(10)

(2) 𝑄∗
2
is increasing in 𝑏 but decreasing in 𝑤

2
and 𝜆.

Proposition 3 identifies the existence and uniqueness of
the retailer’s optimal order quantity 𝑄∗

2
and the effects of 𝑏,

𝑤
2
and 𝜆 on 𝑄

∗

2
. The more loss-averse the retailer is, the

smaller his optimal order quantity will be. This conclusion is
consistent with the case of complete yield presented byWang
and Webster [14]. Moreover, the effects of buyback price and
wholesale cost on the optimal order quantity are consistent
with common sense.

Proposition 4. Under the optimal BB contract,

(1) for a given 𝑤
2
, there is a unique 𝑏∗ ∈ [V, 𝑤

2
] that can

coordinate the SC and 𝑏∗ satisfies

− (𝜆 − 1) (𝑤
2
− 𝑏
∗

) ∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
2
− 𝑏
∗

) 𝑦𝑄
∗

𝑝 − 𝑏∗
] d𝐺 (𝑦)

− (𝑝 − 𝑏
∗

) ∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

) d𝐺 (𝑦) + (𝑝 − 𝑤
2
) 𝜇
𝑏
= 0;

(11)

(2) 𝑏∗ is increasing in 𝜆 and 𝑤
2
.

Proposition 4 shows that the buyback contract (𝑤
2
, 𝑏)

can always coordinate the SC with a loss-averse retailer.
Furthermore, by selecting an appropriate𝑤

2
or 𝑏, the retailer’s

expected utility is always higher than that under the WP
contract, and the supplier’s expected profit is not less than
that without coordination; that is, 𝐸[𝑈(𝜋𝑅

2
)] ≥ 𝐸[𝑈(𝜋

𝑅

1
)] and

𝐸(𝜋
𝑆

2
) ≥ 𝐸(𝜋

𝑆

1
). In addition, the higher the wholesale price

or the level of loss aversion is, the greater the buyback credit
𝑏
∗ is. For comparison, we examine a BB contract without
considering loss aversion and give the following proposition.

Proposition 5. Under a BB contract without considering loss
aversion,

(1) if the optimal wholesale price𝑤∗
2
= [𝑏(𝜇

𝑏
⋅𝑝−𝑐)+𝑝(𝑐−

𝜇
𝑏
⋅ V)]/𝜇

𝑏
(𝑝 − V), then the contract can coordinate the

SC;

(2) the optimal expected profit can be arbitrarily allocated
between the supplier and the retailer;

(3) the wholesale price and the supplier’s expected profit are
increasing in the buyback price.

Proposition 5 shows that the buyback credit eliminates
the double marginalization and further influences the allo-
cation of the expected profit between the firms. As Cachon
[5] stated, if a contract can arbitrarily allocate the SC profit,
then neither firm’s profit is worse off, and at least one firm is
strictly better off.

4.3. Quantity Flexibility Contract. QF contracts have been
widely employed by companies such as IBM, Solectron, and
Toyota [46]. Under aQF contract (𝑤

3
, 𝜂), the supplier charges

the retailer a unit wholesale price 𝑤
3
but offers the retailer

limited flexibility in adjusting the initial order quantity at
the start of the selling season. Suppose that the retailer
initially orders quantity 𝑄 based on preliminary demand
forecasts. After receiving actual demand information, he has
an opportunity to revise the initial order 𝑄 to be anywhere
within [𝜂𝑄, 𝑄], where 𝜂 ∈ [0, 1] is the minimum purchase
rate for the retailer. Therefore, the retailer’s profit under a QF
contract with random yield is

𝜋
𝑅

3
=

{{{{

{{{{

{

(𝑝 − V) 𝑥 − (𝑤
3
− V) 𝜂𝑦𝑄, 𝑥 ≤ 𝜂𝑦𝑄,

(𝑝 − 𝑤
3
) 𝑥, 𝜂𝑦𝑄 < 𝑥 < 𝑦𝑄,

(𝑝 − 𝑤
3
) 𝑦𝑄, 𝑥 ≥ 𝑦𝑄.

(12)

Then, the expected utility function of the retailer can be
written as

𝐸 [𝑈 (𝜋
𝑅

3
)] = ∫

𝑦
2

𝑦
1

∫

∞

0

𝑈(𝜋
𝑅

3
) 𝑓 (𝑥) 𝑔 (𝑦) d𝑥 d𝑦. (13)

Similarly, we can divide the region of integration into four
subregions, as illustrated in Figure 2.The retailer’s profit 𝜋𝑅

3
is
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Figure 2: A graphical presentation of the demand and the yield rate
under a QF contract.

negative in S
1
and positive in S

2
, S
3
, and S

4
. Then, 𝐸[𝑈(𝜋𝑅

3
)]

is rewritten as follows:

𝐸 [𝑈 (𝜋
𝑅

3
)] = 𝜆∬

𝑆
1

𝜋
𝑅

3
𝑓 (𝑥) 𝑔 (𝑦) d𝑥 d𝑦

+∬
𝑆
2
∪𝑆
3
∪𝑆
4

𝜋
𝑅

3
𝑓 (𝑥) 𝑔 (𝑦) d𝑥 d𝑦 = − (𝜆 − 1)

⋅ (𝑝 − V) ∫
𝑦
2

𝑦
1

∫

(𝑤
3
−V)𝜂𝑦𝑄/(𝑝−V)

0

𝐹 (𝑥) d𝑥 d𝐺 (𝑦)

+ (𝑝 − 𝑤
3
) ∫

𝑦
2

𝑦
1

∫

𝑦𝑄

0

𝐹 (𝑥) d𝑥 d𝐺 (𝑦) − (𝑤
3
− V)

⋅ ∫

𝑦
2

𝑦
1

∫

𝜂𝑦𝑄

0

𝐹 (𝑥) d𝑥 d𝐺 (𝑦) .

(14)

Similar to Propositions 3–5, we analyze the existence and
uniqueness of the retailer’s optimal order quantity and give
the following proposition.

Proposition 6. Under the QF contract,

(1) there is a unique optimal order quantity 𝑄
∗

3
that

satisfies the following first-order optimality condition:

(𝑝 − 𝑤
3
) ∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

3
) d𝐺 (𝑦)

− (𝑤
3
− V) 𝜂∫

𝑦
2

𝑦
1

𝑦𝐹 (𝜂𝑦𝑄
∗

3
) d𝐺 (𝑦)

− (𝜆 − 1) (𝑤
3
− V) 𝜂∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
3
− V) 𝜂𝑦𝑄∗

3

𝑝 − V
] d𝐺 (𝑦)

= 0;

(15)

(2) 𝑄∗
3
is decreasing in 𝑤

3
, 𝜆, and 𝜂.

Proposition 6 indicates the effects of the wholesale cost
and loss aversion coefficient on the optimal order quantity
under the QF contract, which are consistent with that under
the BB contract.Moreover, the higher theminimumpurchase
rate 𝜂 is, the lower the retailer’s order quantity is. This is
intuitive because a higher 𝜂 indicates less flexibility and
increased risk of overstock for the retailer. The following
results characterize the coordination ability under a QF
contract.

Proposition 7. Under the optimal QF contract,

(1) for a given 𝑤
2
, there is a unique 𝜂∗ ∈ [0, 1] that can

coordinate the SC, and 𝜂∗ satisfies

(𝑝 − 𝑤
3
) ∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

) d𝐺 (𝑦) − (𝑤
3
− V)

⋅ 𝜂
∗

∫

𝑦
2

𝑦
1

𝑦𝐹 (𝜂
∗

𝑦𝑄
∗

) d𝐺 (𝑦) − (𝜆 − 1) (𝑤
3
− V)

⋅ 𝜂
∗

∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
3
− V) 𝜂∗𝑦𝑄∗

𝑝 − V
] d𝐺 (𝑦) = 0;

(16)

(2) 𝜂∗ is decreasing in 𝜆 and 𝑤
3
.

Proposition 8. Under a QF contract without considering loss
aversion, the optimal expected SC profit can be arbitrarily
allocated between the two agents.

Propositions 7 and 8 demonstrate that, whether consid-
ering loss aversion or not, the QF contract can always coor-
dinate the SC with random yield and demand. Furthermore,
by selecting an appropriate 𝑤

3
or 𝜂, a Pareto improvement

situation can always be achieved. In addition, the higher the
wholesale price or the level of loss aversion is, the lower the
minimum the purchase rate 𝜂∗ is.

5. Numerical Experiments

In this section, we perform some numerical studies to
demonstrate our results and obtain additional managerial
insights. Assume that demand 𝑋 follows a truncated normal
distribution with mean 𝜇

𝑎
= 500 and standard deviation

𝜎
𝑎
= 100, and 𝑌 follows a uniform distribution with support

[0.6, 1]. The based parameters are set as follows: 𝑝 = 50,
𝑐 = 30, V = 10, 𝑤

1
= 43, and 𝜆 = 2.

5.1. Efficiency of Coordination. Table 2 shows that the loss-
averse retailer’s optimal order quality and total expected profit
under a WP contract are less than those in the centralized
system. However, the BB and QF contracts can achieve SC
coordination. The results indicate that the coordination is
desirable. In addition, comparing these two contacts with
the WP contract, the increased profits are 227.8. Let 𝛽

𝑖
=

[𝐸(𝜋
𝑆

𝑖
) − 𝐸(𝜋

𝑆

1
)]/227.8 (𝑖 = 2, 3) denote the proportion of

the supplier’s increased profits; 𝛽
𝑖
∈ [0, 1] is decided by the

bargaining power of the two agents. Table 2 also shows that if
𝑤
2
∈ [43.14, 43.87] or 𝑏∗ ∈ [29.24, 31.45], then 𝐸[𝑈(𝜋𝑅

2
)] ≥
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Table 2: Performance of the supply chain with different contracts.

Models Contract parameters 𝑄
∗

𝐸[𝑈(𝜋
𝑅

)] 𝐸(𝜋
𝑆

) 𝐸(𝜋
𝑇

) 𝛽

Centralized model 540 4570.2
WP contract (𝑤

1
= 43) 462 2243.5 2034.9 4342.4

BB contract (𝑤
2
= 43.14, 𝑏∗ = 29.24) 540 2512.8 2034.9 4570.2 0

(𝑤
2
= 43.87, 𝑏∗ = 31.45) 540 2245.2 2262.7 4570.2 1

QF contract (𝑤
3
= 43.35, 𝜂∗ = 0.839) 540 2473.7 2034.9 4570.2 0

(𝑤
3
= 43.97, 𝜂∗ = 0.822) 540 2245.7 2262.7 4570.2 1

Table 3: Impact of yield uncertainty on the supply chain (𝜆 = 2, 𝛽
1
= 𝛽
2
= 0.5).

Models Contract parameters 𝑈(𝑦
1
, 𝑦
2
) 𝑄

∗

𝐸[𝑈(𝜋
𝑅

)] 𝐸(𝜋
𝑆

) 𝐸(𝜋
𝑇

)

Centralized model
(0.6, 1) 540 4570.2
(0.8, 1) 529 6700.5

1 500 8404.2

WP contract (𝑤
1
= 43)

(0.6, 1) 462 2243.5 2034.9 4342.4
(0.8, 1) 431 2361.7 3750.3 6176.0

1 393 2458.3 5109.9 7569.8

BB contract
(𝑤
2
= 43.16, 𝑏∗ = 36.4) (0.6, 1) 540 2396.7 2148.8 4570.2

(𝑤
2
= 43.37, 𝑏∗ = 34.4) (0.8, 1) 529 2666.2 4012.55 6700.5

(𝑤
2
= 43.45, 𝑏∗ = 30.2) 1 500 2874.7 5527.1 8404.2

QF contract
(𝑤
3
= 43.38, 𝜂∗ = 0.747) (0.6, 1) 540 2365.2 2148.8 4570.2

(𝑤
3
= 43.65, 𝜂∗ = 0.781) (0.8, 1) 529 2629.8 4012.5 6700.5

(𝑤
3
= 43.35, 𝜂∗ = 0.839) 1 500 2836.8 5527.1 8404.2

𝐸[𝑈(𝜋
𝑅

1
)] and 𝐸(𝜋𝑆

2
) ≥ 𝐸(𝜋

𝑆

1
). Similarly, if𝑤

3
∈ [43.35, 43.97]

or 𝜂∗ ∈ [0.822, 0.839], then 𝐸[𝑈(𝜋
𝑅

3
)] ≥ 𝐸[𝑈(𝜋

𝑅

1
)] and

𝐸(𝜋
𝑆

3
) ≥ 𝐸(𝜋

𝑆

1
). In other words, the BB and QF contracts can

assure Pareto improvement for both players.

5.2. Effects of Loss Aversion. To analyze the impact of loss
aversion on the retailer’s optimal order quantity, we fix 𝑤

2
=

𝑤
3
= 43 and vary 𝜆 from 1 to 5 in steps of 0.1 with different

contract parameters 𝑏 and 𝜂. The optimal policies are plotted
in Figures 3 and 4, respectively. These two figures show that
the optimal order quantity is decreasing in 𝜆. Thus as the loss
aversion level increases, it is more difficult for the supplier
to coordinate the SC. Moreover, for any given 𝜆, the higher
𝑏 (lower 𝜂) is, the greater optimal order quantity is. These
results are consistent with those presented in Propositions
3 and 6 and offer guidance for managers. As the retailer’s
level of loss aversion increases, the supplier should provide
a higher buyback price and a lower minimum purchase rate
to encourage the retailer to order more.

Then, the impacts of the loss aversion coefficient and
coordinating parameters on the supplier’s expected profit are
analyzed. We vary 𝜆 from 1 to 5 in steps of 0.2, and the
other parameters are the same as in Section 5.1. As shown in
Figures 5 and 6, the supplier’s expected profit is decreasing
in 𝜆 and 𝜂∗ and increasing in 𝑏∗. Intuitively, one may think
that the supplier should prefer a smaller 𝑏∗and a larger 𝜂∗.
However, the opposite is true when the wholesale price is
simultaneously adjusted to coordinate the SC. In fact, the
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Figure 3: Plot of the optimal order quantity 𝑄
∗

2
with 𝜆 under

different values of 𝑏.

supplier gains more profit of the entire SC by providing a
larger 𝑏∗or smaller 𝜂∗.

5.3. Effects of Yield Uncertainty. Table 3 compares three
different yield rates and illustrates the impact of random
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Figure 5: Plot of the supplier’s expected profit with 𝜆 under different
values of 𝑏∗.

yield on SC performance. It is shown that a lower yield
uncertainty generally results in higher SC performance.
Specifically, as the yield randomness decreases, the supplier’s
effective per unit production cost 𝑐/𝜇

𝑏
also decreases; thus,

his expected profit increases significantly.Moreover, although
the optimal order/production quantity decreases, the retailer
can benefit from the decrease in supply uncertainty. The
results motivate firms to improve the random yield rate
through various efforts such as new production technologies
and radio frequency identification.
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Figure 6: Plot of the supplier’s expected profit with𝜆 under different
values of 𝜂∗.

6. Conclusion

This paper investigates the channel coordination of an SC
consisting of a loss-averse retailer and a risk-neutral supplier.
We develop SC models by jointly considering random yield
and loss aversion. A definition of SC coordination with a
loss-averse retailer is proposed at first. Then, three well-
known types of contracts (WP, BB, and QF) are analyzed. For
comparison, we also analyze the BB andQF contracts without
considering loss aversion. Our analytic results demonstrate
that, for each contract, the optimal order quantity is decreas-
ing in loss aversion level. In addition, whether considering
loss aversion or not, the BB and QF contracts can coordinate
the SC and achieve a win-win outcome, while the WP
contract remains ineffective for managing the SC when the
retailer has a loss-averse preference.

Subsequently, the numerical experiments show the effec-
tiveness of the BB and QF contracts in SC coordination.
Then, the impacts of loss aversion level and random yield
on the SC’s decision making and performance are discussed.
Our results indicate that as the loss aversion level increases,
the supplier will provide a higher buyback price but a lower
minimum purchase rate to encourage the retailer to place
a larger order. In fact, the supplier also gains more to do
so. Then, we further confirm that decreasing yield risk can
improve the SC performance. These results are very helpful
for the supplier when deciding how to coordinate the SCwith
random yield and a loss-averse retailer.

As an extension of this work, we can consider the model
with amore general situation, for example, multiperiod, mul-
tiple suppliers, multiple loss-averse retailers, or asymmetric
informationmodels. Another noteworthy extension could be
adopting other nonlinear utility functions to investigate the
model with random yield and uncertain demand.
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Appendix

Proof of Proposition 2. The first and second derivatives of
𝐸[𝑈(𝜋

𝑅

1
)] with respect to 𝑄 are

d𝐸 [𝑈 (𝜋
𝑅

1
)]

d𝑄
= − (𝜆 − 1) (𝑤

1
− V)

⋅ ∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
1
− V) 𝑦𝑄
𝑝 − V

] d𝐺 (𝑦) − (𝑝 − V)

⋅ ∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄) d𝐺 (𝑦) + (𝑝 − 𝑤
1
) 𝜇
𝑏
,

(A.1)

d2𝐸 [𝑈 (𝜋
𝑅

1
)]

d𝑄2
= − (𝜆 − 1)

(𝑤
1
− V)2

𝑝 − V

⋅ ∫

𝑦
2

𝑦
1

𝑦
2

𝑓[
(𝑤
1
− V) 𝑦𝑄
𝑝 − V

] d𝐺 (𝑦) − (𝑝 − V)

⋅ ∫

𝑦
2

𝑦
1

𝑦
2

𝑓 (𝑦𝑄) d𝐺 (𝑦) < 0.

(A.2)

From (A.2), we know that 𝐸[𝑈(𝜋𝑅
1
)] is concave in 𝑄.

Furthermore, d𝐸[𝑈(𝜋𝑅
1
)]/d𝑄 > 0 as 𝑄 → 0 and

d𝐸[𝑈(𝜋𝑅
1
)]/d𝑄 < 0 as 𝑄 → ∞. Thus the retailer’s optimal

order quantity 𝑄∗
1
is unique and satisfies d𝐸[𝑈(𝜋𝑅

1
)]/d𝑄 = 0,

that is, (7).
If the retailer is risk-neutral (𝜆 = 1), then it follows from

(7) that the retailer’s optimal order quantity 𝑄∗
1
|
𝜆=1

satisfies

∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

1

𝜆=1) d𝐺 (𝑦) =
(𝑝 − 𝑤

1
) 𝜇
𝑏

𝑝 − V
. (A.3)

Comparing (A.3) and (2), then we have 𝑄∗
1
|
𝜆=1

< 𝑄
∗. On the

other hand, from (7) it follows that the higher the retailer’s
loss-averse level, the lower his optimal order quantity. Thus
𝑄
∗

1
|
𝜆>1

< 𝑄
∗

1
|
𝜆=1

< 𝑄
∗. According to the first condition of

Definition 1, the WP contract fails to coordinate the SC.

Proof of Proposition 3.

Part (1). Proof of Proposition 3 is similar to the proof of
Proposition 2.

Part (2). To simplify our analysis, let

𝐻(𝑄
∗

2
) = − (𝜆 − 1) (𝑤

2
− 𝑏)

⋅ ∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
2
− 𝑏) 𝑦𝑄

∗

2

𝑝 − 𝑏
] d𝐺 (𝑦)

− (𝑝 − 𝑏)∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

2
) d𝐺 (𝑦)

+ (𝑝 − 𝑤
2
) 𝜇
𝑏
.

(A.4)

Taking the first derivative of𝐻(𝑄∗
2
)with respect to𝑄∗

2
, 𝜆,

𝑤
2
, and 𝑏, respectively, then

𝜕𝐻 (𝑄
∗

2
)

𝜕𝑄∗
2

= − (𝜆 − 1)
(𝑤
2
− 𝑏)
2

𝑝 − 𝑏

⋅ ∫

𝑦
2

𝑦
1

𝑦
2

𝑓[
(𝑤
2
− 𝑏) 𝑦𝑄

∗

2

𝑝 − 𝑏
] d𝐺 (𝑦) − (𝑝

− 𝑏)∫

𝑦
2

𝑦
1

𝑦
2

𝑓 (𝑦𝑄
∗

2
) d𝐺 (𝑦) < 0,

𝜕𝐻 (𝑄
∗

2
)

𝜕𝜆
= − (𝑤

2
− 𝑏)

⋅ ∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
2
− 𝑏) 𝑦𝑄

∗

2

𝑝 − 𝑏
] d𝐺 (𝑦) < 0,

𝜕𝐻 (𝑄
∗

2
)

𝜕𝑤
2

= − (𝜆 − 1)

⋅ {∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
2
− 𝑏) 𝑦𝑄

∗

2

𝑝 − 𝑏
] d𝐺 (𝑦)

+
(𝑤
2
− 𝑏)𝑄

∗

2

𝑝 − 𝑏

⋅ ∫

𝑦
2

𝑦
1

𝑦
2

𝑓[
(𝑤
2
− 𝑏) 𝑦𝑄

∗

2

𝑝 − 𝑏
] d𝐺 (𝑦)} − 𝜇

𝑏
< 0,

𝜕𝐻 (𝑄
∗

2
)

𝜕𝑏
= (𝜆 − 1)

⋅ {∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
2
− 𝑏) 𝑦𝑄

∗

2

𝑝 − 𝑏
] d𝐺 (𝑦)

+
(𝑤
2
− 𝑏) (𝑝 − 𝑤

2
) 𝑄
∗

2

(𝑝 − 𝑏)
2

⋅ ∫

𝑦
2

𝑦
1

𝑦
2

𝑓[
(𝑤
2
− 𝑏) 𝑦𝑄

∗

2

𝑝 − 𝑏
] d𝐺 (𝑦)}

+ ∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

2
) d𝐺 (𝑦) > 0.

(A.5)

By using implicit function theorem, we have

𝜕𝑄
∗

2

𝜕𝑏
= −

𝜕𝐻 (𝑄
∗

2
) /𝜕𝑏

𝜕𝐻 (𝑄∗
2
) /𝜕𝑄∗
2

> 0,

𝜕𝑄
∗

2

𝜕𝑤
2

= −
𝜕𝐻 (𝑄

∗

2
) /𝜕𝑤
2

𝜕𝐻 (𝑄∗
2
) /𝜕𝑄∗
2

< 0,

𝜕𝑄
∗

2

𝜕𝜆
= −

𝜕𝐻 (𝑄
∗

2
) /𝜕𝜆

𝜕𝐻 (𝑄∗
2
) /𝜕𝑄∗
2

< 0.

(A.6)

Therefore, 𝑄∗
2
is increasing in 𝑏 but decreasing in 𝑤

2
and

𝜆.
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Proof of Proposition 4.

Part (1). Let

𝐻(𝑏) = − (𝜆 − 1) (𝑤
2
− 𝑏)

⋅ ∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
2
− 𝑏) 𝑦𝑄

∗

𝑝 − 𝑏
] d𝐺 (𝑦) − (𝑝 − 𝑏)

⋅ ∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

) d𝐺 (𝑦) + (𝑝 − 𝑤
2
) 𝜇
𝑏
,

(A.7)

where𝑄∗ satisfies (2). Taking the first derivative of𝐻(𝑏)with
respect to 𝑏, then we can obtain 𝜕𝐻(𝑏)/𝜕𝑏 > 0, which implies
that𝐻(𝑏) is strictly increasing in 𝑏 ∈ [V, 𝑤

2
]. Since

𝐻(𝑤
2
) = (𝑝 − 𝑤

2
) ∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

) d𝐺 (𝑦) + (𝑝 − 𝑤
2
)

⋅ 𝜇
𝑏
> 0,

𝐻 (V) = − (𝜆 − 1) (𝑤
2
− V)

⋅ ∫

𝑦
2

𝑦
1

𝑦𝐹[
(𝑤
2
− V) 𝑦𝑄∗

𝑝 − V
] d𝐺 (𝑦) − (𝑤

2
− 𝑐) 𝜇

𝑏

< 0,

(A.8)

then, there is a unique 𝑏∗ ∈ [V, 𝑤
2
] that satisfies (11).

Part (2). By using implicit function theorem, from (11) it
follows that 𝜕𝑏∗/𝜕𝜆 > 0 and 𝜕𝑏

∗

/𝜕𝑤
2
> 0. Thus 𝑏∗ is

increasing in 𝜆 and 𝑤
2
.

Proof of Proposition 5.

Part (1). If the retailer is risk-neutral, where 𝜆 = 1, then from
(9) the retailer’s optimal order quantity satisfies

∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

2
) d𝐺 (𝑦) =

(𝑝 − 𝑤) 𝜇
𝑏

𝑝 − 𝑏
. (A.9)

Note that Definition 1 identifies that the SC can achieve
coordination when𝑄∗

2
= 𝑄
∗. Comparing (A.9) with (2), then

we have

𝑤
∗

2
=
𝑏 (𝜇
𝑏
⋅ 𝑝 − 𝑐) + 𝑝 (𝑐 − 𝜇

𝑏
⋅ V)

𝜇
𝑏
(𝑝 − V)

. (A.10)

Therefore, if the supplier chooses a wholesale price in
(A.10), then the BB contract can coordinate the SC.

Part (2). Let 𝑏∗ = (𝑝−V)𝛼+V, where 0 ≤ 𝛼 ≤ 1. Substituting it
into (A.10), then𝑤∗

2
= [𝜇
𝑏
⋅ 𝑝 ⋅ 𝛼 + 𝑐(1 − 𝛼)]/𝜇

𝑏
. Under the BB

contract, the optimal profits of the supplier and the retailer
can be written as

𝐸 (𝜋
𝑅

2
) = (𝑝 − 𝑤

∗

2
) ∫

𝑦
2

𝑦
1

𝑦𝑄
∗

2
d𝐺 (𝑦)

− (𝑝 − 𝑏
∗

) ∫

𝑦
2

𝑦
1

∫

𝑦𝑄
∗

2

0

𝐹 (𝑥) d𝑥 d𝐺 (𝑦) ,

𝐸 (𝜋
𝑆

2
) = ∫

𝑦
2

𝑦
1

(𝑤
∗

2
𝑦𝑄
∗

2
− 𝑐𝑄
∗

2
) d𝐺 (𝑦)

− (𝑏
∗

− V) ∫
𝑦
2

𝑦
1

∫

𝑦𝑄
∗

2

0

𝐹 (𝑥) d𝑥 d𝐺 (𝑦) .

(A.11)

Substituting 𝑏
∗, 𝑤∗
2
, and 𝑄

∗

2
= 𝑄
∗ into (A.11), then

𝐸(𝜋
𝑅

2
) = (1 − 𝛼)𝐸(𝜋

𝑇

) and 𝐸(𝜋𝑆
2
) = 𝛼𝐸(𝜋

𝑇

), where 𝐸(𝜋𝑇)
denotes the optimal profit of the total SC. Thus, profit can be
arbitrarily allocated between the supplier and the retailer by
changing the value of 𝛼.

Part (3). Substituting 𝑤∗
2
into (A.11), then we have

𝐸 (𝜋
𝑅

2
) =

𝑝 − 𝑏

𝑝 − V
𝐸 (𝜋
𝑇

) ,

𝐸 (𝜋
𝑆

2
) =

𝑏 − V
𝑝 − V

𝐸 (𝜋
𝑇

) .

(A.12)

From (A.10) and (A.12), it follows that the wholesale
price and the supplier’s expected profit are increasing in the
buyback price.

Proof of Proposition 6. Proof of Proposition 6 is similar to the
proof of Proposition 3.

Proof of Proposition 7.

Part (1). Let

𝑍 (𝜂) = (𝑝 − 𝑤
3
) ∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

) d𝐺 (𝑦) − (𝑤
3
− V)

⋅ ∫

𝑦
2

𝑦
1

𝑦𝐹 (𝑦𝑄
∗

) d𝐺 (𝑦) − (𝜆 − 1) (𝑤
3
− V)

⋅ ∫

𝑦
2

𝑦
1

𝑦𝐹(
𝑤
3
− V

𝑝 − V
𝑦𝑄
∗

) d𝐺 (𝑦) .

(A.13)

After taking the first derivative of 𝑍(𝜂) with respect to 𝜂,
then we have d𝑍(𝜂)/d𝜂 < 0. Thus, 𝑍(𝜂) is strictly decreasing
in 𝜂. Since 𝑍(0) > 0 and 𝑍(1) < 0, then there is a unique
𝜂
∗

∈ [0, 1] that satisfies 𝑍(𝜂∗) = 0, that is, (16).

Part (2). By using implicit function theorem, it follows from
(16) that 𝜕𝜂∗/𝜕𝜆 < 0 and 𝜕𝜂∗/𝜕𝑤

3
< 0. Thus 𝜂∗ is decreasing

in 𝜆 and 𝑤
3
.
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Proof of Proposition 8. Under the QF contract, the retailer’s
expected profit function is

𝐸 (𝜋
𝑅

3
) = (𝑝 − 𝑤

3
) ∫

𝑦
2

𝑦
1

∫

𝑦𝑄

0

𝐹 (𝑥) d𝑥 d𝐺 (𝑦)

− (𝑤
3
− V) ∫

𝑦
2

𝑦
1

∫

𝜂𝑦𝑄

0

𝐹 (𝑥) d𝑥 d𝐺 (𝑦) .

(A.14)

Note that Proposition 7 shows that 𝜂 is strictly decreasing
in 𝑤
3
. When 𝑤

3
→ 𝑝, then 𝜂 → 0, and thus 𝐸(𝜋𝑅

3
) → 0,

which indicates that the retailer’s profit is almost zero. When
𝑤
3
→ 𝑐/𝜇

𝑏
, then 𝜂 → 1, and thus 𝐸(𝜋𝑅

3
) → 𝐸[𝜋

𝑇

(𝑄)], which
indicates that the retailer obtains nearly the entire SC profit.
Since the retailer’s profit is continuous in𝑤

3
or 𝜂, the SC profit

can be arbitrarily allocated between the twofirms by changing
𝑤
3
or 𝜂.
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