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By incorporating the objective of keeping a low number of infected nodes and a high number of recovered nodes at a lower cost into
a known computer virus model (the delay-varying SIRC model) extended by introducing quarantine, a novel model is described
by means of the optimal control strategy and theoretically analyzed.Through the comparison of simulation results, it is shown that
the propagation of computer virus with varying latency period can be suppressed effectively by the optimal control strategy.

1. Introduction

With the advance of computer software and hardware tech-
nology and communication technology, the number and
sort of computer viruses have increased dramatically, which
causes huge losses to the human society. Therefore, estab-
lishing reasonable computer virus propagation models by
considering the characteristics of computer virus, by model
analysis, and by understanding the spread law of the virus
over the network is a currently hot topic of research.

Learning from the epidemic models, the classical SIR
(susceptible-infected-recovered) computer virus propagation
model [1, 2], as well as its extensions [3–15], is extended
to explore the behavior of computer virus propagation in
network. For example, by considering the computer virus
fixed latent period, Mishra et al. [6, 7] proposed delayed
SIRS, SEIR computer virus models with a fixed period of
temporary immunity, which accounts for the temporary
recovery from the infection of virus. Very recently, Ren and
Xu [16] introduced an interesting virus propagation model,
known as the SIRC model, by considering the fact that when
the virus enters into the susceptible computers, their latency
periods vary and investigated the dynamics of the model.
Once the rule of the virus spread is revealed, it comes to
be a major issue how to control the virus spread effectively
[17–19].

In this paper, by incorporating the objective of keeping
a low number of infected nodes and a high number of
recovered nodes at the lower cost into a delay-varying
computer virus propagation model (SIRC model) extended
by introducing the new compartment quarantine, a novel
model is described by means of the optimal control strate-
gies associated with measures of quarantine and installing
antivirus programs andfirewalls and theoretically analyzed. It
is comparatively showed that optimal control strategy ismuch
more effective for controlling virus with varying latency
period in network.

The remaining materials of this paper are organized this
way: Section 2 introduces the mathematical model to be dis-
cussed; Section 3 studies the controlled system theoretically.
In Section 4, we solve the controlled system numerically
using the Runge-Kutta procedure and make numerical com-
parisons with control and without control. We end the paper
with a brief conclusion in Section 5.

2. Mathematical Model

Consider a delay-varying computer virusmodel recently pro-
posed in [16]

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝛽∫

𝑡

−∞

𝑆 (𝜏)𝐾 (𝑡 − 𝜏) 𝑑𝜏𝐼 (𝑡) − 𝜇𝑆 (𝑡) ,
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𝑑𝐼

𝑑𝑡
= 𝛽∫

𝑡

−∞

𝑆 (𝜏)𝐾 (𝑡 − 𝜏) 𝑑𝜏𝐼 (𝑡) − (𝜇 + 𝛾) 𝐼 (𝑡) ,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡) .

(1)

Here, it is assumed that all the computers connected to
the network in concern are classified into three categories:
susceptible, infected, and recovered computers. Let 𝑆(𝑡), 𝐼(𝑡),
and 𝑅(𝑡) denote their corresponding numbers at time 𝑡.
This model involves some positive parameters: 𝑏 denotes
the rate at which external computers are connected to the
network, 𝛾 denotes the recovery rate of infected computers
due to the antivirus ability of the network, 𝜇 denotes the
rate at which one computer is removed from the network,
and 𝛽 denotes the rate at which, when having connection to
one infected computer, one susceptible computer can become
infected. By appropriate assumptions and extensions in [16],
model (1) can be written as

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝛽𝐶 (𝑡) 𝐼 (𝑡) − 𝜇𝑆 (𝑡) ,

𝑑𝐼

𝑑𝑡
= 𝛽𝐶 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾) 𝐼 (𝑡) ,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡) ,

𝑑𝐶

𝑑𝑡
=

1

𝜎
𝑆 (𝑡) −

1

𝜎
𝐶 (𝑡) ,

(2)

where 𝐶(𝑡) denotes the effect of past infection information
in the susceptible computers at time 𝑡, 𝜎 is a positive delay
parameter with the initial conditions 𝑆(0) ≥ 0, 𝐼(0) ≥ 0,
𝐶(0) ≥ 0, and the positively invariant set

Ω = {(𝑆, 𝐼, 𝐶) ∈ 𝑅
3

+
, 𝑆 + 𝐼 ≤

𝑏

𝜇
, 𝐶 ≤

𝑏

𝜇
} . (3)

Recently, more research attention has been paid to the
combination of virus propagation models and antivirus
countermeasures to investigate the prevalence of virus. As an
elementary measure, quarantine [20, 21] is used to restrain
the spread of computer virus. Extending the previous SIRC,
a new compartment quarantine has been introduced under
which the susceptible, infected computers exhibited suspi-
cious behavior and, consequently, have been quarantined.
The model with quarantine can be written as

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝛽𝐶 (𝑡) 𝐼 (𝑡) − 𝛼𝑆 (𝑡) − 𝜇𝑆 (𝑡) ,

𝑑𝐼

𝑑𝑡
= 𝛽𝐶 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾) 𝐼 (𝑡) − 𝜀𝐼 (𝑡) ,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡) ,

𝑑𝑄

𝑑𝑡
= 𝜀𝐼 (𝑡) + 𝛼𝑆 (𝑡) − 𝜇𝑄 (𝑡) ,

𝑑𝐶

𝑑𝑡
=

1

𝜎
𝑆 (𝑡) −

1

𝜎
𝐶 (𝑡) ,

(4)

where parameter 𝛼 denotes the rate at which the susceptible
computers are quarantined, 𝜀 denotes the rate at which the
infected computers are quarantined.

For our purpose, first, we introduce two Lebesgue square
integrable control functions.

(1) 𝑢
1
(𝑡) denotes the cost for installing effective antivirus

programs and firewalls on the susceptible computers
and infected computers at time 𝑡.

(2) 𝑢
2
(𝑡) denotes the cost for quarantining the susceptible

and infected computers at time 𝑡.

Both of the control functions are normalized to fall
between 0 and 1, and the admissible set of control functions
is given by

𝑈ad = {𝑢
1
(𝑡) , 𝑢
2
(𝑡) ∈ 𝐿

2
: 0 ≤ 𝑢

1
(𝑡) ≤ 1,

0 ≤ 𝑢
2
(𝑡) ≤ 1, 𝑡 ∈ [0, 𝑡

𝑓
]} .

(5)

To obtain the controlled model, the following assump-
tions are made.

(1) At time 𝑡, there are 𝑝𝑢
1
(𝑡)𝐼(𝑡) infected computers

that would become recovered, whereas there are (1 −

𝑝)𝑢
1
(𝑡)𝐼(𝑡) that would be quarantined, where 𝑝 ∈

[0, 1].
(2) At time 𝑡, by installing antivirus programs and fire-

walls, there are 𝑞𝑢
2
(𝑡)𝑆(𝑡) susceptible computers that

would directly become recovered, whereas there are
(1−𝑞)𝑢

2
(𝑡)𝑆(𝑡) that would be quarantined, where 𝑞 ∈

[0, 1].

Taking into account the assumptions made above, the
model (7) can become the following computer virus propa-
gation model:

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝛽𝐶 (𝑡) 𝐼 (𝑡) − 𝛼𝑆 (𝑡) − 𝜇𝑆 (𝑡) − 𝑢

2
𝑆 (𝑡) ,

𝑑𝐼

𝑑𝑡
= 𝛽𝐶 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾) 𝐼 (𝑡) − 𝜀𝐼 − 𝑢

1
𝐼 (𝑡) ,

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡) + 𝑝𝑢

1
𝐼 (𝑡) + 𝑞𝑢

2
𝑆 (𝑡) ,

𝑑𝑄

𝑑𝑡
= 𝜀𝐼 (𝑡) + 𝛼𝑆 (𝑡) + (1 − 𝑝) 𝑢

1
𝐼 (𝑡)

+ (1 − 𝑞) 𝑢
2
𝑆 (𝑡) − 𝜇𝑄 (𝑡) ,

𝑑𝐶

𝑑𝑡
=

1

𝜎
𝑆 (𝑡) −

1

𝜎
𝐶 (𝑡) ,

(6)

with the given initial conditions and the positively invariant
set.

3. Optimal Control Problem

During the time period [0, 𝑡
𝑓
], under the above assumptions

and extensions, our objective is given by the following.

(1) Minimize the number of infected computers (𝐼) and
maximize the number of recovered computers (𝑅).
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(2) Minimize the total cost to quarantine the susceptible
and infected computers.

(3) Minimize the total cost for installing the antivirus
programs and firewalls in the susceptible and infected
computers.

Thus, our optimal control problem is to minimize the
objective functional:

𝐽 (𝑢) = ∫

𝑡𝑓

0

[𝐼 (𝑡) + 𝜂𝐶 (𝑡) +
1

2
𝜏
1
𝑢
2
(𝑡) +

1

2
𝜏
2
𝑢
2

2
(𝑡)] 𝑑𝑡,

(7)

where parameter 𝜂 denotes the weight constants of effect of
latent virus, 𝜏

1
, 𝜏
2
are trade-off factors.

To find an optimal solution to (4), consider the Lag-
rangian

𝐿 (𝐼, 𝐶, 𝑢) = 𝐼 (𝑡) + 𝜂𝐶 (𝑡) +
1

2
𝜏
1
𝑢
2
(𝑡) +

1

2
𝜏
2
𝑢
2

2
(𝑡) . (8)

Define the Hamiltonian 𝐻 for the control problem as

𝐻(𝐼, 𝐶, 𝑢, 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
)

= 𝐿 (𝐼, 𝐶, 𝑢) + 𝜆
1
(𝑡)

𝑑𝑆

𝑑𝑡
+ 𝜆
2
(𝑡)

𝑑𝐼

𝑑𝑡

+ 𝜆
3
(𝑡)

𝑑𝑅

𝑑𝑡
+ 𝜆
4
(𝑡)

𝑑𝑄

𝑑𝑡
+ 𝜆
5
(𝑡)

𝑑𝐶

𝑑𝑡

= 𝐼 (𝑡) + 𝜂𝐶 (𝑡) +
1

2
𝜏
1
𝑢
2
(𝑡) +

1

2
𝜏
2
𝑢
2

2
(𝑡)

+ 𝜆
1
(𝑡) {𝑏 − 𝛽𝐶 (𝑡) 𝐼 (𝑡)

− 𝛼𝑆 (𝑡) − 𝜇𝑆 (𝑡) −𝑢
2
𝑆 (𝑡)}

+ 𝜆
2
(𝑡) {𝛽𝐶 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾 + 𝜀)

× 𝐼 (𝑡) − 𝑢
1
𝐼 (𝑡)}

+ 𝜆
3
(𝑡) {𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡)

+𝑝𝑢
1
𝐼 (𝑡) + 𝑞𝑢

2
𝑆 (𝑡)}

+ 𝜆
4
(𝑡) {𝜀𝐼 (𝑡) + 𝛼𝑆 (𝑡) − 𝜇𝑄 (𝑡)

+ (1 − 𝑝) 𝑢
1
× 𝐼 (𝑡)

+ (1 − 𝑞) 𝑢
2
𝑆 (𝑡)}

+ 𝜆
5
(𝑡) {

1

𝜎
(𝑆 − 𝐶)} ,

(9)

with the transversality conditions (or boundary condi-
tions) 𝜆

𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, 3, 4, 5.

Theorem 1. There exist control functions 𝑢
∗

1
, 𝑢
∗

2
so that

𝐽(𝑢
∗

1
, 𝑢
∗

2
) = min

𝑢1 ,𝑢2∈𝑈ad
𝐽(𝑢
1
, 𝑢
2
) subject to the controlled

system (6) with initial condition.

Proof. We use the results in [22, 23]. It is clear that the
set of control and corresponding state variables are non-
negative values and the set 𝑈ad is convex and closed.
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Figure 2: Infected computers (with and without control) versus
time 𝑡.

𝐿(𝐼, 𝐶, 𝑢) = 𝐼(𝑡) + 𝜂𝐶(𝑡) + (1/2)𝜏
1
𝑢
2
(𝑡) + (1/2)𝜏

2
𝑢
2

2
(𝑡) is

convex on𝑈ad.Meanwhile, the optimal system (4) is bounded
by a linear function in the state variables. Also, there exist a
constant 𝜍 > 1 and two positive numbers 𝜎

1
and 𝜎

2
so that

𝐿(𝐼, 𝐶, 𝑢) ≥ 𝜎
1
+ 𝜎
1
(|𝑢
1
| + |𝑢
2
|)
𝜍/2.

In the following, we use Pontryagin’s maximum principle
[24] to obtain a necessary condition for the optimal control
solution to the system (4).
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Table 1

Parameters 𝑏 𝛽 𝛾 𝛼 𝜀 𝜇 𝜎 𝑝 𝑞 𝜂 𝜏
1

𝜏
2

Values 20 0.05 0.25 0.5 0.2 0.5 0.5 0.3 0.4 0.8 30 50

Table 2

Initial state variable 𝑆(0) 𝐼(0) 𝑅(0) 𝑄(0) 𝐶(0)

Values 0 5 4.5 13 8
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Theorem 2. Consider the optimal control problem (7) sub-
ject to (6). Let 𝑆

∗
(𝑡), 𝐼
∗
(𝑡), 𝑅

∗
(𝑡), Q∗(𝑡), and 𝐶

∗
(𝑡) form

the optimal state solution with associated optimal control
variables 𝑢

∗

1
(𝑡),𝑢∗
2
(𝑡).Then, there exist adjoint variables 𝜆

1
(𝑡),

𝜆
2
(𝑡), 𝜆
3
(𝑡), 𝜆
4
(𝑡), and 𝜆

5
(𝑡) that satisfy

𝑑𝜆
1
(𝑡)

𝑑𝑡
= 𝜆
1
(𝜇 + 𝛼 + 𝑢

2
) − 𝜆
3
𝑞𝑢
2
− 𝜆
4
(1 − 𝑞) 𝑢

2
− 𝜆
5

1

𝜎
,

𝑑𝜆
2
(𝑡)

𝑑𝑡
= −𝜆
1
𝛽𝐶 − 𝜆

2
(𝛽𝐶 − 𝛾 − 𝜇 − 𝜀 − 𝑢

1
)

− 𝜆
3
(𝛾 + 𝑝𝑢

1
) − 𝜆
4
{𝜀 + (1 − 𝑝) 𝑢

1
} − 1,

𝑑𝜆
3
(𝑡)

𝑑𝑡
= 𝜆
3
𝜇,

𝑑𝜆
4
(𝑡)

𝑑𝑡
= 𝜆
4
𝜇,

𝑑𝜆
5
(𝑡)

𝑑𝑡
= 𝜆
1
𝛽𝐼 − 𝜆

2
𝛽𝐼 + 𝜆

5

1

𝜎
− 𝜂,

(10)

with transversality conditions 𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, 3, 4, 5.

Proof. By the adjoint equations and optimality conditions, we
have

𝑑𝜆
1
(𝑡)

𝑑𝑡
= −

𝜕𝐻

𝜕𝑆

= 𝜆
1
(𝜇 + 𝛼 + 𝑢

2
) − 𝜆
3
𝑞𝑢
2

− 𝜆
4
(1 − 𝑞) 𝑢

2
− 𝜆
5

1

𝜎
,

𝑑𝜆
2
(𝑡)

𝑑𝑡
= −

𝜕𝐻

𝜕𝐼

= −𝜆
1
𝛽𝐶 − 𝜆

2
(𝛽𝐶 − 𝛾 − 𝜇 − 𝜀 − 𝑢

1
)

− 𝜆
3
(𝛾 + 𝑝𝑢

1
) − 𝜆
4
{𝜀 + (1 − 𝑝) 𝑢

1
} − 1,

𝑑𝜆
3
(𝑡)

𝑑𝑡
= −

𝜕𝐻

𝜕𝑅
= 𝜆
3
𝜇,

𝑑𝜆
4
(𝑡)

𝑑𝑡
= −

𝜕𝐻

𝜕𝑄
= 𝜆
4
𝜇,

𝑑𝜆
5
(𝑡)

𝑑𝑡
= −

𝜕𝐻

𝜕𝐶
= 𝜆
1
𝛽𝐼 − 𝜆

2
𝛽𝐼 + 𝜆

5

1

𝜎
− 𝜂,

𝜏𝑢
∗

1
(𝑡) − 𝜆

2
(𝑡) 𝐼
∗
+ 𝜆
3
(𝑡) 𝑝𝐼
∗
+ 𝜆
4
(𝑡) (1 − 𝑝) 𝐼

∗
= 0,

𝜏𝑢
∗

2
(𝑡) − 𝜆

1
(𝑡) 𝑆
∗
+ 𝜆
3
(𝑡) 𝑞𝑆
∗
+ 𝜆
4
(𝑡) (1 − 𝑞) 𝑆

∗
= 0,

(11)

which can be obtained from 𝜕𝐻/𝜕𝑢
1

= 0, 𝜕𝐻/𝜕𝑢
2

= 0,
respectively.

Noting a fact that 0 ≤ 𝑢
1
(𝑡) ≤ 1, 0 ≤ 𝑢

2
(𝑡) ≤ 1, we obtain

that

𝑢
∗

1
(𝑡) = max{min {

(𝜆
2
(𝑡) − 𝜆

3
(𝑡) 𝑝 − 𝜆

4
(𝑡) (1 − 𝑝)) 𝐼

∗

𝜏
1

,

1} , 0}

𝑢
∗

2
(𝑡) = max{min {

(𝜆
1
(𝑡) − 𝜆

3
(𝑡) 𝑞 − 𝜆

4
(𝑡) (1 − 𝑞)) 𝑆

∗

𝜏
2

,

1} , 0} .

(12)

From the previous analysis, to get the optimal point, we
have to solve the system

𝑑𝑆
∗

𝑑𝑡
= 𝑏 − 𝛽𝐶

∗
𝐼
∗
− 𝜇𝑆
∗
− 𝛼𝑆
∗
− 𝑢
2
𝑆
∗
,

𝑑𝐼
∗

𝑑𝑡
= 𝛽𝐶
∗
𝐼
∗
− (𝜇 + 𝛾) 𝐼

∗
− 𝜀𝐼
∗
− 𝑢
∗

1
𝐼
∗
,

𝑑𝑅
∗

𝑑𝑡
= 𝛾𝐼
∗
− 𝜇𝑅
∗
+ 𝑝𝑢
∗

1
𝐼
∗
+ 𝑞𝑢
∗

2
𝑆
∗
,

𝑑𝑄
∗

𝑑𝑡
= 𝛼𝑆
∗
+ 𝜀𝐼
∗
+ (1 − 𝑝) 𝑢

∗

1
𝐼
∗
+ (1 − 𝑞) 𝑢

∗

2
𝑆
∗
− 𝜇𝑄
∗
,

𝑑𝐶
∗

𝑑𝑡
=

1

𝜎
(𝑆
∗
− 𝐶
∗
) ,

(13)
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with the Hamiltonian

𝐻
∗
(𝐼
∗
, 𝐶
∗
, 𝑢
∗
, 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
)

= 𝐼
∗
+ 𝜂𝐶
∗
+

𝜏

2
𝑢
∗

1
(𝑡)
2

+
𝜏

2
𝑢
∗

2
(𝑡)
2
+ 𝜆
1
(𝑡)

× {𝑏 − 𝛽𝐶
∗
𝐼
∗
− 𝛼𝑆
∗

−𝜇𝑆
∗
− 𝑢
∗

2
(𝑡) 𝑆
∗
} + 𝜆
2
(𝑡)

× {𝛽𝐶
∗
𝐼
∗
− (𝜇 + 𝛾 − 𝜀)

× 𝐼
∗
− 𝑢
∗

1
(𝑡) 𝐼
∗
}

+ 𝜆
3
(𝑡) {𝛾𝐼

∗
− 𝜇𝑅
∗

+ 𝑝𝑢
∗

1
(𝑡) 𝐼
∗
+ 𝑞𝑢
∗

2
(𝑡) 𝑆
∗
}

+ 𝜆
4
(𝑡) {𝛾𝐼

∗
+ 𝛼𝑆
∗
− 𝜇𝑄
∗

+ (1 − 𝑝) 𝑢
∗

1
(𝑡) 𝐼
∗
+ (1 − 𝑞) 𝑢

∗

2

× (𝑡) 𝑆
∗
} + 𝜆
5
(𝑡) {

1

𝜎
(𝑆
∗
− 𝐶
∗
)} .

(14)

4. Numerical Simulations

In this section, to find out the optimal control solution, we
numerically solve system (13) with (14) by a Runge-Kutta
procedure and make numerical comparisons. Figures 1–5
plot the numbers of susceptible, infected, recovered, and
quarantined computers as well as the effect of past infection
information in the susceptible computers with and without
control, with the parameters shown in Table 1 and the initial
conditions shown in Table 2.

The number of computers under control is marked by
solid line, whereas the number of remaining computers is
marked by dashed line. One can see that, under control, the
number of susceptible computers is sharply low, which is the
same as the effect of past infection information in Figure 5. In
Figure 2, we can see that the number of infected computers
under control is lower than that without control. In Figure 3,
the number of recovered computers is very small without
control andmore recovered computers increasemore rapidly.
Although the number of quarantined computers with control
would slightly grow in Figure 4, we mainly consider tradeoff
between the cost and effect of the quarantine. Figures 6 and 7
plot the control variables 𝑢

1
, 𝑢
2
versus time 𝑡 with associated

weight factor 𝜏
1

∈ {30, 50, 70, 90} and 𝜏
2

∈ {10, 15, 25, 35},
respectively.

5. Conclusions

By incorporating the objective of keeping a low number of
infected nodes and a high number of recovered nodes at the
lower cost into a known computer virus model (the delay-
varying SIRC model) extended by introducing quarantine,

a novel model is described by means of the optimal control
strategy and theoretically analyzed. A comparison between
optimal control and without control is presented, which
demonstrates the effectiveness of our method. The results
obtained in the present paper can help understand and con-
trol the spread of computer virus over a computer network.

Acknowledgments

The work is supported by the National Natural Science
Foundation of China under Grant no. 61304117, no. 61272297
and no. 61100167, the Natural Science Foundation of Jiangsu
Province, China under Grant no. BK2011204, the doctorate
teacher support project of JiangSu Normal University under
Grant no. 12XLR021, and the Natural Science Foundation of
the Jiangsu Higher Education Institutions of China under
Grant no. 13KJB520008, the Natural Science Foundation of
the Jiangsu Higher Education Institutions of China under
Grant no. 11KJB520019.

References

[1] J. C. Wierman and D. J. Marchette, “Modeling computer virus
prevalence with a susceptible-infected-susceptible model with
reintroduction,” Computational Statistics & Data Analysis, vol.
45, no. 1, pp. 3–23, 2004.

[2] J. R. C. Piqueira and V. O. Araujo, “A modified epidemiological
model for computer viruses,”Applied Mathematics and Compu-
tation, vol. 213, no. 2, pp. 355–360, 2009.

[3] C. Gan, X. Yang, W. Liu, Q. Zhu, and X. Zhang, “Propagation of
computer virus under human intervention: a dynamicalmodel,”
Discrete Dynamics in Nature and Society, vol. 2012, Article ID
106950, 8 pages, 2012.

[4] Q. Zhu, X. Yang, and J. Ren, “Modeling and analysis of
the spread of computer virus,” Communications in Nonlinear
Science and Numerical Simulation, vol. 17, no. 12, pp. 5117–5124,
2012.

[5] L.-X. Yang, X. Yang, J. Liu, Q. Zhu, and C. Gan, “Epidemics
of computer viruses: s complex-network approach,” Applied
Mathematics and Computation, vol. 219, no. 16, pp. 8705–8717,
2013.

[6] B. K.Mishra andD. K. Saini, “SEIRS epidemicmodel with delay
for transmission of malicious objects in computer network,”
AppliedMathematics and Computation, vol. 188, no. 2, pp. 1476–
1482, 2007.

[7] B. K. Mishra and N. Jha, “Fixed period of temporary immu-
nity after run of anti-malicious software on computer nodes,”
AppliedMathematics and Computation, vol. 190, no. 2, pp. 1207–
1212, 2007.

[8] L.-X. Yang and X. Yang, “The spread of computer viruses
under the influence of removable storage devices,” Applied
Mathematics and Computation, vol. 219, no. 8, pp. 3914–3922,
2012.

[9] L.-X. Yang, X. Yang, L.Wen, and J. Liu, “A novel computer virus
propagation model and its dynamics,” International Journal of
Computer Mathematics, vol. 89, no. 17, pp. 2307–2314, 2012.

[10] J. Ren, X. Yang, Q. Zhu, L.-X. Yang, and C. Zhang, “A novel
computer virus model and its dynamics,” Nonlinear Analysis:
Real World Applications, vol. 13, no. 1, pp. 376–384, 2012.



Discrete Dynamics in Nature and Society 7

[11] J. Ren, X. Yang, L.-X. Yang, Y. Xu, and F. Yang, “A delayed
computer virus propagation model and its dynamics,” Chaos,
Solitons & Fractals, vol. 45, no. 1, pp. 74–79, 2012.

[12] L.-X. Yang, X. Yang, Q. Zhu, and L. Wen, “A computer virus
model with graded cure rates,” Nonlinear Analysis: Real World
Applications, vol. 14, no. 1, pp. 414–422, 2013.

[13] X. Yang, B. K.Mishra, andY. Liu, “Theory,model andmethods,”
Discrete Dynamics in Nature and Society, vol. 2012, Article ID
473508, 2 pages, 2012.

[14] X. Yang and L. -X. Yang, “Towards the epidemiological mod-
eling of computer viruses,” Discrete Dynamics in Nature and
Society, vol. 2012, Article ID 259671, 11 pages, 2012.

[15] L.-X. Yang and X. Yang, “Propagation behavior of virus codes
in the situation that infected computers are connected to the
internet with positive probability,” Discrete Dynamics in Nature
and Society, vol. 2012, Article ID 693695, 13 pages, 2012.

[16] J. Ren and Y. Xu, “Dynamics of a delay-varying computer virus
propagation model,” Discrete Dynamics in Nature and Society,
vol. 2012, Article ID 372192, 12 pages, 2012.

[17] C. Zhang, X. Yang, and Q. Zhu, “An optimal control model for
computer viruses,” Journal of Information and Computational
Science, vol. 8, no. 13, pp. 2587–2596, 2011.

[18] Q. Zhu and X. Yang, “Optimal control of computer virus under
a delayed model,” Applied Mathematics and Computation, vol.
218, no. 23, pp. 11613–11619.

[19] J. Ren andX. Yang, “Dynamics and optimal shelter for computer
virus propagation in network,” Journal of Information and
Computational Science, vol. 8, no. 9, pp. 1735–1745, 2011.

[20] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Internet
quarantine: requirements for containing self-propagating code,”
in Proceedings of the 22nd IEEE Annual Joint Conference on the
Computer and Communications Societies (INFOCOM ’03), pp.
1901–1910, IEEE, April 2003.

[21] T. M. Chen and N. Jamil, “Effectiveness of quarantine in worm
epidemics,” in Proceedings of the IEEE International Conference
on Communications (ICC ’05), pp. 2142–2147, IEEE, July 2005.

[22] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic,
Springer, Berlin, Germany, 1975.

[23] D. L. Lukes, Differential Equations: Classical to Controlled, vol.
162 ofMathematics in Science and Engineering, Academic Press,
New York, NY, USA, 1982.

[24] M. L. Kamien and N. L. Schwartz, Dynamics Optimization: The
Clculus of Variations and Optimal Control in Economics and
Management, Elsevier Science, Amsterdam, The Netherlands,
2000.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


