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This study describes the development of a reservoir inflow forecasting model for typhoon events to improve short lead-time flood
forecasting performance. To strengthen the forecasting ability of the original support vector machines (SVMs) model, the self-
organizing map (SOM) is adopted to group inputs into different clusters in advance of the proposed SOM-SVM model. Two
different input methods are proposed for the SVM-based forecasting method, namely, SOM-SVM1 and SOM-SVM2.Themethods
are applied to an actual reservoir watershed to determine the 1 to 3 h ahead inflow forecasts. For 1, 2, and 3 h ahead forecasts,
improvements in mean coefficient of efficiency (MCE) due to the clusters obtained from SOM-SVM1 are 21.5%, 18.5%, and 23.0%,
respectively. Furthermore, improvement in MCE for SOM-SVM2 is 20.9%, 21.2%, and 35.4%, respectively. Another SOM-SVM2
model increases the SOM-SVM1 model for 1, 2, and 3 h ahead forecasts obtained improvement increases of 0.33%, 2.25%, and
10.08%, respectively. These results show that the performance of the proposed model can provide improved forecasts of hourly
inflow, especially in the proposed SOM-SVM2model. In conclusion, the proposed model, which considers limit and higher related
inputs instead of all inputs, can generate better forecasts in different clusters than are generated from the SOM process. The SOM-
SVM2model is recommended as an alternative to the original SVR (Support Vector Regression) model because of its accuracy and
robustness.

1. Introduction

Cyclones, typhoons, and hurricanes refer to the same mete-
orological phenomenon in different parts of the world.
They are weather systems with strong winds that circulate
anticlockwise around a low pressure area in the northern
hemisphere and clockwise in the southern hemisphere. Tai-
wan is located in the northwestern Pacific, on one of themain
typhoon paths, and is hit by three to five typhoon events
each year on average. However, the rainfall distribution is
uneven in both time and space due to the complex terrain
conditions in Taiwan. Torrential rain due to typhoons leads
to frequent serious disasters such as flooding, landslides, and
debris flow. However, the rain is an important water resource
that should be stored. Reservoirs are the most important and
effective water storage facilities for solving the uneven rainfall

problem. Therefore, reservoir inflow forecasting plays an
important role in water resource planning and management.

There are numerous difficulties in constructing a phys-
ically based mathematical model because of the extremely
complex and highly nonlinear relationship between typhoon
rainfall and reservoir inflows. As an attractive alternative to
physically based models, data-driven models that are based
on artificial intelligence methods, such as neural networks,
are favored and are practicably applicable in reservoir inflow
forecasting [1–5]. Support vectormachines (SVMs) are novel,
artificial intelligence-based methods. The SVMs, developed
for classification and then extended for regression by Vapnik
[6, 7], are based on statistical learning theory. Based on
the structural risk minimization (SRM) principle, SVMs
theoretically minimize the expected error of a learning
machine and reduce the problem of overfitting. In addition,
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Figure 1: Flowchart showing development of the two different SOM-SVMmodels.

the architecture of the SRMprinciple guarantees a unique and
globally optimal solution by solving the convex optimization
problem. Amore detailed treatment of SVMs can be found in
several text books [8, 9].

The SVMs are proposed as alternative data-driven tools in
many fields [10–14] and have excellent generalization ability.
In the field of hydrology, problems such as time series fore-
casting have been reported in recent years [15–28].The SVMs
are outstanding data-driven tools, incorporating the property
of regression. However, when the SVM regression considers
information with excessive noise or low relationships, the
ability of generalization will be reduced. In hydrological
cases, it will be found in high values; generalization depends
on existence of very many low values. Moreover, for long
lead-time forecasting, SVMs can only consider limited noisy
information. In such cases, the model cannot forecast the
inflow well.

To solve the above problems, in this study, the self-
organizing map (SOM) is adopted in advance to group the
inputs of SVMs. In each group, the inputs concerned in
different inflow processes have a high relationship. Hence,
the forecasts obtained by SVMs, which are developed using
inputs in the same cluster, may have higher accuracy.

The SOM introduced by Kohonen [29, 30] is a special
category of artificial neural networks (ANNs). It can project

high-dimensional input space on a low-dimensional topol-
ogy so as to allow the number of clusters to be determined by
inspection. This capability enables the discovery of the rela-
tionships among complex data and has been used in recent
years [31–40]. Furthermore, the clustering performance of
SOM is better than that of conventional clustering methods
[41–43].

For improving reservoir inflow forecasting, an approach
consisting of a SOM-based clustering method and SVMs is
proposed in this study. The SOM density map is obtained
using only the past two-hour inflows as inputs for different
events and lag time forecasting. Then, SVMs are performed
on the basis of the results of the SOM-based clustering
method to forecast reservoir inflow. Finally, the proposed
approach is applied to the Feitsui Reservoir watershed in
northern Taiwan to find the 1 h ahead inflow forecast. A
flowchart of the proposed model is illustrated in Figure 1.

2. Methodology

In this paper, the SOM-SVM model, which combines the
SOM with SVMs, is proposed. Details about SOM can be
found in Kohonen [44]. As to SVMs, one can refer to Vapnik
[8] for more details.
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2.1. Two SOM-SVMModels. In this study, to avoid the lack of
information variability which yields a lower learning ability
of the neurons, an enlarged training data set, collected as
training forms, is considered. This enlarged training data set
implies that besides the training data set of each neuron, all
the other training data sets in the same specified region are
also adopted as training data sets. To more efficiently obtain
well-performed forecasting results, two different specified
region strategies are defined. The flowchart for these two
specified region strategies concept is shown in Figure 1. The
first specified regions are defined by the training data set that,
according to the different inflow processes, is SOM-SVM1
model. That is, when the data set on the SOM feature map
is simply divided into different training forms, each training
form collects the neurons having the same pattern as the
different rainfall-runoff processes. The concept of specified
region strategy for SOM-SVM1 model is adopted from Hsu
et al. [31]. But, different from five regions’ definition for Hsu,
the specified regions of this study are only four.These training
forms, 𝑘𝑗, of the SOM-SVM1 model are denoted by

𝑘𝑗 = {𝑢𝑥} 𝑗 = 1, 2, 3, 4. (1)

Here, (1) expresses the 𝑥th neurons having the same rainfall-
runoff process in the 𝑗th region. In general, there are four
different rainfall-runoff processes that can be considered
specified regions in the typhoon events: increasing inflow
region, base flow region, peaking hydrograph region, and
recession region. However, for some learning results of
the SOM generation, the rainfall-runoff process cannot be
clearly divided, especially for the relationships between the
increasing inflow region, the peaking hydrograph region, and
the recession region. This indicates that, on occasion, there
are only three rainfall-runoff training forms found on the
SOM feature map. Therefore, when the peaking hydrograph
region is not easily separated from the featuremap, only three
regions can be separated from the SOM feature map.

Different from the SOM-SVM1 specified region defini-
tion strategy, the specified regions of the SOM-SVM2 model
allow for the selection of stronger relationship neurons. That
is, based on the consideration of well-performed results and
simple definition of the feature relationship, the enlarged
training forms of the SOM-SVM2 model are established.
For each neuron generated in the feature map, the SOM-
SVM2 model simply collects the enlarged training data sets
of some specified higher relation neurons as training forms
to implement the SVM model. The concept of the specified
higher relation neurons means the neurons in the cross
area are adopted as specified higher relation neurons beside
themselves. Then, the enlarged training data set is adopted
from these specified higher relation neurons. Therefore, for a
𝑛 × 𝑛 SOM feature map, the training forms are denoted by

𝑘𝑗

=

{{{{

{{{{

{

{𝑢𝑗, 𝑢𝑗+1, 𝑢𝑗−𝑛, 𝑢𝑗+𝑛} if 𝑢𝑗 = 𝑛𝑖 + 1

{𝑢𝑗, 𝑢𝑗−1, 𝑢𝑗−𝑛, 𝑢𝑗+𝑛} if 𝑢𝑗 = 𝑛𝑖, 𝑗 = 1, 2, . . . , 𝑛
2

{𝑢𝑗, 𝑢𝑗−1, 𝑢𝑗+1, 𝑢𝑗−𝑛, 𝑢𝑗+𝑛} others,

(2)
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Figure 2: The Feitsui Reservoir watershed in northern Taiwan.

where 𝑢𝑗−1, 𝑢𝑗−𝑛 > 0, 𝑢𝑗+1, 𝑢𝑗+𝑛 < 𝑛
2, and the value of 𝑖

is an integer. When the neurons are located on the feature
map, the enlarged training forms have the training forms
adopted from the four surrounding neurons and the training
forms adopted from itself for each neuron. As the occasions
in which 𝑢𝑗−1, 𝑢𝑗−𝑛 < 0 or 𝑢𝑗+1, 𝑢𝑗+𝑛 > 𝑛

2, the neuron
should be removed from the equation. It drives for the edge
neurons, the enlarged training forms can only adopt the
training data sets of the surrounding two or three neurons.
This means that these training forms have the training data
sets adopted from five neurons, or three or four neurons for
the edge neurons. The above training forms generated from
two different models are adopted to implement the SVM
model. Then, in different specified regions, the SVM models
are adopted to generate the forecasts from the forecast forms
in each neuron. These forecast forms have only the forecast
data sets inside each neuron.

3. Application

3.1. The Study Area and Data. In this paper, all the SVM-
based models are applied to the Feitsui Reservoir watershed
in northern Taiwan. Feitsui Reservoir is located downstream
three major tributaries (Kingkwa Creek, Diyu Creek, and
Peishih Creek). It has a surface area of 10 km2, a mean
depth of 40m, a maximum depth of 120m, a full capacity of
406 million m3, and a total watershed area of 303 km2 (see
Figure 2). Feitsui Reservoir supplies water for Taipei city (the
capital of Taiwan); thus, it is the most important reservoir in
northern Taiwan.

The rainfall data are collected from 1988 to 2008. The
maximum and average yearly rainfalls are 5736.6mm and
3808.6mm, respectively. In this paper, the 22 typhoon events
used for model development are presented in Table 1. These
22 typhoon events used for inflow forecasting are divided into
two sets, 21 training events and a testing event, in each event’s
forecasting.

3.1.1. Determination of Lag Length. For the model construc-
tion in this paper, it is necessary to decide on the length of
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Table 1: The 22 typhoon events used in the modeling.

Name of typhoon Date
(yyyy/mm/dd)

Duration
(h)

Peak flow
(m3/s)

Polly 1992/08/27 91 970
Ted 1992/09/20 71 922
Tim 1994/07/09 51 674
Fred 1994/08/19 76 718
Gladys 1994/08/31 34 1,449
Seth 1994/10/08 77 1,457
Herb 1996/07/30 72 2,586
Zeb 1998/10/15 52 2,642
Xangsane 2000/10/31 34 4,075
Nari 2001/09/16 85 4,022
Haiyan 2001/10/15 30 560
Rammasun 2002/07/03 34 1,096
Aere 2004/08/23 70 2,416
Nock-Ten 2004/10/24 46 1,719
Nanmadol 2004/12/03 33 1,690
Haitang 2005/07/17 68 1,476
Matsa 2005/08/04 50 1,226
Talim 2005/08/31 45 1,798
Krosa 2007/10/04 63 2,356
Fung-Wong 2008/07/26 43 969
Sinlaku 2008/09/11 107 3,598
Jangmi 2008/09/26 52 2,513

the forecast form at the beginning. Each forecast form of all
the typhoon events is

𝐹𝑡+Δ𝑡 = 𝑓 (𝑅𝐺,𝑡, 𝑅𝐺,𝑡−1, . . . , 𝑅𝐺,𝑡−(𝐿𝑅−1)
, 𝐹𝑡, 𝐹𝑡−1, . . . ,

𝐹𝑡−(𝐿𝐹−1)
) , 𝐺 = 1, 2, . . . , 7,

(3)

where 𝑡 is the current time, Δ𝑡 is the lead-time period (from
1 to 3 h), 𝑅𝐺,𝑡 is rainfall in the 𝐺th gauge at time 𝑡, 𝐹𝑡 is the
inflow at time 𝑡, 𝑓 is the derivation of forecasts, and 𝐿𝐹 and
𝐿𝑅 denote the lag length of inflow and rainfall, respectively.

For the reservoir inflow forecasting model, model con-
structionwith appropriate lag lengths of input is an important
component. In this paper, the criterion RPE is applied to
determine the lag length of inputs. The RPE is defined by

RPE =
𝐸 (𝐿) − 𝐸 (𝐿 + 1)

𝐸 (𝐿)
× 100, (4)

where 𝐸(𝐿) and 𝐸(𝐿 + 1) are the root-mean-square-error
(RMSE) for the model with 𝐿 and 𝐿 + 1 lag lengths,
respectively. The RMSE can be obtained as

RMSE = √
1

𝑛

𝑛

∑

𝑡=1

(𝐹̂𝑡 − 𝐹𝑡)
2
, (5)

where 𝐹𝑡 is the inflow at time 𝑡, 𝐹̂𝑡 is the predicted inflow at
time 𝑡, and 𝑛 is the number of time steps. In general, theRMSE

decreaseswith increasing lag term.When theRPEvalue is less
than 5%, the increase of lag lengths is stopped.

By using this procedure, the most appropriate lag lengths
of typhoon rainfall,𝐿𝑅, and inflow,𝐿𝐹, for a certain lead-time,
Δ𝑡, can be determined. The appropriate lag lengths for two
hours of rainfall and inflow are used to forecast the 1- to 3-
hour ahead inflows. Then, the general form with appropriate
lag lengths for the SVM-based models is described as

𝐹𝑡+Δ𝑡 = 𝑓 (𝑅𝐺,𝑡−1, 𝑅𝐺,𝑡−2, 𝐹𝑡−1, 𝐹𝑡−2) 𝐺 = 1, 2, . . . , 7. (6)

Additionally, for reasonable model comparison, the two
indices of the SVM regression, 𝐶 and 𝜀, are simply defined as
1 and 0.1.

3.1.2. Criteria. To discuss the individual and average perfor-
mance of the SVM and two different SOM-SVM based mod-
els, three indices, relative root-mean-square-error (RRMSE),
mean root-mean-square-error (MRMSE), and mean coeffi-
cient of efficiency (MCE), are used:

(1) Relative root-mean-square-error (RRMSE):

RRMSE = √
1

𝑛

𝑛

∑

𝑡=1

(
𝐹̂𝑡 − 𝐹𝑡

𝐹𝑡

)

2

. (7)

(2) Mean root-mean-square-error (MRMSE):

MRMSE =
1

𝑁

𝑙

∑

𝑖=1

RMSE𝑖. (8)

(3) Mean coefficient of efficiency (MCE):

CE = 1 −
∑
𝑛
𝑡=1 (𝐹𝑡 − 𝐹̂𝑡)

2

∑
𝑛
𝑡=1 (𝐹𝑡 − 𝐹𝑡)

2
,

MCE =
1

𝑁

𝑙

∑

𝑖=1

CE𝑖,

(9)

where𝐹𝑡 is the average of observed inflows and 𝑙 is the
number of forecasting typhoon events.

3.2. SOM-SVM Models. As a comparison to strengthen the
SVM-based model ability, the forecasts of the original SVM
model are directly generated from all the forecasting data
sets (where the SVM regressions are built from the other
21 typhoon events). Then, in contrast to the original SVM
model, the SOM clustering and SVMs regression are com-
bined for both of the proposed SVM-based models. Initially,
all forecast forms in each event are divided into different neu-
rons in the SOM clustering process fromwhich the SOMs are
established by the forecast forms of the other typhoon events.
Then, the forecast forms divided for these different SOM
neurons are used to generate forecasts by different strategies.
After the forecasts are obtained by SVMs regression, the
forecasts are combined according to the original time series
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Figure 3: The ID number and location of each neuron for a SOM
with 5 × 5 dimensions.

process. The difference between the SOM-SVM1 and SOM-
SVM2models is the training form selection strategy, which is
mentioned above. To highlight the advantage of the selection
strategy of the SOM-SVM1model, the original SVM forecasts
are generated for comparison with the performance of the
SOM-SVM1 model. Furthermore, based on the concept of
clusters considering the lead-time information, it may make
the forecasts not able to obtain some important information
from the neighbor neurons for different regions in its cluster
strategy. The selection strategy of the SOM-SVM2 model
that considers higher relationship inputs is then established.
The performance of these three SVM-based models is finally
estimated to allow for intercomparison.

3.2.1. SOMClustering. In this subsection, a SOMwith a small
dimension is considered the best option. If the clustering
result is reasonable and satisfactory, the cluster analysis can be
accepted. Otherwise, another SOMwith a larger dimension is
chosen to analyze input patterns. This step is repeated until a
satisfactory result is obtained. That is, the inputs within each
grid have the same characteristics associated with a certain
inflow process. Then, for different events in different lead-
time forecasts, SOMs are generated from the same process.
Taking the 1 h ahead forecasts of the Polly Typhoon event for
instance, the SOM is constructed from the other 21 events.
According to our experiments, a 5 × 5 dimension SOM
is adopted herein. That is, the competitive layer contains
25 grids. After the SOM clustering is implemented, the
corresponding feature map and density map can be obtained.

In the feature map, forecast forms with similar rainfall-
runoff processes are located in neighboring grids. On
the other hand, forecast forms with significantly different
rainfall-runoff processes are located in different grids that are
distant from each other. Such a characteristic is also retained
in the density map, because the density map results from the
feature map. The ID number and location of the 5 × 5 SOM
generated from the 21 typhoon events (except for the Polly
Typhoon) are presented in Figure 3. In addition, its density
map is shown in Figure 4. In Figure 4, the number inside each
neuron indicates how many training data sets are projected
onto the same topology point.

26 29 34 31 75
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61 29 12 23 39

68 61 45 19 37
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Figure 4: The density map resulting from the SOM of 5 × 5

dimensions according to the 21 typhoon events (taking Typhoon
Polly as the testing event).

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Region 2

Region 1 Region 3

Region 4

Figure 5: The classification results for the SOM-SVM1 model
according to the 21 typhoon events (taking Typhoon Polly as the
testing event).

3.2.2. SOM-SVM1 Model. According to the above SOM
results, it is found that themap can be divided into four speci-
fied regions with the rainfall-runoff process characteristics of
different neurons.The specified region divisions are shown in
Figure 5. The association between the four specified regions
and the rainfall-runoff processes is also clearly illustrated in
Figure 6. The regions are (1) increasing inflow region (region
1), (2) base flow region (region 2), (3) peaking hydrograph
region (region 3), and (4) recession region (region 4). For
example, region 1, located in the upper left area of the SOM
(Figure 5), represents increasing reservoir inflow during the
period (Figure 6). In this clustering process, all the forecast
forms of each event are divided into different neurons. Then,
according to (1), the forecasting pattern within the neurons
can be expressed as

(𝐹𝑡+Δ𝑡)𝑘𝑗
= 𝑓 (𝑅𝐺,𝑡, 𝑅𝐺,𝑡−1, 𝐹𝑡, 𝐹𝑡−1)𝑢𝑥

, (10)

where, as in the equation mentioned above, 𝑘𝑗 expresses the
𝑗th specified region and 𝑢𝑥 expresses the 𝑥th neuron.
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Figure 6: The relationship between the four classification regions
and the rainfall-runoff processes for the SOM-SVM1 model.

After the above process, 22 SOMs could be generated, and
each SOM is generated from the other 21 typhoon events.
Among all 22 events, the longest event is 107 h, and the
shortest event is 33 h; therefore, the SOMs are not generated
from the same date length and data sets. Consequently, each
generated SOM may be divided into four specified regions
but is always a little different from the other 21 maps. The
training forms of each neuron in the same specified region
are collected as training form sets for model establishment in
different specified regions. These results are used for SVMs
regression to obtain the forecast forms of each neuron in
the same specified region. Thus, the model SOM-SVM1 is
established.

3.2.3. SOM-SVM2 Model. The above SOM-SVM1 model is
established considering high relativity from four reservoir

inflow processes. However, some training forms might be
allocated to different neurons and, thus, further allocated to
different specified regions for different events. This means
that these training forms sometimes still have important
information for the other specified regions but cannot pass
this information to them. Besides, with the different strengths
and lengths of the 22 typhoon events, the training forms of
each typhoon event would not distribute to the 25 neurons
on the feature map evenly. The maximum density number
for the 5 × 5 feature map is 295, and the minimum number
is 12. For different flow processes, the high density map may
have less information for other neurons, while the low density
map may have more information. However, a large amount
of information can be found for close neurons. Furthermore,
as the clusters consider lead-time information, some of the
forecasting forms of the SOM-SVM1 model cannot pass
information to the forecasts in different regions. To cope with
these outcomes, the SOM-SVM2 model is proposed.

According to the feature map generated from the SOM
discussed in Section 3.2.1, a different enlarged training form
is simply adopted here. The concept of this enlarged training
form implies that, except for the training data set of each
neuron, only the training data sets of surrounding neurons
in the cross region are adopted as training forms. This
means that, in the cross region of each neuron, four is
the maximum number of surrounding neurons containing
forecast forms that can be adopted as training forms for each
neuron. However, for the neurons located on the edge of the
competitive layer, only two or three surrounding neurons
are adopted as training forms. Then, according to (2), the
forecasting form of a 𝑛 × 𝑛 SOM feature map can be written
as

(𝐹𝑡+Δ𝑡)𝑘𝑗
=

{{{{

{{{{

{

𝑓(𝑅𝐺,𝑡−1, 𝑅𝐺,𝑡−2, 𝐹𝑡−1, 𝐹𝑡−2)𝑢𝑗,𝑢𝑗+1 ,𝑢𝑗−𝑛,𝑢𝑗+𝑛
if 𝑢𝑗 = 𝑛𝑖 + 1

𝑓 (𝑅𝐺,𝑡−1, 𝑅𝐺,𝑡−2, 𝐹𝑡−1, 𝐹𝑡−2)𝑢𝑗,𝑢𝑗−1 ,𝑢𝑗−𝑛,𝑢𝑗+𝑛
if 𝑢𝑗 = 𝑛𝑖, 𝑗 = 1, 2, . . . , 25

𝑓 (𝑅𝐺,𝑡−1, 𝑅𝐺,𝑡−2, 𝐹𝑡−1, 𝐹𝑡−2)𝑢𝑗,𝑢𝑗−1 ,𝑢𝑗+1,𝑢𝑗−𝑛,𝑢𝑗+𝑛
others,

(11)

where 𝑢𝑗−1, 𝑢𝑗−𝑛 > 0, 𝑢𝑗+1, 𝑢𝑗+𝑛 < 𝑛
2, 𝑗 expresses the neuron

ID number, and 𝑖 expresses integers. Table 2 presents the
lists of neuron ID numbers for the enlarged training data set
chosen from different neurons for the Polly Typhoon event
generated by the SOM-SVM2 model. Taking the neuron
ID numbers 1, 10, and 17 listed in Table 2 as examples, the
enlarged training data set of these neurons is presented in
Figure 7. The same enlarged training data set generations
are produced within the same structure for each typhoon
event. Then, the forecast forms are adopted to implement
the SVMs for the SOM-SVM2 model results generation.
Different from the SOM-SVM1 model, the enlarged training
data set of SOM-SVM2 is not selected by considering the
inflow process. In this study, irrespective of whether the
number of neurons is selected, the training forms are simply
selected from the neuron location. This enlarged training

form selection strategy not only considers the training data
with higher relationships but also does not require to exclude
the training data set in a different specified region. Similarly,
the above forecast forms are adopted to implement the SVMs
for inflow forecasting.

3.2.4. Comparison between the Original SVM and the SOM-
SVM1. In the SOM-SVM1 model, the SOM process clus-
ters the forecast forms into different neurons according
to the input characteristics and then divides them into
different regions related to different inflow processes of
the typhoon events. It follows that the forecasts can be
generated considering high relative inputs, and the lower
relative inputs can be ignored. Taking Typhoon Polly, which
is the typhoon event with different rise and fall rainfall-
runoff processes, as an example, the SOM-SVM1 model can
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Table 2: The neurons containing the testing data set (1st column)
and the neurons containing the enlarged training data set (2nd
column), for the SOM-SVM2 model.

Neuron ID number of typhoon a
Neuron ID number of
typhoons 𝑖 = 1, . . . , 22,

𝑖 ̸= 𝑎

1 1, 2, 6
2 1, 2, 3, 7
3 2, 3, 4, 8
4 3, 4, 5, 9
5 4, 5, 10
6 1, 6, 7, 11
7 2, 6, 7, 8, 12
8 3, 7, 8, 9, 13
9 3, 7, 8, 9, 13
10 5, 9, 10, 15
11 6, 11, 12, 16
12 7, 11, 12, 13, 17
13 8, 12, 13, 14, 18
14 9, 13, 14, 15, 19
15 10, 14, 15, 20
16 11, 16, 17, 21
17 12, 16, 17, 18, 22
18 13, 17, 18, 19, 23
19 14, 18, 19, 20, 24
20 15, 19, 20, 25
21 16, 21, 22
22 17, 21, 22, 23
23 18, 22, 23, 24
24 19, 23, 24, 25
25 20, 24, 25
Note: please refer to Figure 7 for the ID numbers and locations of neurons.

generate well-performed forecasts by considering forecast
forms belonging to one of the inflow specified regions.
Compared to the forecasts generated from the original SVM
model, the original SVM generates the forecasts irrespective
of whether or not the forecast forms have extreme values.
However, the forecasts generated from the SOM-SVM1model
can arrange the forecast forms belonging to different rainfall-
runoffprocesses.That is, the SOM-SVM1model is established
to strengthen the forecast ability for different rainfall-runoff
processes.

The inflow results generated from the original SVM
model and SOM-SVM1 model for 1 h ahead forecasting are
arranged in Table 3. These show that, compared to the fore-
casts generated from the original SVM model, the RRMSE
values derived from the SOM-SVM1model are small for each
typhoon event. Even the original SVM model can derive a
better CE value for the Xangsane typhoon.This simplymeans
that the CE value of the original SVMcan perform better only
for the Xangsane typhoon, and both models can generate a
CE value up to 0.9. Actually, the CE values generated from

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

5 10 15 20 25

Figure 7: The neurons containing the enlarged training data set for
the SOM-SVM2 model (taking neuron ID numbers 1, 10, and 17 as
examples).

Table 3: Performance comparison of the SVM, SOM-SVM1, and
SOM-SVM2 models for 1 h ahead forecasts using RRMSE and CE
as criteria.

Typhoon
events

SOM SOM-SVM1 SOM-SVM2
RRMSE CE RRMSE CE RRMSE CE

Polly 1.358 0.583 0.448 0.912 0.374 0.916
Ted 0.316 0.770 0.157 0.941 0.128 0.958
Tim 3.627 0.551 1.724 0.873 1.253 0.901
Fred 1.460 0.745 0.369 0.960 0.365 0.952
Gladys 7.430 0.644 1.354 0.921 0.545 0.917
Seth 5.882 0.650 0.817 0.936 0.731 0.950
Herb 1.375 0.959 0.367 0.967 0.268 0.975
Zeb 0.340 0.905 0.187 0.958 0.186 0.955
Xangsane 0.280 0.918 0.187 0.915 0.151 0.936
Nari 0.268 0.808 0.263 0.895 0.222 0.925
Haiyan 1.222 0.743 0.471 0.912 0.337 0.940
Rammasun 2.975 0.643 0.740 0.929 0.613 0.929
Aere 2.784 0.935 1.245 0.979 1.057 0.988
Nock-Ten 0.919 0.788 0.769 0.961 0.657 0.937
Nanmadol 1.681 0.806 0.258 0.924 0.237 0.908
Haitang 7.049 0.727 2.329 0.923 1.225 0.948
Matsa 4.292 0.523 1.474 0.904 1.032 0.900
Talim 3.623 0.874 0.874 0.883 0.779 0.958
Krosa 0.667 0.960 0.554 0.980 0.402 0.981
Fung-Wong 0.876 0.830 0.286 0.979 0.262 0.980
Sinlaku 0.696 0.858 0.212 0.939 0.226 0.913
Jangmi 0.400 0.937 0.133 0.986 0.132 0.978

the original SVM model only have six events reaching 0.9,
while the SOM-SVM1 model has 19. In addition, according
to Figures 8(a) and 8(b), it can be found that the SOM-SVM1
model generates forecasts with significantly less scatter than
the original SVM model when plotted against the measured
values. Further lead-time results are presented in Table 4. It
can be found that the average values of both the CE value
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Figure 8: The observed inflows versus the forecasts obtained by (a) the original SVM model, (b) the SOM-SVM1 model, and (c) the SOM-
SVM2 model.

Table 4: Performance comparison of SVM and SOM-SVM for different lead-times using MRMSE and MCE as criteria.

Lead-time (h) MRMSE (m3/s) MCE
SVM SOM-SVM1 SOM-SVM2 SVM SOM-SVM1 SOM-SVM2

1 167.078 99.535 96.899 0.780 0.934 0.943
2 198.373 156.716 144.010 0.729 0.864 0.884
3 252.267 229.102 204.552 0.560 0.690 0.759

and RRMSE values of the SOM-SVM1 model for different
lead-times are still better than the original SVM model. The
improvement of both indices are 21.5%, 18.4%, and 23.0%
(arranged in Table 5), respectively.

3.2.5. SOM-SVM Results Comparison. All three SVM-based
models are compared in this section. TakingTyphoonPolly as
an example, a comparison of the three different SVM-based

reservoir inflow forecasts for 1 h ahead to 3 h ahead is
presented in Figures 9–11. In these figures, the forecasts
generated from the SOM-SVM2 model performed better
than the original SVM model but did not perform markedly
better than the SOM-SVM1 model. This is because, after
the SOM cluster process, all the forecast forms with similar
input characteristics are arranged to closer, or the same, neu-
rons. As the SVM-based models are established from these
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Table 5: The improvement in MCE due to the use of SOM-SVM2
and SOM-SVM1 instead of SVM.

Lead-time (h) Improvement (%)
SOM-SVM1 SOM-SVM2

1 19.7 20.9
2 18.5 21.2
3 23.0 35.4
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Figure 9: Comparison of the observed inflow with the 1 h ahead
forecasts for Typhoon Polly (1 h).
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Figure 10: Comparison of the observed inflow with the 1 h ahead
forecasts for Typhoon Polly (2 h).

arranged inputs (selected from closer meaningful neurons)
instead of all the inputs, the models can be strengthened for
the relative selection strategies. The purpose of this study is
to find an excellent selection strategy for typhoon events.
Figures 8(a), 8(b), and 8(c) are again compared here. In
Figures 8(a) and 8(b), the SOM-SVM1 models can generate
higher concentrated forecasts, as mentioned above. However,
in Figure 8(c), it can still be found that the forecasts of the
SOM-SVM2model have higher concentration than the other
two SVM-based models.

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90
Time (h)

SVM
SOM-SVM1

SOM-SVM2
Runoff

In
flo

w
 (m

3
/s

)

Figure 11: Comparison of the observed inflow with the 1 h ahead
forecasts for Typhoon Polly (3 h).
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Figure 12: The MCE values of the three SVM-based models.

All three SVM-based model forecasting results for 1 h
ahead are shown in Table 4. It can be found that the SOM-
SVM1 model is outperforming the original SVM model,
as mentioned above. However, except for the fact that all
RRMSEvalues for the SOM-SVM2model are lower than both
of the original SVM model and the SOM-SVM1 model, the
SOM-SVM2 model does not perform better than the SOM-
SVM1 model at each CE value of the typhoon events. Nev-
ertheless, in contrast to the other two SVM-based models,
all the CE values of SOM-SVM2 surpass 0.9. Table 5 lists the
improvements to MCE computed from the SOM-SVM1 and
SOM-SVM2 models when compared with the original SVM
model. The same improvements to MCE values are shown
in Figure 12. These show that the SOM-SVM2 model can
generate a more than 20% improvement over the original
SVM model, and this improvement reaches 35.4% in 3 h
ahead forecasts.This is excellent when compared to the other
two models.



10 Advances in Meteorology

Table 6: The improvement in MCE due to the use of SOM-SVM2
instead of SOM-SVM1.

Lead-time (h) Improvement (%)
1 0.96
2 2.25
3 10.08
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Figure 13: The CE values for 1 h ahead forecasts from three SVM-
based models.

Finally, the performances of the SOM-SVM1 and SOM-
SVM2 models are compared again. As mentioned above,
all the CE values of the SOM-SVM2 model exceed 0.9, but
only 19 values exceed 0.9 for the SOM-SVM1 in 1 h forecasts.
However, this does notmean that the quantity of CE values in
1 h ahead forecasts for the SOM-SVM2 model is higher than
for the SOM-SVM1 model in every typhoon event. As the
list in Table 4 shows, the SOM-SVM1 model has the better
CE values for 8 events within all 22 events. However, the
MCE indicates that the average CE value of the SOM-SVM2
model is better than for the SOM-SVM1 model. In any case,
the RRMSE values still show that the SOM-SVM2model can
generate less inaccurate forecasts, as shown in Table 4.

Comparing the SOM-SVM1 and SOM-SVM2 models,
the improvements for the SOM-SVM2 model are arranged
in Table 6 and Figure 13. The MCE value generated from
the SOM-SVM2 model is only 0.009 greater than from the
SOM-SVM1 model for 1 h ahead forecasts. This means the
improvement of the SOM-SVM2model over the SOM-SVM1
model is just 0.96%. However, for 2 h and 3 h ahead inflow
forecasts, the SOM-SVM2 model obviously improved, with
2.25% and 10.08% improvements, respectively. This means
that after the training data set selected from the SOM-SVM2
model is adopted, the forecasts can be better generated than
for the training data set selected from the SOM-SVM1model.
As the time is extended, the performance of SOM-SVM2

shows an strong improvement compared to the two other
models.

Briefly, themodel SOM-SVM2 is built to forecast typhoon
events with simple structure concept and limited higher
relative data. For the SOM-SVM1model, the data distribution
on the SOMs should be clustered for considering different
reservoir inflow processes in advance and it makes the
forecasts of typhoon events be generated from fewer and
higher relative data. However, the SOM-SVM2 model is
robust for the cross region selection strategy does not need
to understand the distribution on the SOMs for reservoir
inflow processes and still can collect fewer and higher relative
data. Furthermore, the SOM-SVM2 model can generate
better performance of typhoon events forecasts than both the
original SVMmodel and SOM-SVM1 model.

4. Summary and Conclusions

The objective of this paper is to develop a precise and stable
reservoir inflow forecasting model for reservoir operations
during typhoon periods. For this purpose, instead of the
original SVM model, two different enlarged training form
selection strategies from SOM are combined to construct
a piecewise nonlinear model. The first is the model that
considers inputs selected from the inflow processes: the
SOM-SVM1 model. The second is the model adopted for the
training form of neurons on the SOM feature map: the SOM-
SVM2 model.

In conclusion, there are at least three reasons favoring
the use of the SOM-SVM2 model for inflow forecasts. First,
both of the developed SOM-combined SVM models are
established from the SOMmodel that strengthens the forecast
ability well. Second, the SOM-SVM2 model can adopt the
forecasting forms without considering the clusters on the
SOM feature map. For the models established, the SOM-
SVM2model needs an enlarged training form containing the
training data set of each of the neurons and the surrounding
neurons. These neurons are selected depending only on
the situation of the SOM feature map without external
inflow definition for higher relationships. Finally, although
the SOM-SVM2 model only derives a 0.96% improvement
in 1 h reservoir inflow forecast results, it derives 2.25% and
10.08% improvements inMCE value for 2 h and 3 h lead-time
forecast results, respectively, when compared to the SOM-
SVM1 model. Moreover, the SOM-SVM2 model exhibits
20.9%, 21.2%, and 34.4% improvements for the MCE values
for reservoir inflow forecast results with 1 h, 2 h, and 3 h
lead-times, respectively, when compared to the original SVM
model. In other words, the advantage of the SOM-SVM2
model becomes most obvious in long-term forecasts. The
proposed SOM-SVM2 model is recommended as an alterna-
tive to the existingmodels because of its accuracy, robustness,
and efficiency. This modeling technique is expected to be
useful in improving reservoir inflow forecasting.
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