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Sparse-projection image reconstruction is a useful approach to lower the radiation dose; however, the incompleteness of projection
data will cause degeneration of imaging quality. As a typical compressive sensing method, total variation has obtained great
attention on this problem. Suffering from the theoretical imperfection, total variation will produce blocky effect on smooth regions
and blur edges. To overcome this problem, in this paper, we introduce the nonlocal total variation into sparse-projection image
reconstruction and formulate the minimization problem with new nonlocal total variation norm. The qualitative and quantitative
analyses of numerical as well as clinical results demonstrate the validity of the proposed method. Comparing to other existing
methods, our method more efficiently suppresses artifacts caused by low-rank reconstruction and reserves structure information
better.

1. Introduction

Computed tomography (CT) has still been a widely used
medical imaging technology for clinical diagnosis. However,
according to the recent reports, the risk of overhigh radiation
has caused social attention. It is well known that it is harmful
for human body to expose to heavy radioactive source. As
a result, the problem which arises is, when CT scans are
inevitable, and how can we reduce the radiation dose without
losing the imaging quality?

To deal with this issue, many technologies which can be
categorized into two groups were proposed.The first one is to
lower the configuration parameters of X-ray. The key step is
to reduce the milliampere seconds (mAs) or kVp parameter;
however, the quantum noises also appear. Many methods
were proposed to suppress the quantum noises [1–6]. The
vital problem of this kind is that under the situation of low
operational current or voltage, when high density objects,
such as metal implants or bones exit, the severe attenuation
of X-rays allows only a limited number of photons to reach
detectors. As a result, new artifacts will be introduced in the
reconstructed image. The artifacts spread through the whole
image, which contaminate the imaging quality.Therefore, the
second category does not change the energy of X-ray. Instead

of that, reducing the projection number which is also called
sparse-projection reconstruction is another way to achieve
this goal. However, due to the lack of projection views, streak
artifacts will severely affect the imaging quality. This topic
can be viewed as an ill-posed inverse problem which has
provoked many studies about it. In this paper, we will focus
on sparse-projection reconstruction.

Compressive sensing (CS) is an efficientmethod to handle
sparse-projection reconstruction [7, 8].Themain idea ofCS is
very similar to sparse-projection reconstruction and both of
them manage to recover the complete signals from a severe
undersampling. Many studies have been done following
such concepts. In [9], Chen et al. considered a prior image
as a prior knowledge (PICCS). Based on the fact that in
many CT imaging applications some physical and anatomical
structures and the corresponding attenuation information of
the scanned object can be a priori known, Rashed and Kudo
presented a statistical iterative reconstruction (SIR) by incor-
porating this prior information into the image reconstruction
objective function [10]. Ma et al. introduced nonlocal means
into low-dose reconstructionwith a precontrast scan [11].The
most famous model with CS theory is total variation (TV)
based method called ASD-POCS which is firstly proposed
by Sidky et al. [12, 13]. They introduced TV into algebraic
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reconstruction technique (ART) to suppress the artifacts
caused by the limitation of projection views. Following this
idea, the same group replaced 𝐿

1
norm with 𝐿

𝑝
norm in

the minimization function [14]. Ritschl et al. proposed a
step-size-adaptive method based on TV to eliminate the
dependence on the raw data consistency [15]. To improve
the convergence and efficiency of TV based minimization
methods, Yu and Wang constructed a pseudoinverse of
discrete gradient transform (DGT) and adapted a soft-
threshold filtering algorithm [16]. Lu et al. proposed a novel
algorithm for image reconstruction from few-view data. It
utilizes the simultaneous algebraic reconstruction technique
(SART) coupled with dictionary learning, sparse representa-
tion, and TVminimization on two interconnected levels [17].
Although TV based methods have achieved efficient results,
TV suffered from the notorious blocky effect which obstructs
the clinical practice of TV. To overcome this disadvantage;
many efforts were made [18–20]. Zhang et al. combined
classical TV with a high-order norm to suppress the blocky
effect [21]. Fractional calculus was introduced into ASD-
POCS model [22]. By adjusting the order of fractional-order
TV norm, blocky effect can be reduced to an acceptable level
without increasing much computational cost. The reason of
this side effect should put the blame on the basic assumption
of TV that the images are piecewise constant and TV is a
local-related computation.

In this paper, we propose a nonlocal TV based model
to deal with the sparse-projection image reconstruction.
First, we will review the classical TV based model in the
next section. The details of our method are represented
in Section 3. Numerical and clinical experiment results are
demonstrated in Section 4.Thediscussion and conclusion are
given at the end of this paper.

2. A Brief Review about TV Based Image
Reconstruction Method

Because our method is an extended version of TV based
image reconstruction, in this section, we first give a brief
description of this method. Given a 2-dimensional image
𝑢 = 𝑢(x) = 𝑢

𝑥
1
,𝑥
2

, whose size is 𝑀 × 𝑁, 𝑥
1
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In traditional CT imaging problem, the sampling procedure
can be considered as a discrete linear transform

𝐴𝑢 = 𝑓, (3)

where 𝐴 is the system matrix which is comprised of 𝐼 row
vectors and 𝑓 = (𝑓
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2
, . . . , 𝑓
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Figure 1: Fan-beam CT geometry configuration.

The individual elements of the system matrix are 𝐴
𝑖𝑗
, where

𝑖 = 1, 2, . . . , 𝐼 and 𝑗 = 1, 2, . . . , 𝐽. It is obvious that𝑀×𝑁 = 𝐽.
Without losing generality, the fan-beam projection geometry
can be demonstrated in Figure 1.

To solve the linear system in (3), the TV based image
reconstruction algorithm which was used to deal with the
sparse-projection limitation is to optimize the following
problem [12, 13]:

min ‖𝑢‖TV subject to 𝑢 ≥ 0, 𝐴𝑢 = 𝑓, (4)

where ‖𝑢‖TV can be considered as a 𝐿
1
norm of the first-

order gradient image ∇𝑢. The TV based algorithm combined
the steepest decent method and the projection on convex sets
(POCS) to achieve the solution of (4) iteratively.

3. The Proposed Nonlocal TV
Reconstruction Method

The locality of TV is the main factor which causes blocky
effect and it is the motivation we introduce nonlocal TV
based method for alleviating this phenomenon. The mini-
mization problem of CT image reconstruction can be formu-
lated as

min 𝐽 (𝑢) subject to 𝑢 ≥ 0, 𝐴𝑢 = 𝑓, (5)

where 𝐽(𝑢) is the regularization term and other symbols are
with same meanings as (4). The key part is how to choose
𝐽(𝑢). In TV based model, 𝐽(𝑢) = 𝐽TV(𝑢) = ‖𝑢‖TV and in our
proposed method, 𝐽(𝑢) = 𝐽NLTV(𝑢) = ‖𝑢‖NLTV. Inspired by
[23–26], we define ‖𝑢‖NLTV as

‖𝑢‖NLTV = ∫
Ω

∇NLTV𝑢 (x)
 𝑑x, (6)

where the nonlocal gradient ∇NLTV𝑢(x) is defined as the
vector of all partial differences ∇NLTV𝑢(x, ⋅) at x such that

∇NLTV𝑢 (x, y) = (𝑢 (y) − 𝑢 (x))√𝑤 (x, y), ∀y ∈ Ω. (7)



The Scientific World Journal 3

So we obtain the minimization function

min ∫
Ω

√∫
Ω

(𝑢 (x) − 𝑢 (y))2𝑤 (x, y) 𝑑y𝑑x,

subject to 𝑢 ≥ 0, 𝐴𝑢 = 𝑓,

(8)

where𝑤(x, y) is a weighting function to compute the similar-
ity between vectors x and y. 𝑤(x, y) is defined as [25]

𝑤 (x, y) = exp(−
𝐺
𝛼
∗
𝑢(𝑛(x)) − 𝑢(𝑛(y))



2

ℎ2
) , (9)

where 𝐺
𝛼
is the Gaussian kernel with standard deviation

𝛼 and ℎ is filtering parameter controlling the decay of the
exponential function. Generally, ℎ is determined by the
noise level. 𝑛(x) and 𝑛(y) denote the two local similarity
neighborhoods (named patchwindows) centered at the pixels
x and y, respectively, and we only compute the weights in a
semilocal searching window for each pixel. To simplify the
optimization problem, we reformulate (5) as

𝐸 (𝑢) = ∫
Ω

∇NLTV𝑢 (x)
 𝑑x +

𝜆

2

𝐴𝑢 − 𝑓


2

2
, (10)

where 𝜆 is a parameter to control the balance between
regularization and fidelity terms.

Then, we use the gradient descent to update the solution
by the Euler-Lagrange equation of (10):

𝑢
𝑡
= −𝑅𝑢 + 𝜆𝐴

∗
(𝑓 − 𝐴𝑢) , (11)

where 𝐴∗ is the adjoint of 𝐴 and
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(12)

Our proposed method for sparse-projection image recon-
struction can be summarized by the following steps:

(a) initialization of performance parameters and stop-
ping criteria;

(b) outer loop for 𝑝 = 1, 2, . . . , 𝑃: reconstruction with
SART algorithm:
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(c) inner loop for 𝑞 = 1, 2, . . . , 𝑄: NLTV gradient descent
method:

𝑞+1
𝑢 = −𝑅

𝑞
𝑢+𝜆𝐴

∗
(𝑓 − 𝑓

𝑝
) ; (14)

(d) repeat beginning with step (b) until the stopping
criteria are satisfied.

4. Numerical and Clinical Results

In this section, to validate and evaluate the proposedmethod,
numerical and clinical experiments are performed. In the
numerical experiments, Shepp-Logan phantomwas used and
we simulated X-ray projections using Siddon’s ray-driven
algorithm [27] in fan-beam geometry. The source to rotation
center distance is 40 cm and the detector to rotation center is
40 cm. The image array is 20 × 20 cm2. The detector whose
length is 41.3 cm is modeled as a straight-line array of 512
detector bins. All the tests are performed by MATLAB on
a PC with Intel i7-3770 CPU 3.40GHz and 8Gb RAM. In
clinical experiment, we applied our method to a typical CT
slice of a human chest. All the scans were performed on a
Siemens SOMATOM Sensation 64 MSCT scanner (Siemens
Medical System, Erlangen, Germany) except for the Shepp-
Logan (S-L) phantom. The voltage and current were 120 kVp
and 200mA with a slice thickness of 1mm. To get a good
visual effect of ourmethod,we compare the proposedmethod
to FBP, EM, and ASD-POCS. The reconstruction results are
also quantitatively evaluated in terms of RMSE and MSSIM
whose computational definitions are given in [28, 29]. In all
the experiment results, the main parameters were set as 𝛼 =
1, the search window size 𝑁

𝑠
= 5 × 5, the patch window

size 𝑁
𝑝
= 21 × 21, 𝜆 = 0.1, 𝑃 = 100, and 𝑄 = 20.

Moreover, we chose ℎ to be the estimated noise variance in the
filtered back projection image.We used a wavelet based noise
estimation model introduced by Donoho and Johnstone in
these experiments [30].

4.1. Phantom Cases. In this section, the numerical experi-
ment results are given. The results were performed under
ideal condition, in which projection data were generated
numerically without adding noise. To demonstrate the per-
formance of our method, Shepp-Logan phantom was uni-
formly sampled with 30 over 360 degrees. The iteration
numbers of EM, ASD-POCS, and NLTV were simply set to
100.

The reconstruction results of Shepp-Logan phantom are
given in Figure 2. In Figure 2(b), it is obvious that, due
to incompleteness of projection data, classical FBP cannot
achieve an acceptable solution. Although EM is a widely used
method, its result in Figure 2(c) is not satisfactory.The whole
image is fulfilled with severe artifacts and it is difficult to
recognize any parts of the phantom. In Figures 2(d) and 2(e),
ASD-POCS and NLTV suppress most of the artifacts. ASD-
POCS recovers all the virtual organs except some structural
parts. As we marked with white arrows in Figures 2(d) and
2(e), when ASD-POCS dealt with regions full of small struc-
ture information, oversmoothing effect appeared. Different
parts with very small intervals are obscure and some edges are
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(a) (b) (c)

(d) (e)

Figure 2: Reconstruction results of Shepp-Logan phantom by differentmethods. (a) Original, (b) FBP, (c) EM, (d) ASD-POCS, and (e) NLTV.

Table 1: Evaluations of numerical phantom reconstruction.

RMSE MSSIM Iterations Time (s)
FBP 0.4073 0.4568 — 0.0290
EM 0.1548 0.7896 100 2.3878
ASD-POCS 0.0062 0.9932 100 5.9048
NLTV 0.0022 0.9976 100 69.87

also blurred. Compared to ASD-POCS, NLTV can reduce the
impact to a certain extent. The edges in Figure 2(e) are well
kept and three oval organs in the bottom of image are more
distinguishable. Meanwhile, the corresponding quantitative
evaluations are shown in Table 1. Statistically, NLTV yields
better RMSE and MSSIM than those of other methods, but
the computational cost is much higher.

4.2. Clinical Cases. In this section, we validated the pro-
posed method on a clinical case which was scanned by a
Siemens SOMATOM Sensation 64 MSCT scanner (Siemens
Medical System, Erlangen, Germany). The voltage and cur-
rent were 120 kVp and 200mA with a slice thickness of
1mm. To demonstrate the effectiveness of our method, the
results processed by FBP, EM, and ASD-POCS are given
for comparison. The full scanned image with 550 views is
used as a reference image. The image is downsampled uni-
formly to 20 views, about two-tenths of the original dataset.

The iteration numbers of EM, ASD-POCS, and NLTV were
set to 100 uniformly. The reconstructed images are displayed
in Figure 3.

It is obvious that FBP and EM cause considerable streak-
like artifacts in Figures 3(b) and 3(c) and the structure
information of tissues is of terrible vision. ASD-POCS and
NLTV dispel most of the artifacts, so that most of the tissues
can be seen in Figures 3(d) and 3(e). However, in Figure 3(d),
the boundaries between different tissues are blurred and the
blocky effects are visible in the tissues. Three examples are
given in Figures 3(d) and 3(e) by white arrows. NLTV kept
most of structure information well and much less side effect.
The zoomed parts indicated by white arrows are displayed in
Figure 3(f).Thequantitative evaluations are shown inTable 2.
It can be seen that the results show the coherence with the
results of numerical phantom. NLTV obtains better RMSE
and MSSIM than other methods but suffers from larger
computation overheads.

5. Discussion and Conclusion

With the development of modernmedical imaging technolo-
gies, CT has been playing an increasing important role in
clinical analysis. Image reconstruction with sparse projection
is one of the most efficient ways to lower the dose the
patients will endure. CS is a powerful tool to deal with
this problem. CS has proved that a complete signal can
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Figure 3: Reconstruction results of chest image by differentmethods. (a)Original, (b) FBP, (c) EM, (d) ASD-POCS, (e)NLTV, and (f) zoomed
parts of original image, ASD-POCS, and NLTV. First row is original images, the second row is ASD-POCS results, and the third row is NLTV
results.

Table 2: Evaluations of clinical image reconstruction.

RMSE MSSIM Iterations Time (s)
FBP 0.2260 0.6779 — 0.0310
EM 0.0581 0.7190 100 2.9973
ASD-POCS 0.0562 0.7371 100 6.1286
NLTV 0.0403 0.8214 100 84.53

be recovered, while a sparsifying transform exists. In this
situation, Nyquist sampling theory may not be fit. TV is
widely used as an efficient sparsifying transform and it can
be introduced intomany topics in CT reconstruction, such as
sparse projection, limited-angle, and interior reconstruction.
Although TV is popular, the blocky effect in homogeneous
regions limits the applications in clinical practice. The main
reason for this phenomenon is that TV is neighborhood
based and there is no global information involved. This will
lead to loss of structure and texture information. To solve this
problem, we introduce NLTV into medical imaging and give
its application in sparse-projection reconstruction. NLTV
calculates the weights by searching in all the image patches
and it avoids being dependent only on neighboring pixels.
The experimental results show that the presented NLTV
method can yield more significant performance gains than

the existing methods, including FBP, EM, and ASD-POCS,
in terms of visual effect and different measurement metrics.

There are several parameters in our methods. All of
them should be determined manually, namely, the search
window size 𝑁

𝑠
, the patch window size 𝑁

𝑝
, the filtering

parameters 𝛼, and the regularization scale parameter 𝜆.
Note that, all the parameters are application related. In our
purpose, a bigger𝑁

𝑠
theoretically means that more similarity

information will be acquired. By extensive experiments,𝑁
𝑠
=

21 × 21 and 𝑁
𝑝
= 5 × 5 will be appropriate settings for

effective noise and artifact suppression while maintaining
computational efficiency. For the other parameters, 𝛼 and 𝜆,
in our simulations, we simply select the best average config-
uration based on the results obtained with a broad range of
parameter values manually in terms of visual inspection and
quantitative measurements. Due to the computational cost of
the proposed method, an adaptive mechanism will be useful
and in the future work, we will focus on this problem.

Another concern is the computation cost of the proposed
method. As a result of introducing global patch distance
computation, the computational burden is much bigger than
other iteration based methods. However, with the rapid
development of storage hardware, the processing time will
not be main obstacle and also the proposed method can be
implemented on PC clusters or on graphic processing units
(GPU), which will make it feasible for practical application.
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In conclusion, in this paper, we present a novel sparse-
projection image reconstructionmethod using nonlocal total
variation. After experiments on numerical phantoms and
clinical cases, the proposed method shows better perfor-
mance than several commonly used methods with respect
to both quantitativeness and qualitativeness. Although the
computational cost of this method is larger than current
methods, there are several methods that can accelerate the
processing speed. It will be convenient to implement and
add to modern CT systems. The optimization of adaptive
parameter selection and acceleration is another concern in
our future work.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the grants from the National
Science Foundation of China (nos. 61272448, 61302028),
STMSP Project (no. 2012RZ0005), and the Foundation of
Sichuan University Early Career Researcher Award (nos.
2012SCU11036, 2012SCU11070). The authors also acknowl-
edge Dr. Yinjie Lei’s help to improve the language expression
of this paper.

References

[1] T. Li, X. Li, J. Wang et al., “Nonlinear sinogram smoothing for
low-dose X-ray CT,” IEEE Transactions on Nuclear Science, vol.
51, no. 5, pp. 2505–2513, 2004.

[2] J. Xu and B. M. Tsui, “Electronic noise modeling in statistical
iterative reconstruction,” IEEE Transactions on Image Process-
ing, vol. 18, no. 6, pp. 1228–1238, 2009.

[3] J.Ma, J.Huang,Q. Feng et al., “Low-dose computed tomography
image restoration using previous normal-dose scan,” Medical
Physics, vol. 38, no. 10, pp. 5713–5731, 2011.

[4] A. M. Mendrik, E.-J. Vonken, A. Rutten, M. A. Viergever, and
B. Van Ginneken, “Noise reduction in computed tomography
scans using 3-D anisotropic hybrid diffusion with continuous
switch,” IEEE Transactions on Medical Imaging, vol. 28, no. 10,
pp. 1585–1594, 2009.

[5] Y. Chen,W. Chen, X. Yin et al., “Improving low-dose abdominal
CT images by weighted intensity averaging over large-scale
neighborhoods,” European Journal of Radiology, vol. 80, no. 2,
pp. e42–e49, 2011.

[6] Y. Zhang, J. Zhang, and H. Lu, “Statistical sinogram smoothing
for low-dose CT with segmentation-based adaptive filtering,”
IEEE Transactions on Nuclear Science, vol. 57, no. 5, pp. 2587–
2598, 2010.

[7] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty
principles: exact signal reconstruction from highly incomplete
frequency information,” IEEE Transactions on InformationThe-
ory, vol. 52, no. 2, pp. 489–509, 2006.

[8] D. L. Donoho, “Compressed sensing,” IEEE Transactions on
Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[9] G.-H. Chen, J. Tang, and S. Leng, “Prior image constrained
compressed sensing (PICCS): a method to accurately recon-
struct dynamic CT images from highly undersampled projec-
tion data sets,”Medical Physics, vol. 35, no. 2, pp. 660–663, 2008.

[10] E. A. Rashed and H. Kudo, “Statistical image reconstruction
from limited projection data with intensity priors,” Physics in
Medicine and Biology, vol. 57, no. 7, pp. 2039–2061, 2012.

[11] J.Ma,H. Zhang, Y.Gao et al., “Iterative image reconstruction for
cerebral perfusion CT using a pre-contrast scan induced edge-
preserving prior,” Physics in Medicine and Biology, vol. 57, no.
22, pp. 7519–7542, 2012.

[12] E. Y. Sidky, C.-M. Kao, and X. Pan, “Accurate image reconstruc-
tion from few-views and limited-angle data in divergent-beam
CT,” Journal of X-Ray Science and Technology, vol. 14, no. 2, pp.
119–139, 2006.

[13] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-
beam computed tomography by constrained, total-variation
minimization,” Physics in Medicine and Biology, vol. 53, no. 17,
pp. 4777–4807, 2008.

[14] E. Y. Sidky, R. Chartrand, and X. Pan, “Image reconstruction
from few views by non-convex optimization,” in Proceedings
of the IEEE Nuclear Science Symposium and Medical Imaging
Conference (NSS-MIC ’07), pp. 3526–3530, Honolulu, Hawaii,
USA, November 2007.

[15] L. Ritschl, F. Bergner, C. Fleischmann, and M. Kachelrieß,
“Improved total variation-based CT image reconstruction
applied to clinical data,” Physics in Medicine and Biology, vol.
56, no. 6, pp. 1545–1561, 2011.

[16] H. Yu and G. Wang, “A soft-threshold filtering approach for
reconstruction from a limited number of projections,” Physics
in Medicine and Biology, vol. 55, no. 13, pp. 3905–3916, 2010.

[17] Y. Lu, J. Zhao, and G. Wang, “Few-view image reconstruction
with dual dictionaries,” Physics in Medicine and Biology, vol. 57,
no. 1, pp. 173–189, 2012.

[18] X. Jin, L. Li, Z. Chen, L. Zhang, and Y. Xing, “Anisotropic
total variation minimization method for limited-angle CT
reconstruction,” in Developments in X-Ray Tomography VIII,
vol. 8506 of Proceedings of SPIE, 2012.

[19] G. T. Herman and R. Davidi, “Image reconstruction from a
small number of projections,” Inverse Problems, vol. 24, no. 4,
Article ID 045011, 2008.

[20] B. Dong, J. Li, and Z. Shen, “X-Ray CT image reconstruction
via wavelet frame based regularization and radon domain
inpainting,” Journal of Scientific Computing, vol. 54, pp. 333–349,
2013.

[21] Y. Zhang, W. H. Zhang, H. Chen, M. L. Yang, T. Y. Li, and
J. L. Zhou, “Few-view image reconstruction combining totaln
variation and a high-order norm,” International Journal of
Imaging Systems and Technology, vol. 23, pp. 249–255, 2013.

[22] Y. Zhang, W. H. Zhang, Y. F. Pu et al., “Few-view image recon-
structionwith fractional-order total variation,” in Proceedings of
the 12th InternationalMeeting on FullyThree-Dimensional Image
Reconstruction in Radiology and Nuclear Medicine, pp. 177–180,
Lake Tahoe, Calif, USA, June 2013.

[23] G. Gilboa and S. Osher, “Nonlocal operators with applications
to image processing,” Multiscale Modeling and Simulation, vol.
7, no. 3, pp. 1005–1028, 2008.

[24] G. Gilboa and S. Osher, “Nonlocal linear image regularization
and supervised segmentation,” Multiscale Modeling and Simu-
lation, vol. 6, no. 2, pp. 595–630, 2007.



The Scientific World Journal 7

[25] Y. Lou, X. Zhang, S. Osher, and A. Bertozzi, “Image recovery via
nonlocal operators,” Journal of Scientific Computing, vol. 42, no.
2, pp. 185–197, 2010.

[26] X. Zhang, M. Burger, X. Bresson, and S. Osher, “Bregmanized
nonlocal regularization for deconvolution and sparse recon-
struction,” SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp.
253–276, 2010.

[27] R. L. Siddon, “Fast calculation of the exact radiological path for
a three-dimensional CT array,”Medical Physics, vol. 12, no. 2, pp.
252–255, 1985.

[28] Y. Zhang, Y.-F. Pu, W.-H. Zhang et al., “A novel noniterative
metal artifact reductionmethod using coherence transport with
fast marching in computed tomography,” International Journal
of Imaging Systems and Technology, vol. 22, pp. 1–8, 2012.

[29] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–
612, 2004.

[30] D. L. Donoho and J. M. Johnstone, “Ideal spatial adaptation by
wavelet shrinkage,” Biometrika, vol. 81, no. 3, pp. 425–455, 1994.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


