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It was given a prototype constructing a new sequence space of fuzzy numbers by means of the matrix domain of a particular
limitation method. That is we have constructed the Zweier sequence spaces of fuzzy numbers [ℓ

∞
(𝐹)]
𝑍
𝜂 , [𝑐(𝐹)]

𝑍
𝜂 , and [𝑐

0
(𝐹)]
𝑍
𝜂

consisting of all sequences 𝑢 = (𝑢
𝑘
) such that 𝑍𝜂𝑢 in the spaces ℓ

∞
(𝐹), 𝑐(𝐹), and 𝑐

0
(𝐹), respectively. Also, we prove that [ℓ

∞
(𝐹)]
𝑍
𝜂 ,

[𝑐(𝐹)]
𝑍
𝜂 , and [𝑐

0
(𝐹)]
𝑍
𝜂 are linearly isomorphic to the spaces ℓ

∞
(𝐹), 𝑐(𝐹), and 𝑐

0
(𝐹), respectively. Additionally, the 𝛼(𝑟)-, 𝛽(𝑟)-, and

𝛾(𝑟)-duals of the spaces [ℓ
∞
(𝐹)]
𝑍
𝜂 , [𝑐(𝐹)]

𝑍
𝜂 , and [𝑐

0
(𝐹)]
𝑍
𝜂 have been computed. Furthermore, two theorems concerning matrix

map have been given.

1. Introduction and Preliminaries

Let suppose that N, R, and 𝐸
𝑖
are the set of all positive

integers, all real numbers, and all bounded and closed
intervals on the real line R; that is, 𝐸

𝑖
= {𝑎 = [𝑎

−

, 𝑎
+

] : 𝑎
−

≤

𝑥 ≤ 𝑎
+

, 𝑎
− and 𝑎

+

∈ R}, respectively. For 𝑎, 𝑏 ∈ 𝐸
𝑖
, define

𝑑 (𝑎, 𝑏) = max {𝑎
−

− 𝑏
− ,

𝑎
+

− 𝑏
+} . (1)

It can easily be seen that 𝑑 defines a metric on 𝐸
𝑖
and the pair

(𝐸
𝑖
, 𝑑) is a complete metric space [1]. Let𝑋 be nonempty set.

According to Zadeh, a fuzzy subset of𝑋 is a nonempty subset
{(𝑥, 𝑢(𝑥)) : 𝑥 ∈ 𝑋} of 𝑋 × [0, 1] for some function 𝑢 : 𝑋 →

[0, 1] [2]. Consider a function 𝑢 : R → [0, 1] as a subset of
a nonempty base space R and denote the family of all such
functions or fuzzy sets by 𝐸. Let us suppose that the function
𝑢 satisfies the following properties:

(1) 𝑢 is normal; that is, there exists an 𝑥
0
∈ R such that

𝑢(𝑥
0
) = 1;

(2) 𝑢 is fuzzy convex; that is, for any 𝑥, 𝑦 ∈ R and 𝜇 ∈

[0, 1], 𝑢[𝜇𝑥 + (1 − 𝜇)𝑦] ≥ min{𝑢(𝑥), 𝑢(𝑦)};
(3) 𝑢 is upper semicontinuous;
(4) the closure of {𝑥 ∈ R : 𝑢(𝑥) ≥ 0}, denoted by 𝑢

0, is
compact.

Then the function 𝑢 is called a fuzzy number [9].

Properties (1)–(4) imply that for each 𝛼 ∈ [0, 1], the 𝛼-cut
set of the fuzzy number 𝑢 defined by 𝑢(𝛼) = {𝑥 ∈ R : 𝑢(𝑥) ≥

𝛼} is in 𝐸
𝑖
; that is, 𝑢(𝛼) = [𝑢

−

(𝛼), 𝑢
+

(𝛼)] for each 𝛼 ∈ [0, 1].
We denote the set of all fuzzy numbers by 𝐹.

Also, the following statements hold:

(5) 𝑢−(𝛼) is a bounded andnondecreasing left continuous
function on (0, 1];

(6) 𝑢+(𝛼) is a bounded and nonincreasing left continuous
function on (0, 1];

(7) the functions 𝑢+(𝛼) and 𝑢
−

(𝛼) are right continuous at
the point 𝛼 = 0;

(8) 𝑢+(𝛼) ≥ 𝑢
−

(𝛼).

Sometimes, the representation of fuzzy numbers with 𝛼-
cut sets is cause failures according to algebraic operations.
For example, if 𝑢 is any fuzzy number, then 𝑢 − 𝑢 =

[𝑢
−

(𝛼), 𝑢
+

(𝛼)] − [𝑢
−

(𝛼), 𝑢
+

(𝛼)] = [𝑢
−

(𝛼) − 𝑢
+

(𝛼), 𝑢
+

(𝛼) −

𝑢
−

(𝛼)] is not equal to fuzzy zero.
In this study, we have used another type representation of

a fuzzy number to avoid this type algebraic failure which is
used in [3, 4].

Furthermore, we know that shape similarity of the mem-
bership functions does not reflect the conception itself, but
the context in which it is used. Whether a particular shape
is suitable or not can be determined only in the context of
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a particular application. However, many applications are not
overly sensitive to variations in the shape. In such cases, it is
convenient to use a simple shape, such as the triangular shape
of membership function.

For example, let us consider any triangular fuzzy number
𝑢.

If the function

𝑢 (𝑥) =

{{{{{{{

{{{{{{{

{

𝑥 − 𝑢
1

𝑢2 − 𝑢1
, 𝑥 ∈ [𝑢

1

, 𝑢
2

] ,

𝑢
3

− 𝑥

𝑢3 − 𝑢2
, 𝑥 ∈ [𝑢

2

, 𝑢
3

] ,

0, otherwise

(2)

is the membership function of the triangular fuzzy number
𝑢, then the fuzzy number 𝑢 can represent the notation 𝑢 =

(𝑢
1

, 𝑢
2

: 1, 𝑢
3

). Clearly this representation is unique for 𝑢(𝑥)
and on the contrary for every 𝑢 = 𝑢

(1,2 : 1,3), there is an
𝑢(𝑥) which is unique. The triangular fuzzy numbers will be
denoted shortly by 𝑢 = 𝑢

(1,2 : 1,3) and the set of all triangular
fuzzy numbers will be denoted by 𝐹; that is,

𝐹 = {𝑢 = 𝑢
(1,2 : 1,3)

: 𝑢
1

≤ 𝑢
2 : 1

≤ 𝑢
3 and 𝑢

1

, 𝑢
2 : 1

, 𝑢
3

∈ R} .

(3)

The 𝑢1, 𝑢2 : 1, and 𝑢
3 are called first, middle, and end points of

triangular fuzzy number, respectively. Also the notation𝑢
2

: 1

says to us that, the height of the fuzzy number 𝑢 is 1 at the 𝑢2.
Let𝑢, V ∈ 𝐹 and𝜆 ∈ R.Theoperations addition and scalar

multiplication are defined on 𝐹 as follows:

𝑢 + V = 𝑢
(1,2,3)

+ V(1,2,3)

= (𝑢
1

+ V1, 𝑢2 + V2, 𝑢3 + V3) = 𝑤
(1,2,3)

= 𝑤,

𝜆𝑢
(1,2,3)

= {
𝜆𝑢
(1,2,3) if 𝜆 ≥ 0,

𝜆𝑢
(3,2,1) if 𝜆 < 0.

(4)

In fact, it is necessary to make some assumptions on the set
of fuzzy numbers for constructing an algebraic structure. For
example, we must redefine fuzzy identity elements according
to addition and multiplication.

Let us suppose that 𝑢1 ≤ 0, 𝑢2 = 0, and 𝑢
3

≥ 0. If we
accept that any fuzzy number

0 = (𝑢
1

, 0, 𝑢
3

) (5)

is a fuzzy zero, then the difference 𝑢
(1,2,3)

− 𝑢
(1,2,3)

=

𝑢
(1−3,2−2,3−1)

= (𝑢
1

−𝑢
3

, 0, 𝑢
3

−𝑢
1

) = 0 is acceptable fuzzy zero
for us. Therefore, we say that the inverse of the fuzzy number
𝑢
(1,2,3) is−𝑢(1,2,3) = (−𝑢

3

, −𝑢
2

, −𝑢
1

), according to addition and
the −𝑢

(1,2,3) determines a fuzzy number. With this idea, we
can solve equations in the form 𝑥

(1,2,3)

+ 𝑢
(1,2,3)

= 0 which
may be given by inexact data.

If we sum fuzzy number 𝑢with fuzzy zero, then the spread
of fuzziness of u may increase or decrease. This is normal
because we are summing a “fuzzy number” and “fuzzy zero.”

This situation is valid for fuzzy one; that is, if the 1 fuzzy is
one, then spread of fuzziness of the products 1𝑢 or 𝑢1 will be
increase or decrease. This is normal, too.

The “fuzzy number a” can be denoted by the notation
(𝑢
1

, 𝑎, 𝑢
3

) and max{|𝑢1 − 𝑎|, |𝑎 − 𝑢
3

|} should be less than 1.
Theoretically, the assumption “max{|𝑢1 − 𝑎|, |𝑎 − 𝑢

3

|} should
be less than 1” that is not necessary but in the practical, it has
to be. For example, the “approximately 5” can be taken as 5 =

(−4, 5, 15) but in the applications, generally, “approximately 5”
is taken as 5 = (5 − 𝑡, 5, 5 + 𝑡), (0 < 𝑡 < 1). This choice is more
accurate than 5 = (−4, 5, 15). We know that, generally, in the
practical applications, the spread of fuzziness is not very large.
It is fact that the set𝐹 is not linear space according to algebraic
operations sense of (4).

The second important matter is the topology on the set
𝐹. If we want construct a topology on, then we can use the
metric defined by 𝑑 : 𝐹 × 𝐹 → R,

𝑑 (𝑢
(1,2,3)

, V(1,2,3)) := max
𝑖=1,2,3

{

𝑢
𝑖

− V𝑖

} . (6)

We can easily show that the set 𝐹 is a complete metric space
with the metric 𝑑.

The function 𝑓 : N → 𝐹, 𝑘 → 𝑓(𝑘) := 𝑢
(1,2,3)

𝑘
is called

a sequence of fuzzy numbers and is represented by (𝑢
𝑘
) =

(𝑢
(1,2,3)

𝑘
), [5].

Let us denote the set of all sequences of fuzzy numbers by
𝑤(𝐹); that is,

𝑤 (𝐹) := {𝑢 = (𝑢
(1,2,3)

𝑘
) : 𝑢 : N → 𝐹, 𝑢 (𝑘) = 𝑢

(1,2,3)

𝑘
} , (7)

where 𝑢
1

𝑘
≤ 𝑢
2

𝑘
≤ 𝑢
3

𝑘
and 𝑢

1

𝑘
, 𝑢
2

𝑘
, 𝑢
3

𝑘
∈ R for all 𝑘 ∈ N, [6].

The 𝑢
1

𝑘
, 𝑢2
𝑘
, and 𝑢

3

𝑘
are called first, middle, and end points

of general term of sequences of triangular fuzzy numbers,
respectively. If degree of membership at 𝑢2

𝑘
is equal to 1, then

(𝑢
𝑘
) is a sequence of fuzzy number and if it is not, then the

sequence (𝑢
𝑘
) is a sequence of the fuzzy sets.

Each subspace of 𝑤(𝐹) is called a sequence space of
fuzzy numbers. We will write ℓ

∞
(𝐹), 𝑐(𝐹), and 𝑐

0
(𝐹) for the

spaces of all bounded, convergent, and null sequences of
fuzzy numbers, respectively; that is,

ℓ
∞

(𝐹) = {𝑢 = (𝑢
(1,2,3)

𝑘
) ∈ 𝑤 (𝐹) :

sup
𝑘∈N

𝑑 (𝑢
(1,2,3)

𝑘
, 0) < ∞} ,

𝑐 (𝐹) = {𝑢 = (𝑢
(1,2,3)

𝑘
) ∈ 𝑤 (𝐹) : lim

𝑘

𝑑 (𝑢
(1,2,3)

𝑘
, 𝑢
(1,2,3)

0
)= 0,

𝑢
0
∈ 𝐹} ,



International Journal of Mathematics and Mathematical Sciences 3

𝑐
0
(𝐹) = {𝑢 = (𝑢

(1,2,3)

𝑘
) ∈ 𝑤 (𝐹) : lim

𝑘

𝑑 (𝑢
(1,2,3)

𝑘
, 0) = 0} ,

ℓ
𝑝
(𝐹) = {𝑢 = (𝑢

(1,2,3)

𝑘
) ∈ 𝑤 (𝐹) : ∑

𝑘

𝑑(𝑢
(1,2,3)

𝑘
, 0)
𝑝

< ∞,

1 ≤ 𝑝 < ∞} .

(8)

In [7], Nanda has studied the spaces of bounded and
convergent sequences of fuzzy numbers and shown that
they are complete metric spaces with the metric 𝑑(𝑢, V) =

sup
𝑘
max{|𝑢−

𝑘
(𝛼) − V−

𝑘
(𝛼)|, |𝑢

+

𝑘
(𝛼) − V+

𝑘
(𝛼)|}, (∀𝛼 ∈ [0, 1]).

By using the metric 𝑑, many spaces of fuzzy sequences
have been built and published in famous math journals. By
reviewing the literature, one can reach them easily, (e. g., see,
[8–13] and others).

Definition 1. Let 𝜆(𝐹) ⊂ 𝑤(𝐹) and algebraic operations on
𝜆(𝐹) sense of (4).The function ‖⋅‖ : 𝜆(𝐹) → R.The function
‖ ⋅ ‖ is called module on the set 𝜆(𝐹) if it has the following
properties:

(9) ‖𝑢‖ = 0 ⇔ 𝑢 = 𝜃,
(10) ‖𝛼𝑢‖ = |𝛼|‖𝑢‖,
(11) ‖𝑢 + V‖ ≤ ‖𝑢‖ + ‖V‖.

If the function ‖ ⋅ ‖ : 𝜆(𝐹) → R satisfies (9)–(11) on
𝜆(𝐹), then 𝜆(𝐹) is called module sequence space of the fuzzy
numbers. If 𝜆(𝐹) is complete with respect to the module ‖ ⋅ ‖,
then 𝜆(𝐹) is called complete module sequence space of the
fuzzy numbers.

By Definition 1, we have “Every normed space is a module
space but converse is not true.”

Let𝜆(𝐹) and𝜇(𝐹) be two spaces of fuzzy valued sequences
and let 𝐴 = (𝑎

𝑛𝑘
) be an infinite matrix of positive real

numbers 𝑎
𝑛𝑘
, where 𝑛, 𝑘 ∈ N. Then, we say that 𝐴 defines

a real-matrix mapping from 𝜆(𝐹) to 𝜇(𝐹), and we denote it
by writing 𝐴 : 𝜆(𝐹) → 𝜇(𝐹), if for every sequence 𝑢 =

(𝑢
(1,2,3)

𝑘
) ∈ 𝜆(𝐹), the sequence 𝐴𝑢 = {(𝐴𝑢

(1,2,3)

)
𝑛
} is in 𝜇(𝐹)

where

(𝐴𝑢
(1,2,3)

)
𝑛

= ∑
𝑘

𝑎
(1,1,1)

𝑛𝑘
𝑢
(1,2,3)

𝑘

= (∑
𝑘

𝑎
(1,1,1)

𝑛𝑘
𝑢
1

𝑘
,∑
𝑘

𝑎
(1,1,1)

𝑛𝑘
𝑢
2

𝑘
,∑
𝑘

𝑎
(1,1,1)

𝑛𝑘
𝑢
3

𝑘
) ,

(9)

and the series ∑
𝑘
𝑎
(1,1,1)

𝑛𝑘
𝑢
1

𝑘
, ∑
𝑘
𝑎
(1,1,1)

𝑛𝑘
𝑢
2

𝑘
, ∑
𝑘
𝑎
(1,1,1)

𝑛𝑘
𝑢
3

𝑘
are con-

vergent for all 𝑛 ∈ N. By (𝜆(𝐹) : 𝜇(𝐹)), we denote the
class of matrices 𝐴 such that 𝐴 : 𝜆(𝐹) → 𝜇(𝐹). Thus,
𝐴 ∈ (𝜆(𝐹) : 𝜇(𝐹)) if and only if the series on the right side
of (9) are convergent for each 𝑛 ∈ N and every 𝑢 ∈ 𝜆(𝐹); we
have 𝐴𝑢 = {(𝐴𝑢

(1,2,3)

)
𝑛
}
𝑛∈N ∈ 𝜇(𝐹) for all 𝑢 ∈ 𝜆(𝐹).

Let

[𝜆 (𝐹)]
𝐴
= {𝑢 = (𝑢

(1,2,3)

𝑘
) ∈ 𝑤 (𝐹) : 𝐴𝑢

(1,2,3)

∈ 𝜆 (𝐹)} , (10)

where 𝜆(𝐹) is a sequence space of fuzzy numbers. Then,
the set [𝜆(𝐹)]

𝐴
of sequences of fuzzy numbers is called the

domain of an infinite matrix 𝐴 in 𝜆(𝐹).
Let the infinite matrix 𝐴 = (𝑎

𝑛𝑘
) of positive real numbers

be the Cesàro matrix of one order; that is,

𝑎
𝑛𝑘

=
{

{

{

1

𝑛 + 1
, 0 ≤ 𝑘 ≤ 𝑛

0, otherwise.
(𝑛, 𝑘 ∈ N) (11)

Then the 𝐴-transform of the sequence (𝑢 𝑘) =

((−2, −1, 0), (0, 1, 2), (−2, −1, 0), (0, 1, 2),. . . , (−2, −1, 0), (0, 1,
2), . . .) of fuzzy numbers is equal to ((−1, 0, 1)) which means
that we can obtain a limit with this way. From here, we realize
that any limitation method can transform sequences of fuzzy
numbers into set of all sequences of fuzzy numbers. It is also
very important to construct new sequence space of fuzzy
numbers.

The idea to construct a new sequence space of real or
complex numbers using by matrix domain of a particular
limitation method has been employed many authors; for
example, you can see Altay et al. [14], Başar and Altay [15],
Malkowsky [16], Ng and Lee [17], and Wang [18]. They
introduced the sequence spaces (ℓ

𝑝
)
𝑅𝑡

= 𝑒
𝑟

𝑝
with 1 ≤ 𝑝 ≤ ∞,

(ℓ
∞
)
𝑅𝑡

= 𝑟
𝑡

∞
, 𝑐
𝑅𝑡

= 𝑟
𝑡

𝑐
and (𝑐

0
)
𝑅
𝑡 = 𝑟
𝑡

0
in [19], (ℓ

𝑝
)
Δ

= 𝑏V
𝑝

in [15], (ℓ
𝑝
)
𝐶

= 𝑋
𝑝
in [17], and (ℓ

𝑝
)
𝑁
𝑞 in [18], where 𝐸

𝑟, 𝑅𝑡,
Δ, 𝐶, and 𝑁

𝑞
denote the Euler, means order 𝑟, Riesz means

with respect to the sequence 𝑡 = (𝑡
𝑘
), backward difference

matrix, Cesàro means of order one, and Nörlund means with
respect to the sequence 𝑞 = (𝑞

𝑘
), respectively, and 1 ≤ 𝑝 ≤

∞. In the present paper, following [14–18], we will define
matrix domain of sequence spaces of fuzzy numbers and
introduce the sequence spaces of fuzzy numbers [𝑐(𝐹)]

𝑍
𝜂 and

[𝑐
0
(𝐹)]
𝑍
𝜂 and derive some results related to those sequence

spaces. Furthermore, we have computed the 𝛼(𝑟)-, 𝛽(𝑟)-
and 𝛾(𝑟)-duals of the spaces [𝑐(𝐹)]

𝑍
𝜂 and [𝑐

0
(𝐹)]
𝑍
𝜂 . Latter,

we have characterized the matrix mappings from the spaces
[𝑐(𝐹)]

𝑍
𝜂 and [𝑐

0
(𝐹)]
𝑍
𝜂 to 𝜇(𝐹) and from 𝜇(𝐹) to [𝑐(𝐹)]

𝑍
𝜂

and [𝑐
0
(𝐹)]
𝑍
𝜂 by employing the suitable relations between the

related matrix classes, where 𝜇(𝐹) is a given sequence space.
Now we will give a lemma.

Lemma 2. The sets 𝑐(𝐹), 𝑐
0
(𝐹), and ℓ

∞
(𝐹) are complete

module spaces with the module defined by

‖𝑢‖ = sup
𝑘

max
𝑖=1,2,3

{

𝑢
(𝑖)

𝑘


} . (12)

Proof. We consider only ℓ
∞
(𝐹). It is easy to see that ‖ ⋅ ‖

is a module on ℓ
∞
(𝐹). To show that ℓ

∞
(𝐹) is complete in

this module, suppose that (𝑢(𝑖,𝑛)
𝑘

) = ((𝑢
(1,𝑛)

𝑘
, 𝑢
(2,𝑛)

𝑘
, 𝑢
(3,𝑛)

𝑘
)) is

a fundamental sequence in ℓ
∞
(𝐹) for each 𝑛. Then we have

𝜖 >

𝑢
(𝑖,𝑛)

𝑘
− 𝑢
(𝑖,𝑚)

𝑘


= sup
𝑘

max
𝑖=1,2,3

{

𝑢
(𝑖,𝑛)

𝑘
− 𝑢
(𝑖,𝑚)

𝑘


} . (13)

Hence we can write

𝜖 >

𝑢
(𝑖,𝑛)

𝑘
− 𝑢
(𝑖,𝑚)

𝑘


, 𝑖 = 1, 2, 3. (14)
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From here, we realize that (𝑢
(1,𝑛)

𝑘
), (𝑢(2,𝑛)
𝑘

), and (𝑢
(3,𝑛)

𝑘
) are

fundamental sequences of real numbers in R. Since R is
complete, the sequences (𝑢

(1,𝑛)

𝑘
), (𝑢
(2,𝑛)

𝑘
), and (𝑢

(3,𝑛)

𝑘
) are

convergent in R for all 𝑛 ∈ N.
Let us suppose that lim

𝑛
𝑢
(𝑖,𝑛)

𝑘
= 𝑢
(𝑖,0)

𝑘
for each 𝑖 = 1, 2, 3

and 𝑘 ∈ N. Since

sup
𝑘

max
𝑖=1,2,3

{

𝑢
(𝑖,𝑛)

𝑘
− 𝑢
(𝑖,𝑚)

𝑘


} < 𝜖 (15)

for all 𝑛,𝑚 ≥ 𝑘, we have

lim
𝑚→∞

sup
𝑘

max
𝑖=1,2,3

{

𝑢
(𝑖,𝑛)

𝑘
− 𝑢
(𝑖,𝑚)

𝑘


}

= sup
𝑘

max
𝑖=1,2,3

{

𝑢
(𝑖,𝑛)

𝑘
− 𝑢
(𝑖,0)

𝑘


} < 𝜖.

(16)

This means that, for 𝑖 = 1, 2, 3, 𝑢(𝑖,𝑛)
𝑘

→ 𝑢
(𝑖,0)

𝑘
as (𝑛 → ∞);

that is, lim
𝑛
𝑢
𝑛

𝑘
= 𝑢
0

𝑘
in [ℓ
∞
(𝐹)]
𝑍
𝜂 . On the other hand, since


𝑢
𝑖,0

𝑘


≤ sup
𝑘

max
𝑖=1,2,3

{

𝑢
(𝑖,0)

𝑘
− 𝑢
(𝑖,𝑛)

𝑘


} + sup
𝑘

max
𝑖=1,2,3

{

𝑢
(𝑖,𝑛)

𝑘


}

=

𝑢
𝑖,0

𝑘
− 𝑢
(𝑖,𝑛)

𝑘


+

𝑢
(𝑖,𝑛)

𝑘


,

(17)

we realize that (𝑢𝑖,0
𝑘
) ∈ ℓ
∞
(𝐹).

2. The Zweier Sequence Spaces [ℓ
∞
(𝐹)]
𝑍
𝜂 ,

[𝑐(𝐹)]
𝑍
𝜂 , and [𝑐

0
(𝐹)]
𝑍
𝜂

In this section, we wish to introduce the [ℓ
∞
(𝐹)]
𝑍
𝜂 , [𝑐(𝐹)]

𝑍
𝜂 ,

and [𝑐
0
(𝐹)]
𝑍
𝜂 spaces, as the set of all sequences such that 𝑍𝜂-

transforms of them are in the spaces ℓ
∞
(𝐹), 𝑐(𝐹), and 𝑐

0
(𝐹),

respectively; that is

[ℓ
∞

(𝐹)]
𝑍
𝜂 = {(𝑢

(1,2,3)

𝑘
) ∈ 𝑤 (𝐹) : 𝑍

𝜂

𝑢
(1,2,3)

∈ ℓ
∞

(𝐹)} ,

[𝑐 (𝐹)]
𝑍
𝜂 = {(𝑢

(1,2,3)

𝑘
) ∈ 𝑤 (𝐹) : 𝑍

𝜂

𝑢
(1,2,3)

∈ 𝑐 (𝐹)} ,

[𝑐
0
(𝐹)]
𝑍
𝜂 = {(𝑢

(1,2,3)

𝑘
) ∈ 𝑤 (𝐹) : 𝑍

𝜂

𝑢
(1,2,3)

∈ 𝑐
0
(𝐹)} .

(18)

Define the sequence of fuzzy numbers V = (V(1,2,3)
𝑘

)which will
be frequently used, as the𝑍𝜂-transformof a sequence of fuzzy
numbers 𝑢 = (𝑢

(1,2,3)

𝑘
); that is,

V(1,2,3)
𝑘

= 𝜂𝑢
(1,2,3)

𝑘
+ (1 − 𝜂) 𝑢

(1,2,3)

𝑘−1
, (19)

where 𝑢
−1

= 0, 0 < 𝜂 < 1 and the matrix 𝑍
𝜂

= (𝑧
𝑖𝑘
) defined

by

𝑧
𝑖𝑘

=

{{

{{

{

𝜂, (𝑖 = 𝑘)

1 − 𝜂, (𝑖 − 1 = 𝑘)

0, otherwise.
(𝑖, 𝑘 ∈ N) (20)

As we said above in (5), if we assume that each fuzzy
number in the form (𝑢

1

, 0, 𝑢
3

) is a fuzzy zero, then 𝑢
(1,2,3)

𝑘
can

be left alone in equality (19).This assumption is important for
our idea, which is always used in this paper.

Now, we may begin with the following theorem which is
essential in the text.

Theorem 3. The sequence spaces [ℓ
∞
(𝐹)]
𝑍
𝜂 , [𝑐(𝐹)]

𝑍
𝜂 , and

[𝑐
0
(𝐹)]
𝑍
𝜂 are linearly isomorphic to the spaces ℓ

∞
(𝐹), 𝑐(𝐹), and

𝑐
0
(𝐹), respectively; that is, [ℓ

∞
(𝐹)]
𝑍
𝜂 ≅ ℓ

∞
(𝐹), [𝑐(𝐹)]

𝑍
𝜂 ≅

𝑐(𝐹), and [𝑐
0
(𝐹)]
𝑍
𝜂 ≅ 𝑐
0
(𝐹).

Proof. Wewill only consider [ℓ
∞
(𝐹)]
𝑍
𝜂 with ℓ

∞
(𝐹). To prove

this, we should show the existence of a linear isometry
between the spaces [ℓ

∞
(𝐹)]
𝑍
𝜂 and ℓ

∞
(𝐹). Consider the

transformation defined 𝑇, with the notation of (19), from
[ℓ
∞
(𝐹)]
𝑍
𝜂 to ℓ
∞
(𝐹) by 𝑢 → V = 𝑇𝑢 = 𝜂𝑢

(1,2,3)

𝑖
+ (1−𝜂)𝑢

(1,2,3)

𝑖−1
.

Equality𝑇(𝑢+V) = 𝑇𝑢+𝑇V is clear. Let us suppose that 𝛼 ≥ 0;
then,

𝑇 (𝛼𝑢) = 𝑇 (𝛼𝑢
(1,2,3)

𝑖
) = 𝜂 (𝛼𝑢

(1,2,3)

𝑖
) + (1 − 𝜂) (𝛼𝑢

(1,2,3)

𝑖−1
)

= 𝛼 [𝜂𝑢
(1,2,3)

𝑖
+ (1 − 𝜂) 𝑢

(1,2,3)

𝑖−1
] = 𝛼𝑇𝑢.

(21)

If 𝛼 < 0,then

𝑇 (𝛼𝑢) = 𝑇 (𝛼𝑢
(1,2,3)

𝑖
) = 𝜂 (𝛼𝑢

(3,2,1)

𝑖
) + (1 − 𝜂) (𝛼𝑢

(3,2,1)

𝑖−1
)

= 𝛼 [𝜂𝑢
(1,2,3)

𝑖
+ (1 − 𝜂) 𝑢

(1,2,3)

𝑖−1
] = 𝛼𝑇𝑢;

(22)

that is, 𝑇 have the property homogeneity. Thus, 𝑇 is linear.
Let V ∈ ℓ

∞
(𝐹), B𝑘 = ∑

𝑘

𝑗=0
(−1)
𝑘−𝑗

((1 − 𝜂)
𝑘−𝑗

/𝜂
𝑘−𝑗+1

),
B𝑘−1 = ∑

𝑘−1

𝑗=0
(−1)
𝑘−𝑗

((1 − 𝜂)
𝑘−𝑗

/𝜂
𝑘−𝑗+1

) and define the
sequence 𝑢 = (𝑢

(1,2,3)

𝑘
) by

(B
𝑘V(1,2,3)
𝑗

) . (23)

Then, we have

‖𝑢‖
[ℓ∞(𝐹)]𝑍

𝜂

= sup
𝑘∈N

𝑑 (𝑍
𝜂

𝑢
(1,2,3)

𝑘
, 0)

= sup
𝑘

𝑑 (𝜂𝑢
(1,2,3)

𝑘
+ (1 − 𝜂) 𝑢

(1,2,3)

𝑘−1
, 0)

= sup
𝑘∈N

𝑑 (𝜂 [B
𝑘V(1,2,3)
𝑗

] + (1 − 𝜂) [B
𝑘−1V(1,2,3)j ] , 0)

= sup
𝑘∈N

𝑑 (V(1,2,3)
𝑘

, 0) = ‖V‖
ℓ∞(𝐹)

.

(24)

That is, 𝑇 is norm preserving. Consequently, the spaces
[ℓ
∞
(𝐹)]
𝑍
𝜂 and ℓ

∞
(𝐹) are linearly isometric. It is clear here

that if the spaces [ℓ
∞
(𝐹)]
𝑍
𝜂 and ℓ

∞
(𝐹) are, respectively,

replaced by the spaces [𝑐(𝐹)]
𝑍
𝜂 and 𝑐(𝐹), [𝑐

0
(𝐹)]
𝑍
𝜂 , and 𝑐

0
(𝐹),

then we obtain the fact that [𝑐(𝐹)]
𝑍
𝜂 ≅ 𝑐(𝐹) and [𝑐

0
(𝐹)]
𝑍
𝜂 ≅

𝑐
0
(𝐹). This completes the proof.

Theorem 4. The sets [𝑐(𝐹)]
𝑍
𝜂 , [𝑐
0
(𝐹)]
𝑍
𝜂 , and [ℓ

∞
(𝐹)]
𝑍
𝜂 are

complete module sequence space of the fuzzy numbers with the
module defined by

‖𝑢‖ = sup
𝑘

max
𝑖=1,2,3

{

(𝑍
𝜂

𝑢
(𝑖)

)
𝑘


} . (25)
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Proof. It was seen that in Theorem 3 that the sequence
spaces of fuzzy numbers [ℓ

∞
(𝐹)]
𝑍
𝜂 , [𝑐(𝐹)]

𝑍
𝜂 , and [𝑐

0
(𝐹)]
𝑍
𝜂

are linearly isometric to the spaces ℓ
∞
(𝐹), 𝑐(𝐹), and 𝑐

0
(𝐹),

respectively. Also, since the matrix 𝑍
𝜂 is normal (see, [20])

and ℓ
∞
(𝐹), 𝑐(𝐹), and 𝑐

0
(𝐹) are complete module spaces

(see Lemma 2), we see that the sequence spaces [ℓ
∞
(𝐹)]
𝑍
𝜂 ,

[𝑐(𝐹)]
𝑍
𝜂 , and [𝑐

0
(𝐹)]
𝑍
𝜂 are complete module spaces with the

module defined in (25).

Let (𝜗
𝑛
) be a sequence of nonnegative real numbers which

are not all zero and 𝑃
𝑛
= 𝜗
0
+ 𝜗
1
+ ⋅ ⋅ ⋅ + 𝜗

𝑛
, for all 𝑛 ∈ N. The

matrixN
𝜗
= (𝑝
𝑛𝑘
) is defined by

𝑝
𝑛𝑘

=
{

{

{

𝜗
𝑛−𝑘

𝑃
𝑛

, if 𝑘 ≤ 𝑛,

0, otherwise
(26)

that is called the Nörlund matrix.
Other one of the best knownmatrix is𝑅 = (𝑟

𝑛𝑘
), the Riesz

matrix which is a lower triangular matrix defined by

𝑟
𝑛𝑘

=
{

{

{

𝜗
𝑘

𝑃
𝑛

, 0 ≤ 𝑘 ≤ 𝑛,

0, 𝑘 > 𝑛,

(27)

for all 𝑛, 𝑘 ∈ N, where (𝜗
𝑘
) is real sequence with 𝜗

0
> 0, 𝜗
𝑘
≥ 0

[9].
Let (𝑢

𝑛
) be a sequence of fuzzy numbers. If 𝑑(𝑢

𝑛
, 𝑢
0
) →

0 as 𝑛 → ∞, then 𝑑((N𝑢)
𝑛
, 𝑢
0
) → 0 as 𝑛 →

∞ and lim
𝑛
((𝑅𝑢)
𝑛
, 𝑢
0
) → 0 as 𝑛 → ∞, (see

[21, Theorem 3.1 andTheorem 3.2]). That is, the matricesN
𝜗

and 𝑅 preserve the limits on the set of all convergent
sequences of fuzzy numbers.

Theorem 5. Let (𝑢
𝑛
) = (𝑢

(1,2,3)

𝑛
) be a sequence of fuzzy

numbers. If 𝑑(𝑢(1,2,3)
𝑛

, 𝑢
(1,2,3)

0
) → 0 as → ∞, then 𝑑(𝜂𝑢

(1,2,3)

𝑛
+

(1 − 𝜂)𝑢
(1,2,3)

𝑛−1
, 𝑢
(1,2,3)

0
) → 0 as 𝑛 → ∞. That is, the matrix 𝑍

𝜂

is regular.

Proof. Let (𝑢
𝑛
) = (𝑢

(1,2,3)

𝑛
) be a sequence of fuzzy numbers

and𝑑(𝑢
(1,2,3)

𝑛
, 𝑢
(1,2,3)

0
) → 0 as 𝑛 → ∞.Then for a given 𝜖 > 0,

there exists a positive integer 𝑛
0
such that

𝑑 (𝑢
(1,2,3)

𝑛
, 𝑢
(1,2,3)

0
) <

𝜖

2𝑀
for 𝑛 ≥ 𝑛

0
. (28)

Thus we can write

𝑑 ((𝑍
𝜂

𝑢
(1,2,3)

)
𝑛

, 𝑢
(1,2,3)

0
)

= 𝑑 (𝜂𝑢
(1,2,3)

𝑛
+ (1 − 𝜂) 𝑢

(1,2,3)

𝑛−1
, 𝑢
(1,2,3)

0
)

≤ 𝜂𝑑 (𝑢
(1,2,3)

𝑛
, 𝑢
(1,2,3)

0
) + (1 − 𝜂) 𝑑 (𝑢

(1,2,3)

𝑛−1
, 𝑢
(1,2,3)

0
) .

(29)

If we take = max{𝜂, (1 − 𝜂)}, then we see that 𝑑((𝑍𝜂𝑢(1,2,3))
𝑛
,

𝑢
0
) < 𝜖. That is

lim
𝑛

(𝜂𝑢
(1,2,3)

𝑛
+ (1 − 𝜂) 𝑢

(1,2,3)

𝑛−1
) = 𝑢
(1,2,3)

0
. (30)

Theorem 6. The inclusions 𝑐(𝐹) ⊂ [𝑐(𝐹)]
𝑍
𝜂 and 𝑐

0
(𝐹) ⊂

[𝑐
0
(𝐹)]
𝑍
𝜂 strictly hold.

Proof. To prove the validity of the inclusion 𝑐
0
(𝐹) ⊂ [𝑐

0
(𝐹)]
𝑍
𝜂 ,

let us take any V ∈ 𝑐
0
(𝐹). Then, bearing in mind the regularity

of the method 𝑍
𝜂 (see, Theorem 5), we immediately observe

that 𝑍𝜂V ∈ 𝑐
0
(𝐹) which means that V ∈ [𝑐

0
(𝐹)]
𝑍
𝜂 . Hence, the

inclusion 𝑐
0
(𝐹) ⊂ [𝑐

0
(𝐹)]
𝑍
𝜂 holds. Furthermore, let us con-

sider the sequence𝑢 = (𝑢
(1,2,3)

𝑘
)defined by𝑢(1,2,3)

𝑘
= (−1)

𝑘

((1−

𝜂)
𝑘

/𝜂
𝑘+1

)((𝑘 − 1)/𝑘, 3/2, (3𝑘 − 1)/𝑘) for all 𝑘 ∈ N. Then,
we have (𝑍

𝜂

𝑢
(1,2,3)

)
𝑘

= (−((1 − 𝜂)/𝜂)(0, 3/2, 2), . . . , 0, 0, . . .)

which implies that 𝑢 is in [𝑐
0
(𝐹)]
𝑍
𝜂 but 𝑢 ∉ 𝑐

0
(𝐹). This shows

that the inclusion is strict. One can see by analogy that the
strict inclusion 𝑐(𝐹) ⊂ [𝑐(𝐹)]

𝑍
𝜂 also holds.This completes the

proof.

Let (𝐹), 𝜇(𝐹) ⊂ 𝑤(𝐹), and 𝐴 = (𝑎
𝑛𝑘
) be an infinite matrix

of fuzzy numbers and consider following expressions:

sup
𝑛∈N

∑
𝑘

𝑑 (𝑎
𝑛𝑘
, 0) < ∞, (31)

sup
𝑛∈N

∑
𝑘

[ ̄𝑑 (𝑎
𝑛𝑘
, 0)]
𝑞

< ∞, (32)

lim
𝑛

𝑑 (𝑎
𝑛𝑘
, 𝛼
𝑘
) = 0, where 𝛼

𝑘
∈ 𝑤 (𝐹, ) (33)

lim
𝑛

∑
𝑘

𝑑 (𝑎
𝑛𝑘
, 0) = 0, (34)

lim
𝑛

∑
𝑘

𝑎
𝑛𝑘

= 1, (35)

lim
𝑛

𝑎
𝑛𝑘

= 0, 𝑘 ∈ N. (36)

In [9], some matrix classes are characterized by Talo and
Başar which are given in the following lemma.

Lemma 7 (see [9]). Let us suppose that

(12) 𝐴 ∈ (ℓ
∞
(𝐹) : ℓ

∞
(𝐹)), 𝐴 ∈ (𝑐(𝐹) : ℓ

∞
(𝐹)), 𝐴 ∈

(𝑐
0
(𝐹) : ℓ

∞
(𝐹)) if and only if (31) holds,

(13) 𝐴 ∈ (ℓ
∞
(𝐹) : 𝑐

0
(𝐹)) if and only if (34) holds,

(14) 𝐴 ∈ (𝑐
0
(𝐹) : 𝑐(𝐹)) if and only if (31) and (33) hold,

(15) 𝐴 ∈ (𝑐
0
(𝐹) : 𝑐

0
(𝐹)) if and only if (31) and (33) also hold

with 𝛼
𝑘
= 0 for all 𝑘 ∈ N,

(16) 𝐴 ∈ (ℓ
𝑝
(𝐹) : 𝑐(𝐹)) if and only if (32) and (33) hold,

(17) 𝐴 ∈ (ℓ
𝑝
(𝐹) : 𝑐

0
(𝐹)) if and only if (32) and (33) also

hold with 𝛼
𝑘
= 0 for all 𝑘 ∈ N,

(18) 𝐴 ∈ (𝑐(𝐹) : 𝑐(𝐹), 𝑝) if and only if (31), (35), and (33)
also hold with 𝛼

𝑘
= 0 for all 𝑘 ∈ N.

Analogously to Talo and Başar, we can prove following
proposition.

Proposition 8. 𝐴 ∈ (𝑐(𝐹) : 𝑐(𝐹)) if and only if (31) and (33)
also hold with 𝛼

𝑘
= 0 for all 𝑘 ∈ N.
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Proposition 9. 𝐴 ∈ (𝑐
0
(𝐹) : ℓ

1
(𝐹)) if and only if

sup
𝐺
∑
𝑘
𝑑(∑
𝑛∈𝐺

𝑎
𝑛𝑘
, 0) < ∞.

We know that each 𝑟 ∈ R can be considered as a fuzzy
number in the form of

𝑟 (𝑡) = {
1, if 𝑡 = 𝑟,

0, if 𝑡 ̸= 𝑟.
(37)

Therefore, if 𝐴 = (𝑎
𝑛𝑘
) is a matrix of real numbers, the

conditions in Lemma 7 and Propositions 8 and 9 are still
valid.

3. Real Duals of the Spaces [ℓ
∞
(𝐹)]
𝑍
𝜂 , [𝑐(𝐹)]

𝑍
𝜂 ,

and [𝑐
0
(𝐹)]
𝑍
𝜂

In this section, we state and prove the theorems determining
the 𝛼(𝑟)-, 𝛽(𝑟)-, and 𝛾(𝑟)-duals of the spaces [ℓ

∞
(𝐹)]
𝑍
𝜂 ,

[𝑐(𝐹)]
𝑍
𝜂 , and [𝑐

0
(𝐹)]
𝑍
𝜂 . For the sequence spaces 𝜆(𝐹) and

𝜇(𝐹), define the set 𝑆(𝜆(𝐹), 𝜇(𝐹)) by

𝑆 (𝜆 (𝐹) , 𝜇 (𝐹))

= {𝑎
(1,1,1)

∈ 𝑤 (R) : (𝑎
𝑘
𝑥
(1,2,3)

𝑘
) ∈ 𝜇 (𝐹) ∀𝑥 ∈ 𝜆 (𝐹)} ,

(38)

where 𝑤(R) denotes all real valued sequences space. With
the notation of (38), the 𝛼(𝑟)-, 𝛽(𝑟)-, and 𝛾(𝑟)-duals of
a sequence space 𝜆(𝐹), which are, respectively, denoted by
𝜆
𝛼(𝑟)

(𝐹), 𝜆𝛽(𝑟)(𝐹), and 𝜆
𝛾(𝑟)

(𝐹), are defined by

𝜆
𝛼(𝑟)

(𝐹) = 𝑆 (𝜆 (𝐹) , ℓ
1
(𝐹)) ,

𝜆
𝛽(𝑟)

(𝐹) = 𝑆 (𝜆 (𝐹) , 𝑐𝑠 (𝐹)) ,

𝜆
𝛾(𝑟)

(𝐹) = 𝑆 (𝜆 (𝐹) , 𝑏𝑠 (𝐹)) .

(39)

We will use a technique, in the proof of the Theorems 10 and
13, which is used in [14, 15, 22].

Theorem 10. The 𝛾(𝑟)-dual of the spaces [ℓ
∞
(𝐹)]
𝑍
𝜂 , [𝑐(𝐹)]

𝑍
𝜂 ,

and [𝑐
0
(𝐹)]
𝑍
𝜂 is the set

𝐷
1
=

{

{

{

𝑎
(1,1,1)

∈ 𝑤 (R) :

sup
𝑛∈N

𝑛

∑
𝑖=0

𝑑(

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

(1 − 𝜂)
𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛−𝑗
, 0) < ∞

}

}

}

.

(40)

Proof. Since the proof is similar for the rest of the spaces, we
determine only 𝛾(𝑟)-dual of the set [𝑐

0
(𝐹)]
𝑍
𝜂 . Let 𝑎(1,1,1) ∈

𝑤(R) and define the matrix 𝑇 = (𝑡
𝜂

𝑖𝑗
) via the sequence 𝑎 =

(𝑎
(1,1,1)

𝑖
) by

𝑡
𝜂

𝑖𝑗

=

{{{

{{{

{

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

(1 − 𝜂)
𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛−𝑗
(0 ≤ 𝑖 ≤ 𝑛)

0, (𝑖 > 𝑛) .

(𝑖, 𝑗, 𝑛 ∈ N)

(41)

Bearing in mind relation (19), we immediately derive that

𝑛

∑
𝑖=0

𝑎
(1,1,1)

𝑖
𝑥
(1,2,3)

𝑖

=

𝑛

∑
𝑖=0

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

(1 − 𝜂)
𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛−𝑗
𝑦
(1,2,3)

𝑖
= (𝑇𝑦

(1,2,3)

)
𝑛

,

(𝑛 ∈ N) .

(42)

From (42), we realize that 𝑎𝑥 = (𝑎
(1,1,1)

𝑖
𝑥
(1,2,3)

𝑖
) ∈ 𝑏𝑠(𝐹)

whenever 𝑥 ∈ [𝑐
0
(𝐹)]
𝑍
𝜂 if and only if 𝑇𝑦

(1,2,3)

∈ ℓ
∞
(𝐹)

whenever 𝑦
(1,2,3)

∈ 𝑐
0
(𝐹). Then, we derive by Part (12) of

Lemma 7, and we have

sup
𝑛∈N

𝑛

∑
𝑖=0

𝑑(

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

(1 − 𝜂)
𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛−𝑗
, 0) < ∞ (43)

which yields the consequence that [𝑐
0
(𝐹)]
𝛾(𝑟)

𝑍
𝜂 = 𝐷

1
.

Theorem 11. [𝑐
0
(𝐹)]
𝛾(𝑟)

𝑍
𝜂 is the set𝐷

2
, where

𝐷
2
= {𝑎 ∈ 𝑤 (R) :

sup
𝐺

∑
𝑘

𝑑

× (∑
𝑛∈𝐺

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

×
(1 − 𝜂)

𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛−𝑗
, 0) < ∞} .

(44)

Proof. This is clear from Proposition 9.
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Theorem 12. Define the sets𝐷
3
and 𝐷

4
by

𝐷
3
= {𝑎

(1,1,1)

∈ 𝑤 (R) :

sup
𝑛∈N

𝑛

∑
𝑖=0

𝑑

× (

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

×
(1 − 𝜂)

𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛−𝑗
, 0) < ∞} ,

𝐷
4
= {𝑎

(1,1,1)

∈ 𝑤 (R) :

lim
𝑛→∞

∑
𝑖

𝑑

× (

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

×
(1 − 𝜂)

𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛−𝑗
, 0) exists} .

(45)

Then,[𝑐
0
(𝐹)]
𝛾(𝑟)

𝑍
𝜂 = 𝐷

3
∩ 𝐷
4
.

Proof. Consider

𝑛

∑
𝑖=0

𝑎
(1,1,1)

𝑖
𝑥
(1,2,3)

𝑖
=

𝑛

∑
𝑖=0

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

(1 − 𝜂)
𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛−𝑗
𝑦
(1,2,3)

𝑖

= (𝑇𝑦
(1,2,3)

)
𝑖

; 𝑛 ∈ N,

(46)

where 𝑇 = (𝑡
𝜂

𝑖𝑛
) is defined by

𝑡
𝜂

𝑖𝑛

=

{{{

{{{

{

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

(1 − 𝜂)
𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛−𝑗
, (0 ≤ 𝑖 ≤ 𝑛)

0, (𝑖 > 𝑛) .

(𝑖, 𝑛 ∈ N)

(47)

Thus, we deduce from Proposition 8 with (47) that 𝑎𝑥 =

(𝑎
(1,1,1)

𝑖
𝑥
(1,2,3)

i ) ∈ 𝑐𝑠(𝐹) whenever 𝑥 = (𝑥
(1,2,3)

𝑖
) ∈ [𝑐(𝐹)]

𝑍
𝜂 if

and only if 𝑇𝑦 ∈ 𝑐(𝐹) whenever 𝑦 = (𝑦
(1,2,3)

𝑖
) ∈ 𝑐(𝐹). It is

obvious that the columns of that matrix 𝑇, defined by (47)
are in the space 𝑐(𝐹). Therefore, we derive the consequences
from Proposition 8 that 𝑐𝛽(𝑟)(𝑍𝜂, 𝐹) = 𝐷

3
∩ 𝐷
4
.

Theorem 13. The 𝛾(𝑟)-dual of the space [𝑐(𝐹)]
𝑍
𝜂 is the set𝐷

3
.

Proof. The proof of this theorem is similar to the proof of
Theorem 10, so we omit it.

4. Matrix Transformations

For the first time, Lorentz introduced the concept of dual
summability methods for the limitation which depends on
a Stieltjes integral and passed to the discontinuous matrix
methods by means of a suitable step function in [23]. Later,
many authors such as Başar [24], Başar and Çolak [25],
Kuttner [26], Lorentz andZeller [27], and Şengönül andBaşar
[22] worked on the dual summability methods.

Let us suppose that the set [𝜆(𝐹)]
𝑍
𝜂 is any of the

sets [𝑐
0
(𝐹)]
𝑍
𝜂 , 𝑐(𝑍𝜂, 𝐹), and [ℓ

∞
(𝐹)]
𝑍
𝜂 . In this section, we

characterize the matrix mappings from [𝜆(𝐹)]
𝑍
𝜂 into any

given sequence space of fuzzy numbers via the concept of the
dual summability methods and vice versa, so we call it the
Zweier dual summability methods.

Let us suppose that the sequences 𝑢 = (𝑢
(1,2,3)

𝑖
) and V =

(V(1,2,3)
𝑖

) are connectedwith (19) and let the𝐴-transformof the
sequence 𝑢 = (𝑢

(1,2,3)

𝑖
) be 𝑧 = (𝑧

(1,2,3)

𝑖
) and let the𝐵-transform

of the sequence V = (V(1,2,3)
𝑖

) be 𝑡 = (𝑡
𝑖
); that is,

𝑧
(1,2,3)

𝑖
= (𝐴𝑢

(1,2,3)

)
𝑖

= ∑
𝑖

𝑎
(1,1,1)

𝑛𝑖
𝑢
(1,2,3)

𝑖
, (𝑖 ∈ N) ,

𝑡
(1,2,3)

𝑖
= (𝐵V(1,2,3))

𝑖

= ∑
𝑖

𝑏
(1,1,1)

𝑛𝑖
V(1,2,3)
𝑖

, (𝑖 ∈ N) .

(48)

It is clear here that the method 𝐵 is applied to the 𝑍
𝜂-

transform of the sequence 𝑢 = (𝑢
(1,2,3)

𝑖
) while the method 𝐴

is directly applied to the terms of the sequence 𝑢 = (𝑢
(1,2,3)

𝑖
).

Therefore the methods 𝐴 and 𝐵 are essentially different (see,
[24]).

Let us assume the existence of the matrix product 𝐵𝑍𝜂
which is a much weaker assumption than the conditions on
the matrix 𝐵 belonging to any matrix class, in general. If
𝑧
(1,2,3)

𝑖
becomes 𝑡

(1,2,3)

𝑖
(or 𝑡
(1,2,3)

𝑖
becomes 𝑧

(1,2,3)

𝑖
), under the

application of the formal summation by parts, then the
methods𝐴 and𝐵 in (48) are called Zweier dual typematrices.
This leads us to fact that 𝐵𝑍𝜂 exists and is equal to 𝐴 and
(𝐵𝑍
𝜂

)𝑢
(1,2,3)

= 𝐵(𝑍
𝜂

𝑢
(1,2,3)

) formally holds. This statement is
equivalent to the relation

𝑏
(1,1,1)

𝑛𝑖
=

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

(1 − 𝜂)
𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛,𝑛−𝑗

or

𝑎
(1,1,1)

𝑛𝑘
= 𝜂𝑏
(1,1,1)

𝑛𝑘
+ (1 − 𝜂) 𝑏

(1,1,1)

𝑛,𝑘+1

(49)

for all 𝑛, 𝑘 ∈ N.
Now we may give the following theorem concerning to

the Zweier dual matrices.

Theorem 14. Let 𝐴 = (𝑎
(1,1,1)

𝑛𝑘
) and 𝐵 = (𝑏

(1,1,1)

𝑛𝑘
) be the

Zweier dual type matrices, 𝜇(𝐹) any given sequence space, and
(𝑎
(1,1,1)

𝑛𝑘
)
𝑘∈N

∈ ℓ
1
(𝐹). Then, 𝐴 ∈ ([𝑐(𝐹)]

𝑍
𝜂 : 𝜇(𝐹)) if and only if

𝐵 ∈ (𝑐(𝐹) : 𝜇(𝐹)).

Proof. Suppose that𝐴 = (𝑎
(1,1,1)

𝑛𝑘
) and 𝐵 = (𝑏

(1,1,1)

𝑛𝑘
) are Zweier

dual type matrices, dual type matrices that is, to say that (49)
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holds and 𝜇(𝐹) is any given sequence space and take account
that the spaces [𝑐(𝐹)]

𝑍
𝜂 and 𝑐(𝐹) are linearly isomorphic.

Let 𝐴 ∈ ([𝑐(𝐹)]
𝑍
𝜂 : 𝜇(𝐹)) and take any 𝑦 ∈ 𝑐(𝐹).

Then, 𝐵𝑍𝜂 exists and (𝑎
(1,1,1)

𝑛𝑘
)
𝑘∈N ∈ 𝐷

2
∩ 𝐷
3
which yields

(𝑏
(1,1,1)

𝑛𝑘
)
𝑘∈N ∈ ℓ

1
(𝐹) for each 𝑛 ∈ N. Hence 𝐵𝑦

(1,2,3) exists for
each 𝑦 ∈ 𝑐(𝐹) and thus letting𝑚 → ∞ in the equality

𝑚

∑
𝑖=0

𝑏
(1,1,1)

𝑛𝑖
𝑦
(1,2,3)

𝑖

=

𝑚−1

∑
𝑖=0

[𝜂𝑏
(1,1,1)

𝑛𝑖
+ (1 − 𝜂) 𝑏

1,1,1)

𝑛,𝑖+1
] 𝑥
(1,2,3)

𝑖

+ 𝜂𝑏
𝑛𝑚

𝑥
(1,1,1)

𝑛
, (𝑛 ∈ N) ,

(50)

we have, by (49), that 𝐵𝑦 = 𝐴𝑥 which leads us to the
consequence 𝐵 ∈ (𝑐(𝐹) : 𝜇(𝐹)).

Conversely, suppose that 𝐵 ∈ ([𝑐(𝐹)]
𝑍
𝜂 : 𝜇(𝐹)) and take

any 𝑥 ∈ [𝑐(𝐹)]
𝑍
𝜂 . Then, 𝐴𝑥 exists. Therefore, we obtain from

the equality

𝑛

∑
𝑖=0

𝑎
(1,1,1)

𝑛𝑖
𝑥
(1,2,3)

𝑖
=

𝑛

∑
𝑖=0

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

(1 − 𝜂)
𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛,𝑛−𝑗
𝑦
(1,2,3)

𝑖

=

𝑛

∑
𝑖=0

𝑏
(1,1,1)

𝑛𝑖
𝑦
(1,2,3)

𝑖
; (𝑛 ∈ N) ,

(51)

as 𝑛 → ∞ that 𝐴𝑥 = 𝐵𝑦 and this shows that 𝐴 ∈ ([𝑐(𝐹)]
𝑍
𝜂 :

𝜇(𝐹)). This completes the proof.

Theorem 15. Suppose that the elements of the infinite matrices
𝐷 = (𝑑

(1,1,1)

𝑛𝑘
) and 𝐸 = (𝑒

(1,1,1)

𝑛𝑘
) are connected with the relation

𝑒
𝑛𝑘

= 𝜂𝑑
(1,1,1)

𝑛𝑘
+ (1 − 𝜂) 𝑑

(1,1,1)

𝑛,𝑘−1
, (𝑛, 𝑘 ∈ N) (52)

and 𝜇(𝐹) is any given sequence space. Then, 𝐷 ∈ (𝜇(𝐹) :

[𝑐(𝐹)]
𝑍
𝜂) if and if only 𝐸 ∈ (𝜇(𝐹) : 𝑐(𝐹)).

Proof. Let 𝑥 ∈ 𝜇(𝐹) and consider the following equality with
(50):

(1 − 𝜂)

𝑛

∑
𝑘=0

𝑑
(1,1,1)

𝑛,𝑘−1
𝑥
(1,2,3)

𝑘−1
+ 𝜂

𝑛

∑
𝑘=0

𝑑
(1,1,1)

𝑛𝑘
𝑥
(1,2,3)

𝑘

=

𝑛

∑
𝑘=0

𝑒
(1,1,1)

𝑛𝑘
𝑥
(1,2,3)

𝑘
, (𝑛, 𝑘 ∈ N)

(53)

which yields as 𝑛 → ∞ that

‖𝐷𝑥‖
[𝑐(𝐹)]𝑍

𝜂
= ‖𝐸𝑥‖

𝑐(𝐹)
. (54)

Now, we immediately have, by (54), that 𝐷𝑥 ∈ [𝑐(𝐹)]
𝑍
𝜂

whenever 𝑥 ∈ 𝜇(𝐹) if and if only 𝐸𝑥 ∈ 𝑐(𝐹) whenever
𝑥 ∈ 𝜇(𝐹) and this step completes the proof.

Now, right here, we give the following propositions which
are obtained from Lemma 7 andTheorems 14 and 15.

Proposition 16. Let 𝐴 = (𝑎
(1,1,1)

𝑛𝑘
) be an infinite matrix of real

numbers. Then,

(1) 𝐴 = (𝑎
(1,1,1)

𝑛𝑘
) ∈ ([ℓ

∞
(𝐹)]
𝑍
𝜂 : ℓ
∞
(𝐹)) if and only if

sup
𝑛∈N

∑
𝑘

𝑑(

𝑛

∑
𝑗=𝑖

(−1)
𝑛−𝑗

(1 − 𝜂)
𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛−𝑗,𝑘
, 0) < ∞, (55)

(2) 𝐴 = (𝑎
(1,1,1)

𝑛𝑘
) ∈ ([𝑐(𝐹)]

𝑍
𝜂 : 𝑐(𝐹)) if and only if (55) and

lim
𝑛

𝑑(

𝑛

∑
𝑗=1

(−1)
𝑛−𝑗

(1 − 𝜂)
𝑛−𝑗

𝜂𝑛−𝑗+1
𝑎
(1,1,1)

𝑛−𝑗,𝑘
, 0) = 0, ∀𝑘 ∈ N.

(56)

Proposition 17. Let 𝐴 = (𝑎
(1,1,1)

𝑛𝑘
) be infinite matrix real

numbers. Then, 𝐴 = (𝑎
(1,1,1)

𝑛𝑘
) ∈ (ℓ

∞
(𝐹) : [ℓ

∞
(𝐹)]
𝑍
𝜂) if and

only if

sup
𝑛∈N

∑
𝑘

𝑑 (𝜂𝑎
(1,1,1)

𝑛𝑘
+ (1 − 𝜂) 𝑎

(1,1,1)

𝑛,𝑘−1
, 0) < ∞. (57)

Proposition 18. Let 𝐴 = (𝑎
(1,1,1)

𝑛𝑘
) be an infinite matrix of real

numbers. Then, 𝐴 = (𝑎
(1,1,1)

𝑛𝑘
) ∈ ([𝑐(𝐹)]

𝑍
𝜂 : 𝑐(𝐹)) if and only if

(57) and

lim
𝑛

𝑑 (𝜂𝑎
(1,1,1)

𝑛𝑘
+ (1 − 𝜂) 𝑎

(1,1,1)

𝑛,𝑘−1
, 𝛼
(1,2,3)

𝑘
) = 0,

𝑤𝑖𝑡ℎ 𝛼
(1,2,3)

𝑘
∈ 𝐹, 𝑘 ∈ N.

(58)
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Cesàro summable double sequences of fuzzy real numbers,”
Soochow Journal of Mathematics, vol. 33, no. 4, pp. 835–848,
2007.

[11] T. Bilgin, “Δ-statistical and strong Δ-Cesaro convergence of
sequences of fuzzy numbers,” Mathematical Communications,
vol. 8, no. 1, pp. 95–100, 2003.

[12] Y. Altın,M.Mursaleen, andH. Altınok, “Statistical summability
(𝐶, 1) for sequences of fuzzy real numbers and a Tauberian
theorem,” Journal of Intelligent & Fuzzy Systems, vol. 21, no. 6,
pp. 379–384, 2010.
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[24] F. Başar, “Matrix transformations between certain sequence
spaces of 𝑋

𝑝
and 𝑙
𝑝
,” Soochow Journal of Mathematics, vol. 26,

no. 2, pp. 191–204, 2000.
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