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Variational principles are established for the partially composite Timoshenko beam using the semi-inverse method.The principles
are derived directly from governing differential equations for bending and vibration of the beam considered. It is concluded that the
semi-inverse method is a powerful tool for searching for variational principles directly from the governing equations. Comparison
between our results and the results reported in literature is given.

1. Introduction

Composite beams composed of different elastic materials
have been widely used in many engineering applications.
The individual beam components of the composite beam
are combined by using the shear connectors. Therefore, the
overall behavior of the composite beam depends on the
stiffness of connectors. Connector having infinite stiffness
eliminates any interlayer shear slip between the individual
beam components, which leads to the full interaction con-
nection. However, the stiffness of connector has a finite value
and the interlayer slip between the individual components
occurs. This type of connection is called partial-interaction
connection. Therefore, analysis of the partial-interaction
composite beams requires the consideration of the interlayer
slip between the beam components. The Euler-Bernoulli
beam theory has been extensively used in bending, vibration,
and buckling analyses. Ecsedi and Baksa [1] analyzed the
static behavior of elastic two-layer beams with interlayer slip
and developed closed-form solutions for displacements and
interlayer slips. Girhammar and Pan [2] presented general
solutions for the deflection and internal actions for partially
composite Euler-Bernoulli beams and beam-columns. Ranzi
et al. [3] presented an analytical formulation for the analysis

of two-layered composite beams with longitudinal and ver-
tical partial-interaction. Their formulation is based on the
principle of virtual work expressed in terms of the vertical
and axial displacements of the two layers. The model was
presented in both its weak and its strong forms. Xu and
Wu [4] developed a new plane stress model of composite
beamswith interlayer slips using the one-dimensional theory.
They concluded that the shear force produced by the shear
connectors increases with the increase in rigidity of shear
connectors.

However, the effect of transverse shear deformation was
neglected in the Euler-Bernoulli beam theory. When the
beam is thick, the effect of shear deformation becomes
significant and cannot be neglected for a valid analysis. The
most widely used and fundamentally simpler theory was
developed by Timoshenko [5]. Sousa and da Silva [6] studied
the behavior of the general case of multilayered composite
beams with interlayer slip, under Euler-Bernoulli as well as
Timoshenko beam theory (TBT) assumptions. Xu andWang
[7] formulated the principle of virtual work and recipro-
cal theorem of work for the partial-interaction composite
beams using the kinematic assumptions of Timoshenko’s
beam theory. The variational principles for the frequency
of free vibration and critical load of buckling were also
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Figure 1: A two-layer composite beam.

deduced. Xu and Wang [8] derived the relationships of solu-
tions between single-span Euler-Bernoulli and Timoshenko
partial-interaction composite beams.

Variational formulations provide the basis for a number
of approximate and numerical methods. Recently, two sig-
nificant variational methods are proposed by He; one is the
semi-inverse method [9, 10] and the other method is the
variational iteration method [11]. The semi-inverse method
is used to establish variational principles directly from the
governing differential equations. His second method, the
variational iteration method, depends on constructing a
correction functional by a general Lagrange multiplier.Then,
the optimal value of the Lagrange multiplier is identified by
using the stationary conditions [12, 13]. However, in the semi-
inverse method, the term involving the Lagrange multiplier
is replaced by an unknown function 𝐹. The semi-inverse
method eliminates two important variational crises; one is
that the Lagrange multiplier is equal to zero and the other
crisis is that making the Lagrangian stationary leads to only
some parts of Euler equations. In this study, we will apply
the semi-inverse method to establish variational principles
directly from the governing differential equations defining
the bending and vibration of Timoshenko composite beam
with partial-interaction. The variational formulations were
obtained by following the rules of the calculus of variations.

2. Timoshenko Composite Beam with
Partial-Interaction

Before applying the semi-inverse method, the problem
is briefly discussed in Figure 1. Figure 1 shows a partial-
interaction composite beam that is composed of two-layer
beams with different materials.

In Figure 1, 𝐸
𝑖
, 𝐺
𝑖
, 𝐴
𝑖
, 𝐼
𝑖
, and 𝜌

𝑖
(𝑖 = 1, 2) denote the

elasticity modulus, shear modulus, cross-sectional area, and
moment of inertia of two beam components, respectively.
𝐿 is the beam length, 𝐻 is the beam height, and ℎ is the
distance between the centroids of two beam sections. 𝑞
and 𝑚 denote the distributed load and distributed bending
moment, respectively. As seen in Figure 1, shear connectors
are used to connect the beam members of the composite
beam. Figure 2 shows geometrical relationship among the

interlayer slip, rotary angle (the rotation of the cross section),
and longitudinal displacements.

In Figure 2, 𝜓 is the rotary angle and 𝑢
𝑠
is the interlayer

slip between two beam layers. 𝑢
1
and 𝑢

2
are the longitudinal

displacements at the centroids of beams 1 and 2, respectively.
From Figure 2, the kinematic relationship among the inter-
layer slip, rotary angle, and longitudinal displacements can
be written as follows:

𝑢
𝑠
= 𝑢
2
− 𝑢
1
+ 𝜓ℎ. (1)

The bending moment, shear force, and interlayer shear force
are given, respectively, as [7, 8]:

𝑀 = −𝐷
𝑑𝜓

𝑑𝑥
+ 𝐸𝐴ℎ

𝑑𝑢
𝑠

𝑑𝑥
, (2a)

𝑄 = 𝐶(
𝑑𝑤

𝑑𝑥
− 𝜓) , (2b)

𝑄
𝑠
= 𝑘
𝑠
𝑢
𝑠
, (2c)

where 𝑤 denotes the deflection of the composite beam in the
𝑧-direction (see Figure 1) and 𝑘

𝑠
denotes the rigidity of the

shear connectors. The other quantities used in (2a), (2b), and
(2c) are defined as follows:

𝐷 = 𝐷 + ℎ
2
𝐸𝐴, (3a)

𝐷 = 𝐸
1
𝐼
1
+ 𝐸
2
𝐼
2
, (3b)

𝐸𝐴 =
𝐸
1
𝐴
1
𝐸
2
𝐴
2

𝐸
1
𝐴
1
+ 𝐸
2
𝐴
2

, (3c)

𝐶 = 𝑘
1
𝐺
1
𝐴
1
+ 𝑘
2
𝐺
2
𝐴
2
, (3d)

in which 𝑘
1
and 𝑘

2
are the shear correction factors of the

Timoshenko beam.𝐷 is the flexural stiffness of the composite
beam in full interaction, 𝐷 is the flexural stiffness of the
composite beamwithout shear connection,𝐸𝐴 is the effective
axial stiffness, and 𝐶 is the shear rigidity of the whole cross
sections. Deflection of the composite beam is then obtained
using the relation below:

𝑤 = 𝑤
0
+ 𝑤slip + 𝑤shear, (4)
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Figure 2: Kinematic model of a two-layer partially composite
Timoshenko beam [7].

where 𝑤
0
is the deflection of the full interaction composite

beam.𝑤slip and𝑤shear are the additional deflections due to the
interlayer slip and transverse shear deformation, respectively.

In the next sections, using the semi-inverse method, we
will illustrate how to establish variational principles directly
from the governing differential equations for bending and
vibration of the partially composite Timoshenko beams.

3. Derivation of Variational Principle for
Bending of the Composite Beam

Consider the governing differential equations for bending of
the partial-interaction composite Timoshenko beam under
uniformly distributed load and bending moment [7]

−𝐷
𝑑
2
𝜓

𝑑𝑥2
+ 𝐸𝐴ℎ

𝑑
2

𝑑𝑥2
(𝑢
𝑠
− 𝜓ℎ) − 𝐶(

𝑑𝑤

𝑑𝑥
− 𝜓) − 𝑚 = 0,

(5a)

−𝐶(
𝑑
2
𝑤

𝑑𝑥2
−
𝑑𝜓

𝑑𝑥
) − 𝑞 = 0, (5b)

−𝐸𝐴
𝑑
2

𝑑𝑥2
(𝑢
𝑠
− 𝜓ℎ) + 𝑘

𝑠
𝑢
𝑠
= 0. (5c)

Using the semi-inverse method, a trial variational principle
can be constructed as follows [9, 10]:

𝐽 (𝜓, 𝑤, 𝑢
𝑠
) = ∫𝐿𝑑𝑥, (6)

where 𝐿 is a trial Lagrangian. There are many approaches for
constructing the trial Lagrangian; see [14–17]. We search for
such a trial Lagrangian, so that its trial Euler equation gives

one of the governing equations, say (5a). Referring to (5a), an
energy-like trial Lagrangian can be constructed as follows:

𝐿 =
1

2
𝐷(

𝑑𝜓

𝑑𝑥
)

2

+
1

2
𝐸𝐴[

𝑑

𝑑𝑥
(𝑢
𝑠
− 𝜓ℎ)]

2

− 𝐶𝜓
𝑑𝑤

𝑑𝑥
+
1

2
𝜓
2
− 𝑚𝜓 + 𝐹

1 (𝑤) ,

(7)

where 𝐹
1
is an unknown function of 𝑤 and/or its derivatives.

The advantage of the above trial Lagrangian lies in the fact
that the stationary condition with respect to 𝜓 results in (5a).
Now by making (7) stationary with respect to 𝑤, one can get
the following trial Euler equation for 𝛿𝑤:

𝛿𝑤 : 𝐶
𝑑𝜓

𝑑𝑥
+
𝛿𝐹
1

𝛿𝑤
= 0, (8)

where the operator 𝛿 is called a variational operator and 𝛿𝑤 is
the first order variation of𝑤. 𝛿𝐹

1
/𝛿𝑤 is called He’s variational

derivative with respect to 𝑤, which is defined as

𝛿𝐹
1

𝛿𝑤
=
𝜕𝐹
1

𝜕𝑤
−
𝜕

𝜕𝑥
(
𝜕𝐹
1

𝜕𝑤
) , 𝑤


=
𝑑𝑤

𝑑𝑥
. (9)

We search for such an𝐹
1
so that (8) is equivalent to (5b). From

(9), the unknown function 𝐹
1
can be determined as

𝐹
1 (𝑤) =

1

2
𝐶(

𝑑𝑤

𝑑𝑥
)

2

− 𝑞𝑤. (10)

By adding the above relation, the trial Lagrangian can be
renewed as follows:

𝐿 =
1

2
𝐷(

𝑑𝜓

𝑑𝑥
)

2

+
1

2
𝐸𝐴[

𝑑

𝑑𝑥
(𝑢
𝑠
− 𝜓ℎ)]

2

− 𝐶𝜓
𝑑𝑤

𝑑𝑥
+
1

2
𝜓
2

+
1

2
𝐶(

𝑑𝑤

𝑑𝑥
)

2

− 𝑞𝑤 − 𝑚𝜓 + 𝐹
2
(𝑢
𝑠
) .

(11)

It can be easily proved that the stationary condition of the
above Lagrangian with respect to 𝑤 satisfies (5b). In (11), 𝐹

2

is a newly introduced undetermined function of 𝑢
𝑠
and/or its

derivatives and is free from the variables𝜓 and𝑤. Making the
new trial Lagrangian (11) stationary with respect to 𝑢

𝑠
results

in the relation below:

𝛿𝑢
𝑠
: −𝐸𝐴

𝑑
2

𝑑𝑥2
(𝑢
𝑠
− 𝜓ℎ) +

𝛿𝐹
2

𝛿𝑢
𝑠

= 0, (12)

which is the last trial Euler equation.The second term on the
left is the variational derivative with respect to 𝑢

𝑠
and reads

𝛿𝐹
2

𝛿𝑢
𝑠

=
𝜕𝐹
2

𝜕𝑢
𝑠

−
𝜕

𝜕𝑥
(
𝜕𝐹
2

𝜕𝑢
𝑠

) , 𝑢


𝑠
=
𝑑𝑢
𝑠

𝑑𝑥
, (13)

from which the unknown 𝐹
2
can be determined as

𝐹
2
(𝑢
𝑠
) =

1

2
𝑘
𝑠
𝑢
2

𝑠
. (14)
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Substituting𝐹
2
into (11) and rearranging lead to the necessary

variational principle as

𝐽 (𝜓, 𝑤, 𝑢
𝑠
)

= ∫

𝐿

0

{
1

2
𝐷(

𝑑𝜓

𝑑𝑥
)

2

+
1

2
𝐸𝐴[

𝑑

𝑑𝑥
(𝑢
𝑠
− 𝜓ℎ)]

2

+
1

2
𝐶(

𝑑𝑤

𝑑𝑥
− 𝜓)

2

+
1

2
𝑘
𝑠
𝑢
2

𝑠
− 𝑞𝑤 − 𝑚𝜓}𝑑𝑥,

(15)

which is the total potential energy of partial-interaction com-
posite Timoshenko beam subjected to uniformly distributed
load and bending moment (see [7]) and yields the minimum
potential energy principle by letting 𝛿𝐽 = 0.

Proof. Making the above functional (15) stationary with
respect to 𝜓, 𝑤, and 𝑢

𝑠
, the Euler equations turn out to be

(5a)–(5c), respectively.

The Ritz method can be used to obtain an approximate
analytical solution of the problem.We canwrite the one-term
trial functions which satisfy the boundary conditions as

𝑤 = 𝑤
0
𝑓
1 (𝑥) , 𝜓 = 𝜓

0
𝑓
2 (𝑥) , 𝑢

𝑠
= 𝑢
0
𝑓
3 (𝑥) , (16)

where 𝑤
0
, 𝜓
0
, and 𝑢

0
are unknown constants, which can be

determined from the following stationary conditions:

𝜕𝐽

𝜕𝑤
0

= 0,
𝜕𝐽

𝜕𝜓
0

= 0,
𝜕𝐽

𝜕𝑢
0

= 0. (17)

By solving the system of (17) simultaneously, the unknown
constants can then be obtained.

4. Derivation of Variational Principle for Free
Vibration of the Composite Beam

Differential equations of motion for partial-interaction com-
posite members under uniformly distributed load and bend-
ing moment can be written as [7]:

− 𝐷
𝜕
2
𝜓

𝜕𝑥2
+ 𝐸𝐴ℎ

𝜕
2

𝜕𝑥2
(𝑢
𝑠
− 𝜓ℎ)

− 𝐶(
𝜕𝑤

𝜕𝑥
− 𝜓) + 𝜌𝐼

0

𝜕
2
𝜓

𝜕𝑡2
− 𝑚 = 0,

(18a)

−𝐶(
𝜕
2
𝑤

𝜕𝑥2
−
𝜕𝜓

𝜕𝑥
) + 𝜌𝐴

0

𝜕
2
𝑤

𝜕𝑡2
− 𝑞 = 0, (18b)

−𝐸𝐴
𝜕
2

𝜕𝑥2
(𝑢
𝑠
− 𝜓ℎ) + 𝑘

𝑠
𝑢
𝑠
= 0, (18c)

where 𝑡 denotes time, 𝜌𝐴
0
= 𝜌
1
𝐴
1
+ 𝜌
2
𝐴
2
, and 𝜌𝐼

0
= 𝜌
1
𝐼
1
+

𝜌
2
𝐼
2
.We can construct the following trial variational principle

using the semi-inverse method [9, 10]:

𝐽 (𝜓, 𝑤, 𝑢
𝑠
) = ∬𝐿𝑑𝑥𝑑𝑡. (19)

Similarly, referring to (18a) and making some modifications
so that the stationary condition with respect to𝜓 can identify
(18a) lead us to the following trial Lagrangian:

𝐿 =
1

2
𝐷(

𝜕𝜓

𝜕𝑥
)

2

+
1

2
𝐸𝐴[

𝜕

𝜕𝑥
(𝑢
𝑠
− 𝜓ℎ)]

2

− 𝐶𝜓
𝜕𝑤

𝜕𝑥

+
1

2
𝜓
2
−
1

2
𝜌𝐼
0
(
𝜕𝜓

𝜕𝑡
)

2

− 𝑚𝜓 + 𝐹
3 (𝑤) ,

(20)

with 𝐹
3
being an unknown function of 𝑤 and/or its deriva-

tives. As can be seen easily, the stationary condition of the
above Lagrangian with respect to 𝜓 results in (18a). Now
making (20) stationary with respect to 𝑤, we obtain the
following trial Euler equation:

𝛿𝑤 : 𝐶
𝜕𝜓

𝜕𝑥
+
𝛿𝐹
3

𝛿𝑤
= 0, (21)

where 𝛿𝐹
3
/𝛿𝑤 is defined as

𝛿𝐹
3

𝛿𝑤
=
𝜕𝐹
3

𝜕𝑤
−
𝜕

𝜕𝑥
(
𝜕𝐹
3

𝜕𝑤
) −

𝜕

𝜕𝑡
(
𝜕𝐹
3

𝜕�̇�
) +

𝜕
2

𝜕𝑥2
(
𝜕𝐹
3

𝜕𝑤
)

+
𝜕
2

𝜕𝑡2
(
𝜕𝐹
3

𝜕�̈�
) + ⋅ ⋅ ⋅ , �̇� =

𝜕𝑤

𝜕𝑡
, 𝑤

=
𝜕𝑤

𝜕𝑥
.

(22)

From the above relation, we can identify 𝐹
3
in the form

𝐹
3 (𝑤) =

1

2
𝐶(

𝜕𝑤

𝜕𝑥
)

2

−
1

2
𝜌𝐴
0
(
𝜕𝑤

𝜕𝑡
)

2

− 𝑞𝑤. (23)

Then, the Lagrangian (20) is further updated as follows:

𝐿 =
1

2
𝐷(

𝜕𝜓

𝜕𝑥
)

2

+
1

2
𝐸𝐴[

𝜕

𝜕𝑥
(𝑢
𝑠
− 𝜓ℎ)]

2

− 𝐶𝜓
𝜕𝑤

𝜕𝑥
+
1

2
𝜓
2

− 𝑚𝜓 −
1

2
𝜌𝐼
0
(
𝜕𝜓

𝜕𝑡
)

2

+
1

2
𝐶(

𝜕𝑤

𝜕𝑥
)

2

−
1

2
𝜌𝐴
0
(
𝜕𝑤

𝜕𝑡
)

2

− 𝑞𝑤 + 𝐹
4
(𝑢
𝑠
) .

(24)

It is obvious that making the renewed trial functional sta-
tionary with respect to 𝑤 satisfies (18b). In (24), 𝐹

4
is a new

undetermined function of 𝑢
𝑠
and/or its derivatives. It must

be noted that (18c) has the same form as (5c). Therefore, by
following the same steps as before (see (12)-(13)), it is easily
seen that 𝐹

4
= 𝐹
2
. Finally, we can easily arrive at the required

variational principle:

𝐽 (𝜓, 𝑤, 𝑢
𝑠
)

= ∬{
1

2
𝐷(

𝜕𝜓

𝜕𝑥
)

2

+
1

2
𝐸𝐴[

𝜕

𝜕𝑥
(𝑢
𝑠
− 𝜓ℎ)]

2

+
1

2
𝐶(

𝜕𝑤

𝜕𝑥
− 𝜓)

2

+
1

2
𝑘
𝑠
𝑢
2

𝑠

−
1

2
[𝜌𝐼
0
(
𝜕𝜓

𝜕𝑡
)

2

+
1

2
𝜌𝐴
0
(
𝜕𝑤

𝜕𝑡
)

2

]−𝑞𝑤−𝑚𝜓}𝑑𝑥𝑑𝑡.

(25)
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The above functional is the same as that reported in [7]
and yields Hamilton’s principle by letting 𝛿𝐽 = 0. The fifth
term inside the braces is the kinetic energyof the beam
componentsand reads

𝑇 =
1

2
∫

𝐿

0

[𝜌𝐼
0
(
𝜕𝜓

𝜕𝑡
)

2

+
1

2
𝜌𝐴
0
(
𝜕𝑤

𝜕𝑡
)

2

]𝑑𝑥. (26)

Proof. Making the above functional (25) stationary with
respect to 𝜓, 𝑤, and 𝑢

𝑠
, the Euler equations correspond to

(18a)–(18c), respectively.

By following the same procedures performed for beam
bending, the approximate solutions are obtained conve-
niently for beam vibrating by the Ritz method.

5. Conclusion

We used the semi-inverse method to establish a set of
variational principles directly from governing differential
equations. By following the rules of the calculus of variations,
we obtained necessary variational principles for bending and
vibration of the Timoshenko composite beam with partial-
interaction. The obtained variational principles have been
compared with those reported in literature and proved to
be correct. It is concluded that the semi-inverse method
is a powerful tool for searching for variational principles
directly from the governing equations. Moreover, introduc-
ing an unknown function instead of a Lagrange multiplier,
additional variational principles can also be written by
constraining the trial Lagrangian with the different bound-
ary conditions, which may facilitate the implementation
of complicated boundary conditions. The direct variational
method such as the Ritz method can be used to obtain the
approximate solutions of the problem.
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