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Popular sorting algorithms do not translate well into hardware implementations. Instead, hardware-based solutions like sorting
networks, systolic sorters, and linear sorters exploit parallelism to increase sorting efficiency. Linear sorters, built from identical
nodes with simple control, have less area and latency than sorting networks, but they are limited in their throughput. We present
a system composed of multiple linear sorters acting in parallel to increase overall throughput. Interleaving is used to increase
bandwidth and allow sorting of multiple values per clock cycle, and the amount of interleaving and depth of the linear sorters can
be adapted to suit specific applications. Contention for available linear sorters in the system is solved through the use of buffers
that accumulate conflicting requests, dispatching them in bulk to reduce latency penalties. Implementation of this system into a
field programmable gate array (FPGA) results in a speedup of 68 compared to a MicroBlaze processor running quicksort.

1. Introduction

Sorting is an essential function for many scientific and data
processing applications. Extensive research has optimized
multiple software sorting algorithms for general-purpose
computing, thereby increasing application performance.
The need for higher performance has also motivated the
migration of sorting algorithms into specialized hardware
to exploit spatial parallelism. Nonetheless, many of the
assumptions made to increase performance on a general-
purpose processor do not hold for custom hardware imple-
mentations. Thus, reconfigurable applications typically do
not enjoy the benefits of software-based sorting algorithms.
When directly translated into hardware, software algorithms
can quickly degrade into a series of data retrievals, compar-
isons, swaps, and writes; all problems that can be magnified
in systems with low processor speeds, limited storage,
disabled caches, and high-latency memory access times.

A conventional sorting system involves data acquisition
and collection, processing, dynamic and long-term storage,

and sorting and dispatch. Many hardware approaches use
linear sorting to keep a sorted list with in-order insertions
but fail to optimize throughput, the rate at which data
elements are processed. The system’s sorting throughput
is limited by the weakest link, which in many cases is
the sorting stage. Even though parallelism can speed up
hardware-based sorting, sorted results are generally attained
only one at a time. Thus, a hardware-based linear sorter
would only achieve a maximum throughput of one sorted
output per clock cycle, regardless of the system’s available and
exploitable parallelism. Additionally, specialized hardware
like priority schedulers might have heterogeneous data
processing and arrival times, which need to be considered
for the system to work in a pipelined fashion. Pipelined
systems are not able to start the next stage before completing
the current one, so stalling on a stage potentially halts the
pipeline’s progress until data becomes ready. This property
essentially invalidates other hardware sorting approaches
like Bitonic sorting networks [1, 2], which are able to
achieve high-throughput only when acting on fully available
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data sets. To achieve low-latency pipelining and increase
throughput through parallelism in a sorting system, a novel
sorter implementation is needed.

In this paper, we present an alternative approach for
linear sorters that solves the previously identified problems
by

(i) expanding the linear sorter implementation and
making it versatile, reconfigurable and better suited
for streaming input and output (Section 3),

(ii) parallelizing the linear sorter for increased through-
put for scenarios with random and uniform distribu-
tion of streaming data (Section 4),

(iii) minimizing latency costs by buffering of contending
parallel sorting requests (Section 5),

(iv) implementing the high-throughput linear sorter and
outmatching the performance of current linear sorter
approaches (Section 6).

Additional features have been added from our work in
[3] to further reduce sorting latency using a contention
buffering scheme. Moreover, we provide a detailed explana-
tion of our interleaved linear sorter system implemented as
a component of a superscalar reconfigurable processor core.
The innovative features of our interleaved approach fill the
need for a high-throughput pipelined sorting unit, whose
adaptability makes it particularly useful for streaming and
reconfigurable systems.

2. Background

Several popular sorting algorithms (e.g., quicksort, merge-
sort, and heapsort) use divide-and-conquer techniques to
achieve efficiency [4]. Intuitively, one would assume they are
suitable for a parallel hardware implementation. Regrettably,
upon breakdown to a register-transfer level representation,
these algorithms are plagued with data movement, syn-
chronization, bookkeeping, and memory access overhead.
The sorting speed is highly dependent on a fast and
robust computing platform, the type of platform that is
inadequate for mobile, embedded, real-time, low-power, or
reconfigurable systems.

Hardware sorting makes extensive use of concurrent data
comparisons and swaps each clock cycle, rather than relying
on the sequential execution of multiple assembly operations
like its software counterpart. Due to its parallelism, a
hardware implementation can speed up sorting applications,
even at lower clock frequencies. Hardware comparisons can
occur simultaneously on multiple pairs of elements. A first
approach involves making multiple concurrent small oper-
ations in comparators that cascade into a well-structured
network and is called a sorting network. Inserting serial input
to a systolic array of sorter cells provides a second approach
to hardware sorting. The third and final approach involves a
single large parallel computation over multiple independent
nodes and is called a linear sorter.

2.1. Sorting Networks. Sorting networks use parallel wires
and multiple levels of swap comparators to shuffle data into a
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Figure 2: Parallel sorting network of size 6.

sorted output array of wires. Each swap comparator consists
of two data inputs A and B and their two outputs H and L,
where H = max(A,B) and L = min(A,B). This component
can be used recursively to construct a sorting network SN ,
capable of sorting N data inputs. Simple implementations
for sorting networks use the same principles as well-known
sort algorithms. Figures 1(a) and 1(b) show two common
implementations, where wires are represented by horizontal
and swap comparators by vertical lines. Figure 1(a) resembles
a bubble sort: swap-comparators first sink the lowest value
to the bottom wire and then operate on the remaining SN−1

network recursively. Figure 1(b) acts like an insertion sort,
assuming a sorted network SN−1 already exists and then
using swap comparators to position the remaining input
accordingly. While simple, both sorting networks suffer from
latency with the worst case scenario having O(N).

The recursive structure of the bubble and insertion
networks is identical but inverted. Collapsing them to
allow parallel comparisons results in an identical sorting
structure. Figure 2 displays this resulting structure sorting
a sample set of data of size 6 with 15 comparators. Sorting
latency is reduced through parallel comparisons occurring
simultaneously on multiple pairs of wires. As the size of the
network grows, the number of comparators increases in a
quadratic manner. In general, for a network of size N , the
amount of comparators required will be N × (N − 1)/2.

Merging networks are more efficient than insertion or
bubble networks, which are impractical due to their large
depth. These networks keep two lists of ordered data and
produce a single ordered list after merging. Batcher was the
first to propose sorting networks, by introducing the odd-
even mergesort and bitonic sort networks [1]. The odd-even
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mergesort network sorts all odd and even data in separate
lists before merging, while bitonic networks first sort values
in monotonically increasing and decreasing lists and then
merge the lists into a single sorted sequence. These types
of sorting networks are common in network crossbars for
asynchronous transfer mode (ATM) switching, usually in the
form of a Batcher-Banyan switch [5–7].

The main advantage of sorting networks is their ability
to receive a parallel input block of data, rather than feeding
input data serially. However, the detriments include large
numbers of processing elements (PE), high latency, and
the need to resort a full set of data upon a single new
insertion. Martı́nez et al. reduced sorting network latency
by introducing levels of pipelining [8], while Tabrizi and
Bagherzadeh introduced a tree-like structure to reduce the
area and PE complexity [9]. Nevertheless, sorting networks
in general cannot efficiently handle progressive incoming
data, and their large area and complexity may hinder
implementation [10].

2.2. Systolic Sorters. Systolic arrays, which are a matrix
arrangement of processing cells, can be structured to sort
serial input. This approach was first proposed by Leiserson
[11] in the form of a systolic priority queue. Queue data is
fed serially into the systolic system. It traverses the length
of the priority queue going forward then traverses it again
in reverse direction towards the output. When two data
elements, traversing in opposite directions, meet in a queue
cell, the one with the maximum value keeps traversing in
reverse (towards the output), while the minimum is sent back
to the forward path. A special case of the systolic priority
queue occurs if all inputs are loaded before starting queue
extraction. The priority queue then becomes a systolic sorter
[12], but the system requires a systolic array length equal to
the number of all input elements to be sorted.

Each cell in the systolic sorter becomes a processing
element with two inputs and two outputs. Figure 3 shows
this basic cell structure, with Input F and Output F aligned
with the forward direction and Input R and Output R
with the reverse path. On collisions where the two inputs
have valid data, Output R = max(Input F, Input R) and
Output F = min(Input F, Input R), which consequently
advances the maximum values towards the reverse path
culminating on the priority queue’s output. The cell’s regular
structure is an important consideration for VLSI systolic
arrays. Without it, this cell is essentially a registered swap
comparator.

The structure of the systolic sorter is a linear array of
processing cells. Figure 4 demonstrates the regular structure
of a priority queue with five cells, with the forward path
heading right, the reverse path pointing left, and the right-
most cell reversing the traversal paths. Registered outputs,
rather than combinatorial logic, are a key factor of the cell
and the priority queue functionality. Serial data is sent to
the systolic sorter’s input every other clock cycle, allowing
comparisons between adjacent forward and reverse queue
values, which would otherwise bypass each other.

The extra clock cycle needed per input for a systolic
priority queue of length N decrees the sorting latency

Input F

Input ROutput R

Output F

Figure 3: Systolic sorter cell interface.

Data input

Sorted output

Figure 4: Systolic sorter array structure.

accordingly. 2N − 1 cycles are needed to feed input data and
output the first sorted value, then another 2(N − 1) cycles
are needed to flush the remaining N − 1 sorted values into
the output, for a total latency of 4N − 3 clock cycles. The
systolic sorter depth then is justN cells, an improvement over
a sorting network’s N×(N−1)/2 required swap comparators,
at the expense of increased sorting latency.

The size and latency requirements for sorting networks
and systolic sorters are an impediment for implementation.
Large data sets demand O(N2) swap comparators in sorting
networks and O(N) cells in systolic sorters, putting a strain
on the system’s area requirements. However, systolic sorters
can be implemented as components of sorting architectures
than can handle large or infinite streaming data sets and pro-
vide constant-time sorting to fixed-size sorting systems for
arbitrary size data [13]. Furthermore, they can be employed
to manipulate cost-performance tradeoffs in hybrid sorting
systems that decompose sorting into sequential and parallel
parts [14].

Modified systolic sorters that support large data sets
nonetheless suffer from large sorting latencies, since incom-
ing values must still traverse the length of the systolic sorter
twice. While appropriate for offline sorting, these large
latencies create obstacles for streaming data, an encumbrance
that is compounded with the extra multicycle input rate of
systolic sorters. By contrast, linear sorters, the third approach
to hardware sorting, allow for single-clock insertion and
single-clock sorting latency.

2.3. Linear Sorters. Linear sorters, which keep a sorted list
while inserting new elements in-order, are an alternative
approach in hardware-based sorting. The principle is the
same as insertion sort in a software-based linked list: new
inserted data is positioned at the corresponding place in
the sorted list, thus keeping the list sorted. Although in
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Figure 5: Linear sorter node configuration.

hardware one can iteratively traverse every node in the list
when inserting values [15], a more appropriate method
is to send incoming values to all nodes in parallel. Near-
neighbor interconnections exist among nodes and their left
and right neighbors, which allow each sorting node to make
an autonomous decision about its new value and positioning
in the list. This decision process involves each node acquiring
a new value by comparing the incoming value against the
node’s current value and that of its neighbors. Although
the underlying hardware structure of the linear sorter is
unchanged, each node and its corresponding value can be
thought of as shifting right, shifting left or holding its current
value in the context of the sorted list. Figure 5 shows a linear
sorter and the interconnections between its nodes. The data
input (with a value of 4) is propagated to all nodes, forcing
the third one (with a value of 5) to “shift” its value to the
right, allowing the reception of the newly inserted value on
the sorted list.

Linear sorters have small logic and control footprints,
regular structures, and relatively straightforward hardware
implementations using shift registers. Additionally, these
sorters are particularly appropriate for streaming data, where
low sorting latency and continual sorting is crucial. The main
drawback of linear sorters is the serial nature of both their
inputs and outputs. Even though the output of a linear sorter
can be accessed in parallel (as depicted in Figure 5), at most,
one value can be erased from the queue during continuous
operation of streaming data. The fixed size of a linear sorter
adds extra restrictions as it limits the size of growing lists
before depleting node availability. When the sorter is full,
new inserted values must replace old ones. This can be done
using a FIFO that outputs the Top N results of a list [16].
Alternative approaches augments the incoming data with an
associated tag that indicates either an insertion or a deletion
[17]. Such a linear sorter must additionally allow nodes to
shift values left in addition to shifting right, holding, and
inserting. Furthermore, it is also possible to sort on tags
rather than on the data itself [18]. This approach is useful
when implementing priority schedulers, or for preserving
the order of data with identical tags. A final approach is to
use a linear merge sorter, where two FIFO sorted queues are
merged into a single sorted queue through linear sorters [19].
Regardless of the approach, with only a serial output, linear
sorters are confined to an output rate of one value per clock
cycle, limiting the overall throughput of the system.

Both sorting networks and linear sorters can capitalize on
increased throughput to improve their performance. Sorting
networks can be pipelined to increase sorting throughput but
at a high area cost due to their depth. Regardless, sorting
networks still suffer from a latency of O(log2N) and are
still unable to handle data streams [20]. Linear sorters, on
the other hand, have a single clock cycle of latency and
reduced area but by default are unable to produce increased
throughput. We propose an extension to linear sorters which
effectively increases their throughput by using parallel linear
sorters and interleaving logic.

3. Configurable Linear Sorter

The core of our high-throughput sorting system is based on
a linear sorter. Each insertion is broadcast to all nodes, where
each node either holds its value, receives the input value, or
shifts right. Reconfiguration was a key property to provide
versatility and adaptability; hence, the size of the data D, the
depth of the linear sorter N , and the sorting direction are
configurable parameters of the sorting system. We further
extend the linear sorter with tags, so that sorting is performed
on the tags rather than the data, as in [18]. Because the tags
also have a variable bit length, an application can specify both
the size of the data and the tag. The benefits are twofold: the
linear sorter minimizes area consumption, while adapting to
the application’s specific requirements and the logic delay for
the comparison operation is reduced for tags smaller than
the data width. In case the sorting must depend on the data
itself, the value of the tag can be replaced with the data.

3.1. Linear Sorter Functionality. Due to the finite nature of
our linear sorter depth N , by default, only the Top N results
are kept. If sorting greater than N values is required, the
replacement policy can be augmented with external logic that
checks for full conditions. When the sorter has only one free
node available and an insertion occurs, an output signal bit
is set. This enables the external input feeding logic to start
buffering rather than discarding new input data.

The output of the linear sorter can be accessed in parallel
by retrieving multiple node values at once. This is useful
for systems which process data in batches, since the linear
sorter depth N can be set to match the batch size. Once an
input batch is received and processed, the linear sorter can
be reset to start the process again for a new input batch.
For continuous operation, the output must be serial, the top
value must be erased, and the queue must be informed of
this action. To accomplish these properties, an additional
external signal makes a request to delete the top value while
retrieving it, thus freeing up nodes. This operation is akin
to the pop() operation used in standard FIFO queues and
stacks.

Because the leftmost value is deleted, the node’s func-
tionality needs to be enhanced to include a left shift, in
addition to the default operations shift right, hold, and
insert. Figure 6 shows the added functionality for each node
of the linear sorter while sorting nine values, with the vertical



International Journal of Reconfigurable Computing 5

0

5

7

6

2

11

9

3

8

4

5

1

2

3

4

5

6

7

8

9

7

6

2

1

9

3

8

4

1

2

3

4

5

6

7

8

5

5 7

5 6 7

2 5 6 7

2 5 6 7

5 6 7 9

5 6 7 9

5 6 7 8 9

5 6 7 8 9

6 7 8 9

7 8 9

8 9

9

11

12

13

14

15

10

C
lo

ck
cy

cl
es

In
se

rt
ed

ta
gs

So
rt

ed
ou

tp
u

t
Node

1
Node

2
Node

3
Node

4
Node

5
Node

6

Insert

Delete

Sorter operations Node operations

Shift right
Shift left
Hold value
Insert

Figure 6: Sample execution of modified linear sorter.

axis indicating clock cycles. During each clock cycle, a subset
of the active nodes either shift left, shift right, hold, or insert.

The output logic for this sample linear sorter deletes
contiguous tags (and their associated data). Once the first
tag is received, the output logic will keep deleting as it
retrieves data with incrementally contiguous tags. When it
stops deleting, the linear sorter continues to receive input,
and deletion resumes when the next contiguous tag is in the
top of the queue. The gap in the sorted output column of
Figure 6 indicates a pause in delete requests from the output
logic. The worst case scenario, where the first tag is inserted
last, does not affect the sorting rate, but it does increase the
latency of results.

To achieve continuous processing of streaming input,
the external delete signal is kept at a constant high after
accumulating enough input data. This setup creates a
priority queue, where the local maxima is always deleted
from the top of the queue. However, an external delete
signal adds the advantage of testing a tag or value before
deletion. Consequently, the linear sorter waits until certain
conditions are met rather than just deleting the current top
value (which might have been superseded in subsequent
insertions). The example in Figure 6 shows an inactive
deletion during clock cycle 9, to ensure a predetermined
order. Had the deletion been constant, the next top tag value
would have been {5} instead of {4}, producing the output
{1, 2, 3, 5, 4, 6, 7, 8, 9}. This feature is important if either

Sorter node
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Validleft
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Validright

Dataright
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Figure 7: Sorter node interface. D = Data Width, T = Tag Width.

continuity is necessary (like pixels on an image) and/or data
values cannot be discarded. A sample situation is processing
instructions by integer, floating point, and other functional
units with different latencies back into program order using
linear sorters. In general, ordered data on any heterogeneous
parallel processing system that needs to be reordered must
have its values wait until previous sorted data has been
dispatched. To ensure this, tags can be initially assigned
incremental values before entering out-of-order execution
stages.

Careful consideration must be used with the external
delete signal to avoid deadlock problems. The linear sorter
should be configured with a depth N large enough to allow
a sliding window for contiguous values. If, for example, the
system can guarantee that no two contiguous data values can
arrive more than M clock cycles away, then the minimum
value of N should be M + 1. This also specifies the maximum
latency of sorted results.

3.2. Sorter Node Architecture. To achieve the linear sorter
functionality we described, each sorting node implements
the appropriate interface and logic. The sorter node interface
has three sets of inputs and a set of outputs, each set
containing signals for validity, tag, and data, as shown in
Figure 7. The widths of the data (D) and tags (T) can be
specified as a parameter during synthesis. The three input
sets come from the left neighbor, the right neighbor, and
the linear sorter insertions being forwarded to all nodes. The
node’s output set is sent to both its left and right neighbors,
so that they too can make sorting decisions autonomously.
This architecture coincides with those of single linear sorters
[16, 20], which stores (key, data) pairs and compares them
against neighbors and incoming values.

The decision logic to shift, insert, or hold a node value is a
function of these three sets of inputs, specifically, the tags and
validity bits. Shifting decisions are summarized on Table 1.
Isolated insertions (row 1) right-shift all tags smaller than
the new tag. An isolated deletion (row 2) always left-shifts
every node. A left-shift can also occur while both inserting
and deleting if the new tag is greater than the node’s right
neighbor (row 3); otherwise, the node inserts the new tag
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if that tag is also greater than its own (row 4). For isolated
insertions, nodes will also insert the new tag if it falls between
its left neighbor and its own tag (row 5) or if the new tag is
added at the end of the queue (row 6). Otherwise, the nodes
keep their current tag and data values.

The sorter node has registers of length D, T , and 1
for the data, tag and validity bit, respectively. Three less
than comparators test the inserted tag value against both
neighbors’ and the node’s tags. Finally, additional Boolean
gates are used to assess the input validity and the operations
being requested.

4. Interleaved Linear Sorter System

The throughput of a linear sorting system is limited to one
input per clock cycle and can be improved if parallel inputs
are used. Multiple linear sorters are configured in parallel
to create an interleaved linear sorter (ILS) to overcome this
throughput limitation. An ILS system distributes parallel
inputs to the linear sorters, trying to minimize stalling
from full conditions through even distribution. Assuming
random or incrementally contiguous tag numbers, we can
use interleaving to equally distribute the values among all
linear sorters. Typically, this is done by setting the ILS
width, W (the number of linear sorters), to a power of two,
which reduces the interleaving modulo arithmetic to simple
bit trimming. Despite the average even distribution of this
method, there is the distinct possibility that two or more tags
will match the same sorter, which requires preemption and
buffering. All inputs are then serviced by the hardware in
round-robin fashion, without keeping state of which inputs
were serviced in the previous clock cycle. When contention
for a linear sorter occurs, only the first conflicting request is
serviced. The interleaving controller sets an output signal to
indicate this input stalling, and the data stream can resume
after the buffer, using registers common in pipelined systems.

Figure 8 shows a sample execution of an ILS. The ILS
width W = 4, indicates the quantity of linear sorters (LS)
acting in parallel. The numbering i for the ILS’s four linear
sorters, LS0, LS1, LS2, and LS3, indicates its interleaving
value. Hence, a tag value T will be sent to linear sorter i if
T mod W = i. During the first clock cycle of this execution,
each of the parallel inputs tags (and their corresponding data
values) are dispatched to different linear sorters. During the
second clock cycle, only the first of two clashing tags {5, 1}
is serviced. The remaining one {1} is dispatched in the next
clock cycle, while the input is stalled. Even though the same
situation happens again during clock cycle 5, all 16 values are
sorted after only 6 clock cycles and are then ready to be sent to
the outputs at a parallel rate of W . In this particular example,
the outputs are ready to start streaming in contiguous order
as early as the fifth clock cycle.

The ILS registers the values for multiple conflicting tags
and dispatches them over several clock cycles. This solves
possible situations in which three or more tags match the
same LS. For instance, an input of {0, 4, 8, 12} would cause
this situation for the example in Figure 8. During these
worst case scenarios, the throughput advantages of an ILS
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Table 1: Logic for sorter node’s shift operation.

Operation Delete Insert
NewTag less than

LeftTag MyTag RightTag

1 Right Shift No Yes Yes

2 Left Shift Yes No

3 Left Shift Yes Yes No

4 New Value Yes Yes No No Yes

5 New Value No Yes No Yes

6 New Value No Yes Yes N/A

degrade gracefully to that of a single linear sorter system.
Nevertheless, additional area is required to implement W
linear sorters and their input logic for the benefit of the
average and best case scenarios. In these cases, the ILS shows
a distinct advantage in throughput over a typical linear sorter
system.

4.1. Input Distribution and Latency. The average latency for
sorting W values arriving in parallel will vary predictably if
we assume a uniformly distributed set of tags. With W = 1,
there are no conflicts, and the single tag is always processed
in one clock cycle. When W = 2, there is a 50% chance that
the second tag’s interleaving value will be the same as the first
one. This condition adds an extra clock cycle of latency 50%
of the time, therefore giving an overall average of 1.5 clock
cycles for W = 2. For larger values of W , we used Monte
Carlo simulations rather than relying on deterministic
algorithms, due to the increasingly complex dependencies
with previous tag’s interleaving values. Table 2 shows the
results of 230 simulations, for W ∈ {1, 2, 4, 8, 16}. Because
of the added clock cycle latency, throughput results obtained
for different ILS widths are normalized over their average
latency. This ensures that the calculated ILS throughput is
adjusted to account for the additional contention introduced
by the parallel linear sorters.

The previous analysis is dependent upon a uniform
distribution of tags among the W linear sorters. This is
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Table 2: Average latency for interleaved linear sorter of width W .

Number of linear sorters W Clock cycles

1 1.000

2 1.500

4 2.125

8 2.597

16 3.078

easily accomplished if the tags to be sorted are effectively
random (from an interleaving perspective), or if they have
been assigned incrementally contiguous or evenly distributed
numbers. On the other hand, nonuniform distributions
require additional custom input logic. The input logic to
interleave multiple values to the linear sorters plays an
important role in determining the overall throughput of an
ILS. As the ILS width W increases, so will the logic and
routing delay, diminishing the overall clock frequency of
the system as we will demonstrate in Section 6. In terms
of area, the depth of each linear sorter in an ILS can
be set independently to accommodate different types of
distributions.

4.2. Linear Sorter Depth. One of the key attributes of a linear
sorter is its regular structure. Because of this regularity, a
linear sorter of depth N can be implemented with little
effect over the system’s logic and routing delays. Therefore,
regardless of the linear sorter depth, its implementation
maintains timing performance. This is an asset, since ideally
the linear sorter depth N needs to be large enough to prevent
full conditions.

In simple cases, full linear sorters stall the input flow
until one of its elements is removed. With more complex
systems, there is a possibility that the logic controlling the
sorted output streaming is input dependent (e.g., the system
starts streaming after the tag number 1 is identified as the
top sorted value). If the ILS needs to validate a condition
before streaming its output, it will accumulate values until
the condition is met. It is then possible that one of the queues
becomes full and not able to service inputs or outputs,
that is, a deadlock condition. Because only a single value
can be inserted and deleted in each linear sorter, the depth
N must be large enough to allow a sliding window of
values. That is, at any given time, every input value received
can be dependent only on the inputs received less than N
clock cycles before. Fortunately, N can be easily changed to
accommodate this restriction.

4.3. Output Logic. The ILS system needs to accumulate
values before its sorted output becomes relevant. Therefore,
there must be some logic in control of output streaming.
A simple choice is to start the output when one of the
linear sorters is detected as full or almost full, ensuring a
continuous flow of sorted values. Another option would be
to test the top sorted tag value before streaming. If we were
to ensure the order for predefined tags, then the output logic
must test each tag in a round-robin fashion before deletion

from each linear sorter (an extension of the system presented
in Figure 6). Because W tag values need to be inspected in a
single clock cycle, this method’s logic and routing generally
limits the maximum frequency of the system.

An alternative approach for sorting the ILS’s output is to
use a pipelined sorting network. This sorting network can
resort the top values from each of the W linear sorters. Since
W is generally small, the necessary processing elements,
latency, and area are also kept small, thus overcoming the
hindrances of a sorting network implementation.

4.4. Simulation Results. We used ModelSim to simulate and
functionally verify the ILS system. On each rising clock edge,
the ILS system receives a new input set of tags, and situations
involving contention for the interleaved linear sorters input
ports are solved through input buffering. Figure 9 shows
the simulation for signals of interest when such events
occur. The initial parallel input of Input Tags consists
of tags {0, 1, 6, 7} which are interleaved without incident,
sorted immediately, and sent to the Sorted Output port
in the next rising clock at 50 ns. The following set of inputs
{4, 5, 2, 3} do not experience any contention for interleaved
linear sorters either and are sorted in one clock cycle. At this
point, the Sorted Output is {0, 1, 2, 3}, which are the top
sorted tags able to be dispensed at a rate of four sorted tags
per clock cycle.

Contention for linear sorter 0 occurs in the tag set
{8, 9, 12, 11}, since zero is the interleaving value for tags 8
and 12. Tag 8 is serviced immediately because of the round-
robin servicing scheme, and Tag 12 is saved to the Buffered
Input register. The Contention flag now indicates the
input logic to start buffering, which invalidates further input
to the ILS system until it services the buffered tags. Tag 12,
now residing in Buffered Input, is serviced in the next
clock cycle at 70 ns. Finally, the input tags {10, 13, 14, 18}will
have three tags in contention for a linear sorter input, and
therefore, two extra clock cycles will need to be used to buffer
and dispatch them.

5. Delayed Contention Buffering

There is potential for improving the linear sorter contention
scheme. The Buffered Input signal accumulates all con-
tending values from the current tag set and dispenses them
immediately. The average latency cost associated with this
procedure was previously shown in Table 2. We instead
accumulate contending tags over multiple sets of inputs,
dispensing them when the Buffered Input signal is full.
Table 3 shows the average performance increase when using
this delayed buffered contention resolution scheme against
the previously described immediate contention resolution
scheme.

When the interleaved linear sorter width W is one, there
is no benefit from the contention buffer as no conflicts arise
from using the single linear sorter in the system. Additionally,
when the contention buffer size CW is less than the ILS
width W , additional logic must be implemented for worst
case contention scenarios. In these cases, it is possible to have
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Table 3: Average latency speedup with contention buffering for
interleaved linear sorter of width W .

ILS width W
Contention buffer size CW

1 2 4 8 16 32

1 0% 0% 0% 0% 0% 0%

2 0% 9% 12% 14% 15% 17%

4 0% 23% 33% 41% 46%

8 0% 30% 45% 57%

16 0% 37% 57%

Table 4: Reduced average latency for interleaved linear sorter of
width W .

Number of linear sorters W Clock cycles Speedup %

1 1.000 0%

2 1.344 12%

4 1.595 33%

8 1.752 45%

16 2.254 57%

W − 1 conflicting requests for a single linear sorter that need
to be buffered. Since the buffer size CW cannot hold all these
requests, a second buffer would be needed, subsequently
making situations in which CW < W quite unappealing due
to the extra logic, buffer, and latency requirements.

Table 3 shows that for cases in which CW ≥ W ,
there are speedups ranging from 9% to 57%. The greater
speedups are achieved for cases in which both linear sorter
contention is probable (large W), and the contention buffer
can hold multiple requests accumulated over one or various
clock cycles (large CW). This is convenient, as it subsidizes
the elevated logic and routing costs associated with large
interleaved linear sorter widths, thus not only maintaining
their throughput but also reducing latency costs. Because
the contention buffer prevents tags from being serviced
immediately, the sliding window for contiguous values is
increased. This requires a complementary increase in the
linear sorter depth to augment storage capabilities for
unsorted tags. In general, the extra storage capacity should
exceed CW extra nodes per linear sorter, for a total of W ×
CW sorter nodes in the ILS system. Because additional linear
sorter nodes do not greatly affect performance, there is only
an area overhead cost associated with this reduced latency
benefit.

We chose the cases in which the contention buffer input
sizeCW was twice the interleaved linear sorter system’s width
W . This buffer size is practical, because it avoids overflows
when multiple values get sent to a contention buffer that
is almost full. Table 4 presents the revised latency of the
ILS system with respect to its width. The additional latency
for large values of W is not as dramatic as was presented
previously on Table 2 and, therefore, counters the reduced
clock frequencies experienced in implemented systems, as
Section 6 will describe in detail.

Table 5: ILS FPGA area.

Linear sorters, W Total slices Slices/node Area overhead

1 278 17.4 2.3%

2 641 20.0 17.6%

4 1294 20.2 18.8%

8 2612 20.4 20.0%

16 5250 20.5 20.6%

6. Hardware Implementation

The hardware implementation for the interleaved linear
sorter depends on the width W of the ILS, the tag width
T , the data width D, and the depth N for each of the W
linear sorters. Of those, only three affect the maximum clock
frequency. The widthW tends to dominate the frequency, the
depth N only has a minor effect, and larger values of T create
longer tag comparisons. Tag sizes of 32-bits decreased the
frequency by 16% compared to an 8-bit tag system. The data
and tag sizes directly influence the total area. The number
of the linear sorters, sorters depth, data, and tag size are
parameterized offline before synthesis.

We used Xilinx ISE 11.1 and EDK 8.2 to synthesize the
ILS for a Virtex-5 FPGA. The area for a linear sorter node was
fairly static. For an 8-bit data and 8-bit tag linear sorter node,
17 FPGA slices were needed. The total area was generally
scaled by the total number of nodes W × N . Table 5 shows
ILS systems of different widths W and their respective areas,
with each linear sorter being 16 nodes deep.

The area overhead comes from the extra implementa-
tion logic for interleaving among multiple linear sorters.
Likewise, it also includes the adder/subtractor and counter
necessary for detecting full conditions on the linear sorters.
Storage for the data to be sorted utilizes the FPGA board’s
BlockRAMs.

6.1. Throughput. The maximum throughput was calculated
as the product of the maximum frequency and the number
of linear sorters in the ILS. This assessment includes the
logic necessary to interleave the inputs to their corresponding
linear sorter, which for large values of W became a perfor-
mance bottleneck. Table 6 shows the implemented Virtex-
5 frequencies for W ∈ {1, 2, 4, 8, 16}, with 8-bit tags and
8-bit data, averaged for linear sorters with depth N ∈
{1, 2, 4, 8, 16, 32, 64, 96, 126, 256}. Even though at W = 16
the ILS throughput per clock cycle of the ILS is high, the clock
frequency drops to 40 MHz due to the large logic and routing
delays at the input logic stage.

The frequency discrepancies for ILS systems of width
W = 8 and W = 16 are the result of the underlying logic cell
in the Virtex-5 board. The lookup table (LUT), is a 6-input
component that implements function generators. In the first
three cases in Table 6, only one LUT is needed to generate
functions with one, two, or four inputs. When the ILS has
eight different inputs, two 6-input LUTs have to be cascaded
to generate functions. With sixteen inputs, four LUTs are
needed. This cascading of LUTs doubles and quadruples the
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Table 6: ILS frequency and throughput.

Linear sorters W
Frequency

(MHz)

Maximum sorting
throughput
(millions/s)

1 299 299

2 275 550

4 275 1101

8 132 1058

16 40 645

processing delay of inputs, and decreases the clock frequency
accordingly.

Using these frequencies, we can now show the maximum
throughput for different ILS configurations. Figure 10 shows
the maximum sorting rate for W ∈ {1, 2, 4, 8} for varying
linear sorter depths N with 8-bit datas and tags. The 16-wide
ILS was omitted due to the poor performance that resulted
from its low clock frequency. The frequencies diminish as a
function on ILS depth because of fanout. The input signals
in each linear sorter have to be forwarded to all sorter
nodes, which consequently increases the routing delay of
these signals. In turn, the ILS clock frequency is decreased,
but the effect is minimal in comparison to the routing delay
experienced from interleaving tags to their corresponding
linear sorters.

For ILS systems with two, four, and eight linear sorters,
the average speedups against a single linear sorter were
1.8, 3.7, and 3.5, respectively. The diminishing returns
trend is evident for W = 8, which shows a maximum
throughput comparable to an ILS with W = 4. All of the ILS
implementations showed higher throughput when compared
to a single linear sorter system.

The maximum throughput results in Figure 10 do not
consider two important factors. First, interleaving con-
tention for the same linear sorter results in an average latency
that increases with W , as previously shown in Tables 2 and 4.
For the average case, the maximum frequency needs to be
normalized by one of these factors. Second, the input logic
for a small ILS width W will result in fairly simple logic
and minimal delay. It is unlikely that this ILS delay would
limit a nontrivial system. Instead, it is most likely that logic
delays elsewhere in the same system determine the critical
path and consequently sets the maximum frequency. As such,
we assumed a maximum frequency of 300 MHz, which was
the highest frequency obtained for 16-bit comparisons. This
eliminates some of the artificially high frequencies an isolated
ILS system achieves.

We first evaluate the decreased performance experienced
when normalizing our maximum throughput due to inter-
leaving contention for the system’s linear sorters. Figure 11
shows the average throughput of an 8-bit tag and 8-bit data
interleaved linear sorter, normalized by the corresponding
ILS latency in Table 2 using immediate contention resolution
with a 300 MHz maximum frequency. The interleaved linear
sorters with W = 2 show a speedup of 1.3 while the one
with W = 4 a 1.8 speedup. The W = 8 ILS, unfortunately,

falls short at a 1.4 speedup due to its lower clock frequencies,
contention, and complex input logic.

By using delayed contention resolution with a buffer
twice the size of the interleaving width, we subsidize timing
penalties of conflicting requests by dispatching them at once.
Table 4 specified the ILS latency for our different interleaving
values. Implementation of ILS systems with width W > 4
was not practical due to extreme routing delays. Contention
buffering requires each of the W tag inputs to be routed to
any of the 2 ×W contention buffer cells. The routing is not
only expensive, but it is also magnified for W > 4 due to the
FPGA’s logic cell features, which limit LUT inputs to 6 and
require cascading for larger values. The average frequency
reduction for an ILS system with width W = 8 was more
than 45% (the average speedup using contention buffering),
making this enhancement perform worse than the original
solution.

Figure 12 shows improved results for ILS systems with
delayed contention buffering. The difference is more pro-
nounced for W = 4, when the system can reap all the
benefits of buffering without paying the expensive routing
delay price. Its average sorting rate was 633 million values
sorted per second, compared to 518 million when using
immediate contention resolution.

6.2. Virtex Implementation. The implementation of a 4-way
interleaving ILS was compared against quicksort running
in a MicroBlaze processor, both in a Virtex-2 Pro ML310
device. The clock frequencies for software and hardware
implementations matched the bus frequency of 100 MHz.

Data to be sorted resided in BlockRAMs. To create the
tags, a pseudorandom scheme was used. The size of our
sliding window for tag generation was set at 64, meaning
that two contiguous tags would not be more than 16 address
spaces apart within the four BlockRAMs. Unsorted sets of
64 tags and data were written in random order to the
BlockRAMs while ensuring the sliding window property.
The same data was used for both the MicroBlaze and the
interleaved linear sorter tests.

The MicroBlaze version ran a C program for quicksort.
The unsorted data resided as an array of values in a
single BlockRAM, and values were retrieved and written
through the on-chip peripheral bus (OPB) BRAM interface
controller. For a small dataset of 64 values, MicroBlaze took
49,982 clock cycles, which include bus arbitration and read
and write requests over the OPB. The end result is a sorted
set saved in BlockRAM.

Three scenarios were setup with the ILS system doing
hardware-based sorting. In each scenario, the unsorted data
was saved in four BlockRAMs, with each BlockRAM output
connected to the corresponding interleaved linear sorter
input. The ILS output logic was set to delete tags and values
in strictly contiguous increments, acting as a sorter rather
than a priority queue. This means the output will halt until
the next tag in the sequence is sorted to the top of the queue,
as was shown in Figure 6, ensuring that we will get the same
end results as the MicroBlaze test. Setting the depth of the
four linear sorters to 16 nodes prevents each individual linear
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Figure 9: Simulation for interleaved linear sorter, including contention.
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Figure 10: Maximum throughput for interleaved linear sorters.

sorter from filling up while waiting for the input arrival of
contiguous tags, even in the worst case scenario. This depth
property further ensures that the input streaming remains
not stalled due to lack of space in any of the linear sorters,
preventing the system from going into a deadlock situation
and allowing continuous output streaming.

In the first scenario, a MicroBlaze processor writes the
unsorted data to the four OPB-based BlockRAMs and then
sets a signal that starts the input streaming into the ILS. A
simple hardware counter was used to drive the addresses of
the BRAMs to cycle through all the unsorted values. The
ILS output was then connected to the input ports of four
secondary OPB BRAMs that hold the sorted values. Finally,
the MicroBlaze reads back the sorted values through an
on-chip peripheral bus (OPB) BRAM interface controller.
Sorting with an ILS takes 2272 clock cycles, achieving a
speedup of 22 over the MicroBlaze-only option.

The second scenario is set up in the same fashion as
the first, but the results do not need to be read back into
the MicroBlaze over the arbitrated bus since final storage
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Figure 11: Normalized throughput for interleaved linear sorter
system.

happens in the ILS itself, whose linear sorters are deep
enough to hold all the data. However, the MicroBlaze checks
the ILS output to ensure all values have been retrieved before
streaming the sorted results into the four OPB BlockRAMs,
which takes a total of 732 clock cycles. Again, the end result
is the sorted set saved in BlockRAM, but the speedup is
magnified to 68 from the initial setup.

The third and final scenario involves a hardware-only
approach with no MicroBlaze involvement. The output from
the ILS is consumed by other hardware components as soon
as it is ready (but still keeping the contiguous sorted output
limitation). Under these circumstances, the interleaved linear
sorting system takes only 30 clock cycles, a speedup of 1666
over the MicroBlaze quicksort.

6.3. Superscalar Processor Implementation. The greatest ben-
efit of our interleaved linear sorter system is achieved on
a hardware-only computational platform. Even though it is
difficult to find applications that can fit this sorting scheme,
the speedups attained in these systems make our approach
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Figure 12: Improved normalized throughput for ILS system with
delayed contention buffering.

an attractive option. Therefore an ideal target application
is one that receives an unsorted streaming input of values,
and transforms them into a streaming output of sorted data
for other hardware components. One such application is a
reconfigurable superscalar processor.

The configurable interleaved linear sorter was imple-
mented as a component in an FPGA-based configurable
superscalar processor [21, 22], which required resorting of
processed results to allow precise interrupts. The superscalar
processor utilizes register renaming and out-of-order execu-
tion to increase performance by exploiting instruction-level
parallelism. One of the key components is its heterogeneous
collection of functional units, which provide specialized pro-
cessing for different instruction types at reduced execution
latencies. Within the realm of reconfigurable computing,
these functional units can also provide custom execution of
instructions. The chronological sequence of events for an
instruction execution starts with instruction retrieval, decod-
ing, elimination of false data dependencies through register
renaming, and storage in the reservation stations. These
waiting instructions contain only true data dependencies,
and once their operands are ready from the execution of
previous instructions, they can be immediately dispatched
in out-of-order fashion. Performance is thus increased
when executing multiple instructions simultaneously in the
parallel functional units.

To service interrupts from external sources like I/O
and network, the processor saves its state, services the
interrupt, and then restores state to continue execution. The
superscalar’s in-flight instructions, variable number of func-
tional units, and out-of-order execution make restoration
particularly difficult, so a reorder buffer is utilized to track
in-order completion of instructions. The reorder buffer was
an ideal target application for an interleaved linear sorter, as
it had streaming input of instructions, streaming output of
executed results, and a sliding window that set a maximum

Table 7: Superscalar and reorder buffer comparison.

Min. delay
Max.

frequency

Interleaving 1

Superscalar processor 15.3 µs 65 MHz

Interleaved linear sorter
system

3.612 µs 277 MHz

Interleaving 2

Superscalar processor 16.5 µs 61 MHz

Interleaved linear sorter
system

4.746 µs 211 MHz

Interleaving 4

Superscalar processor 17.8 µs 56 MHz

Interleaved linear sorter
system

6.941 µs 144 MHz

latency between contiguous tags depending on the number
of in-flight instructions. Additionally, the processor’s recon-
figurable and superscalar nature also demanded increased
throughput and performance while requiring flexibility for
different number of instruction streams. The interleaved
linear sorter system met all these throughput, streaming, and
adaptability requirements.

When used as the reorder buffer for the reconfigurable
superscalar processor, the interleaved linear sorter system
surpassed the throughput requirements of the system. The
amount of interleaving was determined by a reconfigurable
parameter of the processor, which controlled the memory
banks available for parallel instruction retrieval. Table 7
shows the implementation delay and performance for a
superscalar processor with an instruction issue width of four
and four parallel functional units.

In all the interleaving cases in Table 7, the ILS system
experiences less delay than that of the register renaming
process in the superscalar processor. On average, the ILS
delay was 34% of the register renaming delay, with 26% of
that delay due to logic and 74% due to routing.

6.4. Comparison to Other Sorters. To compare our perfor-
mance with that of a state-of-the-art Batcher odd-even
sorting network implementation, we used the results from
[20], which were also implemented in a Xilinx Virtex 2
device. The Batcher odd-even method took 95 ns to sort
thirty-two 16-bit numbers. We set the ILS system to also
sort thirty-two 16-bit tag values, taking 123 ns. While the
mergesort performed better for a static data set, it still suffers
from the detriments of sorting networks, namely the need to
resort the full set of data upon a single new insertion and a
large area implementation.

7. Conclusions

Linear sorters overcome the latency disadvantages of sorting
networks and systolic sorters. Their regular structure makes
them highly configurable and a fitting solution for streaming
data. Nevertheless, their single-output nature limits their
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throughput. We have presented an implementation using
interleaving of linear sorters that alleviates this limitation,
using a delayed contention buffering scheme to maintain a
low sorting latency. An ILS system of width 4 showed, on
average, a 1.8 speedup over a regular linear sorter and a
speedup of 68 against an embedded MicroBlaze processor.
In an all hardware-implementation without the need of bus
requests, like our superscalar processor implementation, this
speedup became 1666. The versatility of the ILS system also
allows designers to easily configure the number of sorting
nodes per linear sorter and the number of linear sorters
in the system to best match system bandwidth and area
requirements. This configurability makes ILS systems easily
adaptable to a variety of applications, particularly those that
require high throughput for sorting streaming data.
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