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Accurate evaluation and characterization of defects in multilayered structures from eddy current nondestructive testing (NDT)
signals are a difficult inverse problem. There is scope for improving the current methods used for solving the inverse problem by
incorporating information of uncertainty in the inspection process. Here, we propose to evaluate defects quantitatively from eddy
current NDT signals using Bayesian networks (BNs). BNs are a useful method in handling uncertainty in the inspection process,
eventually leading to the more accurate results. The domain knowledge and the experimental data are used to generate the BN
models. The models are applied to predict the signals corresponding to different defect characteristic parameters or to estimate
defect characteristic parameters from eddy current signals in real time. Finally, the estimation results are analyzed. Compared
to the least squares regression method, BNs are more robust with higher accuracy and have the advantage of being a bidirectional
inferentialmechanism.This approach allows results to be obtained in the formof fullmarginal conditional probability distributions,
providing more information on the defect. The feasibility of BNs presented and discussed in this paper has been validated.

1. Introduction

Detection and quantitative evaluation of internal defects in
multilayered structures are an essential task in a range of
technological applications, such as maintaining the integrity
of structures, enhancing the safety of aging aircraft, and
assuring the quality of products [1–3]. Defects are gener-
ally formed in multilayered structures by residual stress or
physical or metallurgical processes, and they can increase
in both number and size with time, due to fatigue and
corrosion, causing damage and sometimes sudden structural
failure. Quantitative evaluation of defect characteristics, such
as size, shape, and orientation, is highly desirable and is an
emergent technique [4]. Experimental measurement should
take advantage of advanced nondestructive testing (NDT)
technologies, and it will be extremely valuable if early and

accurate detection of defects is possible, especially where
defects are related to internal damage.

Over the last several years, a number of NDT techniques
have been developed for the detection and characterization
of defects in multilayered structures. They are based on eddy
current (EC) [5], ultrasonic [6], terahertz ray [7], thermal [8],
acoustic emission [9], and X-ray [10] measurements of the
various structures tested. In the inspection of multilayered
metallic structures, radiographic inspection has problems
associated with radiation protection, ultrasound methods
suffer from the high attenuation and the low reliability, and
in thermographic inspection there is a problem with mea-
surement precision. It would appear that these techniques
have certain limitations in inspecting defects in multilayered
structures where it is only possible to obtain access to one
side of the sample. In contrast, eddy current nondestructive
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testing (ECNDT) is relatively rapid and has the advantages
of having high sensitivity, being noncontact, of low cost, and
easily implemented for automated, online testing and is one of
the rigorous, physics-based approaches for identifying micro
hidden defects [11, 12].

Characterizing defects frommeasurements of the change
in the eddy current is generally considered as the inverse
problem [13–15]. Thus, the results of the quantitative evalu-
ation of defects are retrieved by inversion of the measured
data representing the change in impedance of a coil as it scans
the specimen [16, 17]. Since the physical model of ECNDT
is often complicated and nonlinear, the inversion process is
often ill posed [18]. The methods based on solving Maxwell
equations of electromagnetic field using numerical analysis,
such as finite element method (FEM), boundary element
method (BEM), and volume integral method (VIM), have
been successfully developed to simulate the response of the
measurement system to different thickness aluminum alloy
planar structures and, to some extent, more realistic defects
with complex profiles [19].Nevertheless, the inverse problems
are not yet fully resolved, for even the quantitative evaluation
of simple shaped defects from ECNDT signals [20].

More recently, quantitative evaluation of defects has been
implemented by using many sophisticated algorithms. The
template matching method is firstly advocated [21]. Mea-
surements are recorded on calibration samples and specific
defect signals are stored as a standard template such as EC
signals shape, peak voltage, phase data, smoothness, convex-
ity, unimodality, or existence of derivatives. The evaluation
results are obtained from the comparison of the currently
collected signals with each calibration defect. In this type of
method, the features used to characterize the probe response
are not sufficient for inspection and can easily become
ineffective owing to noise, interference, and lift-off variation,
leading to inaccurate results. Then, some researchers present
model-based approaches to evaluate defects from EC signals
[22]. These methods iteratively solve the forward model
to simulate the inspection process and predict the probe
response. The inverse problem of quantitative evaluation of
defects is formulated as an optimization problem, which
seeks a set of defect characteristic parameters by minimizing
an objective function, representing the difference between
the model predicted signals and the measured signals. Such
approaches usually involve significant computational effort,
since the physical model needs to be solved repeatedly.
Afterwards, methods based on neural networks and the least
squares (LS) regression have been used to establish the rela-
tionship between the defect characteristic parameters and the
observed data [23, 24]. These methods usually require a large
volume of prior knowledge, space limitations, and database
of signals from defects for training. However, the training
samples are often difficult to obtain for real industrial appli-
cations and there are obvious errors when a sample has never
been contained in training set. Recently, there has beenmuch
interest in use of probability density function estimation and
Bayesian estimation methods for quantitative evaluation of
defects [25–27]. These methods employ sampling techniques
such as Markov Chain Monte Carlo (MCMC) and Bootstrap
methods, for probability density function estimation of defect

characteristic parameters to obtain not only the quantity
but also the uncertainty characterization of the measurand.
The main problem with these methods is that sampling
techniques require a significant amount of time. Therefore, a
general framework for quantitative evaluation of defects from
EC signals is very desirable, which can rapidly and accurately
give the evaluation of defect characteristics.

In this paper, we propose the use of Bayesian networks
(BNs) [28] to evaluate defects quantitatively from EC inspec-
tion signals. In ECNDT, the output signals may be corrupted
by noise and other anomalous signals, arising from lift-off,
edge effects, high frequency, probe angle variations, and so
forth. This will result in unreliable detection and inaccurate
characterization of defect. Although some of noise may
be eliminated or decreased by a number of preprocessing
algorithms, the inherent uncertainty and stochastic nature of
inspection still need to be dealt with. BNs are a usefulmethod
for EC inversion modeling, because of their capability of
handling uncertainty and incorporating prior information,
providingmore accurate evaluation results.They offer a natu-
ral and compact tool for dealingwith two problems that occur
throughout EC inversion modeling, uncertainty and com-
plexity, and also a basis for efficient probabilistic inference
[29]. In ECNDT, BNs generalize not only the forward model
but also the inverse model by using bidirectional probability
inference. This is an important advantage compared with
traditional methods (e.g., LS regression method) that encode
only the values of the dependent variables, given the input
variables. In this paper, BNs are applied to quantitatively eval-
uate the realistic multidimensional characteristic parameters
of defects by probability inference. We mainly discuss how
to construct BNs from the domain knowledge and the real
research data and how to perform probability inference in
BNs.The proposed BNs allow us to obtain the full probability
distributions of the needed evaluation characteristic param-
eters of defects, which give the accurate evaluation of defects
and quantify its uncertainty characterization. Experimental
results show that the proposed method maintains higher
estimation accuracy than the previous methods.

The remainder of the paper is organized as follows.
Section 2 gives the general formulation of quantitative eval-
uation of defects in multilayered structures using BNs.
Section 3 reviews the principle of BNs which are applied
to evaluate defect characteristics. Section 4 presents experi-
ments and results. Finally, Section 5 contains conclusions.

2. Problem Description

The eddy current problem can be described mathematically
by partial differential equations in terms of the magnetic
vector potential:

∇
2A + 𝑘

2A = −𝜇J
𝑠
, (1)

where A represents the magnetic vector potential, 𝑘2 =

−𝑗𝜔𝜇(𝜎+𝑗𝜔𝜀), 𝑗 is imaginary unit,𝜔 is the angular frequency
of the excitation current,𝜇 is themagnetic permeability of the
media involved (H/m), 𝜎 is the electrical conductivity (S/m),
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𝜀 is the dielectric constant (F/m), and J
𝑠
is the excitation

current density (Amp/m2).
The forward problem under consideration is the calcu-

lation of the field perturbation due to a volumetric defect
assuming time harmonic operations and linear and nonmag-
netic conductors [30]. The main goal of solving the forward
problem is to predict the probe response signals, given the
defect parameters. On the contrary, the inverse problem is
described as the task of quantitative evaluation of defect
characteristics from the measured EC signals [31].

In this paper, EC inspection is treated as a static, stochas-
tic process. The defect characteristic parameters and the
observed signals are regarded as continuous random vari-
ables. Initially, the probability distributions of all variables are
assumed as multivariate Gaussian, with unknownmeans and
variances (classical assumptions). We construct a multivari-
ate Gaussian model for the process of ECNDT, represented
as a simple graphical model within the BNs which provide
a modeling language and associated inference algorithm for
stochastic domains. Then, the following work is to obtain the
posterior probability distributions of all unknown variables,
using Bayesian inference. Bayesian inference is based on
Bayes Theorem as [32]

𝑝 (X | D) =
𝑝 (X) 𝑝 (D | X)

𝑝 (D)
=

𝑝 (X) 𝑝 (D | X)
∫X 𝑝 (X) 𝑝 (D | X) dX

, (2)

whereD is the observed data set, X is the unknown variables
needing estimation, 𝑝(X) is the prior probability of X,
𝑝(D | X) is the likelihood function, which incorporates
the statistical relationships in addition to the mechanistic
relationships among D and X, and 𝑝(X | D) is the posterior
probability of X. Using BNs, we calculate the posterior
distributions of X, when the known data arrive. However,
normally one is interested in giving point predictions and/or
probability intervals for predictions.Wemay use themeans of
distributions of X as predictions and variances for probability
intervals.

A complete diagram of the quantitative evaluation of
defects is shown in Figure 1. The quantitative evaluation
procedure is summarized as follows. The domain knowledge
about ECNDT is used to formulate the structure of BNs
representing the inspection models. Then, it is trained using
real research labeled data, consisting of the EC signals and
the corresponding defect characteristic parameters. After
training, the results produce a generative model, suitable for
use in ECNDT systems, which is able to predict the signals
corresponding to different defect characteristic parameters or
estimate defect characteristic parameters from the EC signals
in real time.

3. Bayesian Networks

BNs were initially developed in the late 1970s. Over the
last decade, BNs have become an established framework
for representing and reasoning with uncertain knowledge
[33]. More recently, researchers have developed methods
using BNs to analyze measured data. These techniques that
have been developed are new and still evolving, but they

have been shown to be remarkably effective for many real-
life inversion problems such as diagnosis of space shuttle
propulsion systems, situation assessment for nuclear power
plant, and information retrieval [34].

3.1. Bayesian Networks Models. BNs are mathematical mod-
els, combining graphics and probabilities to express mutual
relationships between variables [35]. Let V = {V

1
,V
2
, . . . ,

V
𝑁
} be a set of random variables, with each variable V

𝑖

taking values in some finite domain Dom{V
𝑖
}. BNs over V

is a pair (G, 𝜃) that represents a set of distributions over
the joint space of V. G is a set of directed acyclic graphs
(DAGs), whose nodes correspond to the random variables
inV, and whose structure encodes conditional independence
properties about the joint distributions. Each nodeV

𝑖
directly

depends on its parents Par(V
𝑖
). 𝜃 is a set of parameters

which quantify the network by specifying the conditional
probability distributions (CPDs) 𝑃(V

𝑖
| Par(V

𝑖
)). Given

Par(V
𝑖
) ⊆ {V

1
,V
2
, . . . ,V

𝑖−1
} is a set of variables that renders

V
𝑖
and {V

1
,V
2
, . . . ,V

𝑖−1
} independent, we can decompose

a joint probability density 𝑃(V) using the chain rule of
probability

𝑃 (V) =
𝑁

∏

𝑖=1

𝑃 (V
𝑖
| Par (V

𝑖
)) . (3)

Note that Par(V
𝑖
) does not need to include all elements of

{V
1
,V
2
, . . . ,V

𝑖−1
} which indicate conditional independence

between those variables not included in Par(V
𝑖
) andV

𝑖
, given

that the variables in Par(V
𝑖
) are known.

In this paper, we use these ideas in context with con-
tinuous variables and dependencies, where the probability
distributions of all continuous variables are multivariate
Gaussian distributions. Each variable V

𝑖
is a multivariate

Gaussian distribution 𝑁(𝜇
𝑖
,Σ
𝑖
), and its probability density

function is

𝑃 (V
𝑖
) = (2𝜋)

−𝑛/2󵄨󵄨󵄨󵄨Σ𝑖
󵄨󵄨󵄨󵄨

−1/2

⋅ exp{− 1

2 (V
𝑖
− 𝜇
𝑖
)
𝑇

Σ
−1

𝑖
(V
𝑖
− 𝜇
𝑖
)

} ,

(4)

where 𝜇
𝑖
is the 𝑛-dimensional mean vector, Σ

𝑖
is the 𝑛 × 𝑛

variance matrix, |Σ
𝑖
| is the determinant of Σ

𝑖
, and (V

𝑖
− 𝜇
𝑖
)
𝑇

denotes the transpose of (V
𝑖
− 𝜇
𝑖
). Then, the CPDs can

be represented in BNs by using linear Gaussian conditional
densities. Given its parents are known, in this representation,
the conditional density of V

𝑖
is

𝑃 (V
𝑖
| Par (V

𝑖
)) ∼ 𝑁 (𝜙

𝑖
, 𝜏
2

𝑖
) , (5)

where 𝜙
𝑖

= 𝜇
𝑖
+ ∑
𝑖−1

𝑗=1
𝛽
𝑖𝑗
(V
𝑗
− 𝜇
𝑖
), 𝛽
𝑖𝑗
is the regression

coefficient of V
𝑗
in the regression of V

𝑖
on the parents of

V
𝑖
, Par(V

𝑖
), and 𝜏2

𝑖
= Σ
𝑖
− Σ
𝑖Par(V𝑖)Σ

−1

Par(V𝑖)Σ
𝑇

𝑖Par(V𝑖) is the
conditional variance of V

𝑖
, given Par(V

𝑖
), where Σ

𝑖
is the

unconditional variance of V
𝑖
, Σ
𝑖Par(V𝑖) is the matrix of covari-

ance between V
𝑖
and the variables in Par(V

𝑖
), and ΣPar(V𝑖) is

the covariance matrix of Par(V
𝑖
) [36].
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Learning algorithm

Domain
knowledge

Training
data

Bayesian networksDefect characteristics
(length, depth, etc.) Response signals

Figure 1: The flowchart of quantitative evaluation of defects using BNs.

3.2. Learning BayesianNetworks. Learning generally refers to
learning the graphical structure or the parameters (CPDs) for
that structure or both [37, 38].The learning results are a set of
techniques for data analysis that combines prior knowledge
with real data to produce improved knowledge. In a real
application, the domain knowledge is based on a special set
of rules, which can be used to create BNs structures on a case-
by-case basis. It is clear that themodels created in this way are
strictly based on the special physical process, since the struc-
ture of the graph is automatically generated, given the rules
and the background facts. During the quantitative evaluation
of defects from ECNDT signals, the BNs structures can be
constructed using the knowledge about ECNDT and defect
characteristics.The structure construction approaches will be
described in Section 4 in detail. In this section, we consider
only the problem of using data to determine the probabilities
of a given structure.

The problem of learning BNs in this case can be stated as
follows. Given a training set D = {D

1
,D
2
, . . . ,D

𝑀
} of inde-

pendent instances, find the 𝜃 of BNs that best matchesD.The
assumption of the linear Gaussian conditional distributions
of all variables in the BNs would be considered. The task of
unknown parameters 𝜃 estimation is to find the maximum
likelihood estimation (MLE) of mean and variance vectors
[39]. The MLE method is versatile and easy implementation
and can be applied to most models and different types of
data. If Gaussian prior distributions are assumed over the
parameters, theMLE coincides with themost probable values
thereof. The normalized log-likelihood of the training set D
is a sum of terms:

𝐿 (𝜃) = ln
𝑀

∏

𝑚=1

𝑃 (D
𝑚
| 𝜃)

=

𝑁

∑

𝑖=1

𝑀

∑

𝑚=1

ln𝑃 (V
𝑖
| Par (V

𝑖
) ,D
𝑚
) .

(6)

The MLE method maximizes 𝐿(𝜃) by finding the value of 𝜃̂:

𝜃̂ = arg max
𝜃

𝐿 (𝜃) . (7)

The log-likelihood function decomposes according to the
structure of the graph, and hence the contribution to the log-
likelihood of each node can be maximized independently.

For the multivariate Gaussian CPDs, the log-likelihood
function is given by

𝐿 (𝜃) = ln
𝑀

∏

𝑚=1

𝑃 (D
𝑚
| 𝜃)

= −
1

2
ln [(2𝜋)−𝑛 |𝜏|] − 1

2

𝑀

∑

𝑚=1

(D
𝑚
− 𝜙)
𝑇

𝜏
−1
(D
𝑚
− 𝜙) .

(8)

The family of distributions has two parameters: 𝜃 = (𝜙, 𝜏
2
).

Therefore, we maximize the likelihood over both parameters
simultaneously, or if possible individually. Taking the partial
derivatives of 𝐿(𝜃), with respect to each one of the parameters
and setting it equal to zero yields

𝜕

𝜕𝜙
{ −

1

2
ln [(2𝜋)−𝑛 |𝜏|]

−
1

2

𝑀

∑

𝑚=1

(D
𝑚
− 𝜙)
𝑇

𝜏
−1
(D
𝑚
− 𝜙)} = 0,

𝜕

𝜕𝜏
{ −

1

2
ln [(2𝜋)−𝑛 |𝜏|]

−
1

2

𝑀

∑

𝑚=1

(D
𝑚
− 𝜙)
𝑇

𝜏
−1
(D
𝑚
− 𝜙)} = 0.

(9)

Solving (9) simultaneously yields

𝜙̂ =
1

𝑀

𝑀

∑

𝑚=1

D
𝑚
,

𝜏̂ =
1

𝑀

𝑀

∑

𝑚=1

(D
𝑚
− 𝜙̂) (D

𝑚
− 𝜙̂)
𝑇

.

(10)

Formally, we say that the maximum likelihood estimator
for 𝜃 = (𝜙, 𝜏

2
) is 𝜃̂ = (𝜙̂, 𝜏̂

2
).

3.3. Inference in Bayesian Networks. In general, the compu-
tation of marginal CPDs of interest is known as probabilistic
inference [40, 41].Themain goal of inference is to estimate the
values and their probabilities of the unknown nodes, given
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the values of the observed nodes. When observations are
given, this knowledge is integrated into the network and all
the probabilities are updated accordingly. If we observe the
“leaves” of a generativemodel and try to infer the values of the
causes, this is called diagnosis or bottom-up reasoning. If we
observe the “roots” of a generative model and try to predict
the effects, this is called prediction or top-down reasoning.
BNs can be used for both of these tasks andothers. In ECNDT,
bidirectional probability inference permits BNs to respond
to both predictive inference and diagnostic inference. Thus,
BNs will have the utmost flexibility for predicting the signals
corresponding to different defect characteristic parameters or
for estimating defect characteristic parameters from the EC
signals in real time.

The junction tree method is a new iterative algorithm
that efficiently combines dynamic discretization with robust
propagation algorithms to perform inference in BNs [42].
A junction tree representing BNs (G, 𝜃) is constructed by
moralization and triangulation of G; that is, it connects
together all parents who share a common child, then drops
the directionality of the arcs, and selectively adds arcs to the
moral graph to form a triangulated graph. In a junction tree,
the basic nodes are represented as cliques which are maximal
complete subgraphs of the triangulated graph. The separator
S = C

𝑖
∩ C
𝑗
is a path between two cliques C

𝑖
and C

𝑗
and the

subset of C
𝑖
and C

𝑗
[43].

After building a junction tree “shell,” we define potentials
over cliques and separators. A potential is a nonnegative
function of its arguments, which can be interpreted as the
probabilities over cliques and separators. We denote these
potentials as 𝜓(C) and 𝜓(S). Every CPD of the original BNs
𝑃(V
𝑖
| Par(V

𝑖
)) is associated with a clique, such that the

domain of the distributions is the subset of the clique domain.
The notation Dom(𝜓) represents the domain of a potential
𝜓. A Gaussian clique potential can be represented in either
moment form

𝜓 (C) = 𝑃 (C;𝜇,Σ)

= (2𝜋)
−𝑛/2

|Σ|
−1/2 exp [−1

2
(C − 𝜇)

𝑇

Σ
−1
(C − 𝜇)]

(11)

or canonical form

𝜓 (C) = 𝑃 (C; g, h,K) = exp(g + C𝑇h −
1

2
C𝑇KC) , (12)

where 𝜇 is themean vector, Σ is the variancematrix,K = Σ
−1,

h = Σ
−1
𝜇, and g = ln[(2𝜋)−𝑛/2|Σ

𝑖
|
−1/2

] − (1/2)𝜇
𝑇K𝜇. Thus,

we must represent the initial potentials in canonical form,
because they may represent conditional likelihoods, rather
than probability distributions, whereas, one can convert to
the moment form at the end of the calculation. Then, the
belief potentials encode the joint distribution𝑃(V) of the BNs
according to

𝑃 (V) =
∏
𝑖
𝜓 (C
𝑖
)

∏
𝑗
𝜓 (S
𝑗
)

, (13)

where 𝜓(C
𝑖
) is the clique potentials and 𝜓(S

𝑖
) is separator

potentials.

Inference in junction tree based architectures is per-
formed by passing messages between the adjacent cliques. At
the beginning of message passing, each separator is initially
empty. During inference, each separator is updated to hold
each of the potentials passed over the separator. The clique
potentials are, on the other hand, left unchanged. When
evidence is absorbed fromC

𝑗
toC
𝑖
, the potential𝜓∗(S)passed

over the separator S connecting C
𝑖
and C

𝑗
is calculated as

𝜓
∗
(S) = ∑

C𝑗\S
𝜓 (C
𝑗
) ∏

S󸀠∈ne(C𝑗)\{S}
𝜓 (S󸀠) , (14)

where ne(C
𝑗
) is the set of neighboring separators of a clique

C
𝑗
.
After a full round ofmessage passing, the joint probability

distributions of any clique C
𝑖
in the junction tree can

be computed as the combination of the potentials of C
𝑖

and all the received potentials associated with neighboring
separators:

𝜓
∗
(C
𝑖
) = 𝜓 (C

𝑖
) ∏

S∈ne(C𝑗)

𝜓 (S) . (15)

From a consistent junction tree, the posterior marginal
CPDs of a variable X and the evidence E can be computed
from any clique or separator potential 𝜓 containing X by
eliminating all variables in Dom(𝜓) except X:

𝑃 (X,E) = ∑

Y∈Dom(𝜓)\{X}
𝜓. (16)

4. Experiments and Results

4.1. Measurement System Configuration. The automatic sys-
tem based on ECNDT for quantitative evaluation of defects
in multilayered structures is obtained by integrating the
test device with a computer. A schematic diagram of the
system is shown in Figure 2. The computer based system can
thus increase the reliability of the detection. It provides fast
and robust database methods for retrieving old inspection
data, which is important in monitoring defect initiation and
growth. In the system, reference structures and a reference
probe have been used. By comparing the signals from the
reference structures with those from the monitored special
structures, the system can easily make a decision on material
condition and usage state.

The system is readily decomposed into a few main com-
ponents: an AC excitation generator, two eddy current probes
(an inspecting probe and a reference probe), a demodulation
module, a low pass filter, a data acquisition interface (A/D
converter), a coordinate measuring machine (CMM), and
a computer. A sinusoidal current source provides a current
through coils with amplitude 1 A at a frequency 200Hz. In
the system, the right-cylindrical air-cored coil probe has been
used.The coil parameters are inner radius 𝑟

1
= 3.0mm, outer

radius 𝑟
2
= 5.11mm, length 𝑙 = 20.7mm, and lift-off 0.5mm.

Consisting of exciting coils and pick-up coils, the probes scan
over the surface of the specimen by using a CMM. A com-
puter program is used to set the scan area and velocity.During
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Figure 2: Schematic view of an automatic online ECNDT system.
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Figure 3: The sketch of defects with varying diameter in multilay-
ered structures (specimen number 1).

measurements, the sensor’s output signals are amplified by
a low cost, high accuracy instrumentation amplifier AD620.
Then, the amplified signals are sent to a phase sensitive
detector using X-R orthogonal decomposition techniques to
directly compute the horizontal components (real part, in-
phase components) and the vertical components (imaginary
part, quadrature components) of impedance signals. These
two components are filtered by a second-order low-pass filter
with a cutoff frequency of 20Hz. A data acquisition program
written in Labview collects data from the output of the filter
via a National Instruments DAQPad 6016 16 × 6 bit analog-
to-digital converter. The computer is controlling the whole
system and it is performing such tasks as automating the
process of inspection, data acquisition and displaying, and
applying some signal processing techniques to automate the
process of defect detection and quantification.

4.2. Two Groups of Experiments and Results. To verify the
feasibility of the proposedmethod for quantitative evaluation
of defects in multilayered structures from ECNDT signals,
comparative experiments are carried out. Multilayered sam-
ples resembling a part of the wing splice of the aircraft are
analyzed. In particular, corrosion is a critical problem for in-
service aircraft structures which may lead to a degradation of
structure integrity and fatigue resistance, directly affect the
durability of structure, and even result in loss of function. So
detection of deeply buried defects in multilayered airframe
joints is widely recognized as the urgent and difficult NDT
problem. We assume that the shape and position of defects

Defect diameter Probe signals

X Z

Figure 4: The BN used in example 1 (specimen number 1).

are known in advance. This paper mainly discusses the
defect evaluation problem concerning estimation of defect
dimensions in multilayered structures in order to simulate
inspection of the internal corrosion and local interlayer air
gaps in real structures.

Firstly, we considered a simple problem where only one
parameter of defects in multilayered structures needs to
be determined. The first experimental specimen (specimen
number 1) is shown schematically in Figure 3. It is composed
of three layers of aluminum with a total thickness of 7.5mm.
Each plate has electrical conductivity 𝜎 = 18.5MS/m,
magnetic permeability 𝜇 = 𝜇

0
= 4𝜋 × 10

−7H/m, length
480mm, width 80.0mm, and thickness 2.5mm. There are
7 holes with different diameters in the center of the middle
plate. The parameters of holes are electrical conductivity 𝜎 =

0 S/m, magnetic permeability 𝜇 = 𝜇
0

= 4𝜋 × 10
−7H/m,

diameter 1, 2, 3, 4, 5, 6, and 7mm, and depth 2.5mm,
respectively. A major goal is to utilize BNs for the defect
diameter estimation. The skin depth 𝛿 = 1/√𝜋𝑓𝜇𝜎 is
about 8.28mm and indicates promising robustness for the
inspection of inner defects in the multilayered structures.

In this experiment, the random variables are the defect
diameter X and the probe response signals Z. We assume
that the other factor’s influence is very small. From a general
knowledge of ECNDT, the probe response signals vary due
to the difference of the defect diameter. It is clear that the
link between X and Z will lead to a BN given in Figure 4.
It is a basic BN which contains two nodes. For the root
node X, the CPDs only contain the priori probability of each
state. The CPDs of Z are then defined by the conditional
probabilities 𝑃(Z | X) over each Z state. As mentioned
above, the distributions of X and Z are initially assumed as
multivariate Gaussian with unknown means and variances.

Then, we train this model using real research data and
the results would be a generative model suitable for use in
defect diameter estimation. A total of 210 complex valued EC
data vectors containing signals corresponding to seven types
of defects are available for the experiment (each type having
30 records). The data set is denoised by the wavelet packet
analysis method with Shannon entropy. Then, the resulting
signals and corresponding defect diameters constitute the
labeled data which are sent to train the BN.

After the aforementioned operations, a new trained BN
and inference engine are obtained. One thing we can do to
verify that the model is reasonable is to draw samples from
it and visually compare with the simulated data [44]. Once
built, the model could be used to estimate defect diameters
when the inspection signals are available. The main step is
to enter each of inspection signals as evidence and calculate
the posterior marginal CPDs of the node X. We use the
means of the nodeX as prediction and themarginal CPDs for
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Figure 5:The estimated results (diameter) obtained from signals injected in three different levels of artificial randomnoise using BNmethod:
noise-free (—), 10% noise (–⋅–), and 20% noise (. . . . . .) (specimen number 1).

probability intervals.The BNmethod is also tested on signals
containing artificial injected random noise. Real inspection
signals are modified to contain additional 10% and 20%
random noise and are used to evaluate the performance of
the BN method in response to measurement noise. The per-
formance of estimation is evaluated with the bootstrap cross-
validation method [45]. The results obtained from signals
containing three different levels of artificial random noise
(noise-free, 10%, and 20% noise) using the BN method are
shown in Figure 5. Furthermore, we compare the estimated
results obtained from the BN method with those from the
LS regression method which is very simple and usually used
as a benchmark for all the other quantitative evaluation

methods [24]. Figure 6 and Table 1 show the comparison
results obtained from signals containing three different levels
of artificial random noise (noise-free, 10%, and 20% noise)
using the BN and LS regression methods, respectively.

Secondly, a more complex example is studied, where
the signals are collected from a multilayer sample with
defects varying diameter and depth. Figure 7 illustrates the
second experimental specimen (specimen number 2). The
specimen consists of three layers of aluminum with a total
thickness of 10mm (2.5, 5, 2.5mm), electrical conductivity
𝜎 = 18.5MS/m, magnetic permeability 𝜇 = 𝜇

0
= 4𝜋 ×

10
−7H/m, length 420mm, and width 80mm. There are 5

holes with different diameters and depths in the center of
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Figure 6:The comparison of three sets of results (diameter) obtained from signals injected in three different levels of artificial random noise
using BN and LS regression methods, respectively, (a) noise-free, (b) 10% noise, and (c) 20% noise (specimen number 1).
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Figure 7: The sketch of defects with varying diameter and depth in
multilayered structures (specimen number 2).
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Figure 8: The BN used in example 2 (specimen number 2).

the middle plate. The holes parameters 𝜎 = 0 S/m, 𝜇 = 𝜇
0
=

4𝜋 × 10
−7H/m, diameter, and depth are (1, 2.5), (2, 3.5), (3,

4.5), (4, 5.5), and (5, 6.5)mm, respectively.
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Figure 9:The estimated results (diameter) obtained from signals injected in three different levels of artificial randomnoise using BNmethod:
noise-free (—), 10% noise (–⋅–), and 20% noise (. . . . . .) (specimen number 2).
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Figure 10: The estimated results (depth) obtained from signals injected in three different levels of artificial random noise using BN method:
noise-free (—), 10% noise (–⋅–), and 20% noise (. . . . . .) (specimen number 2).
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Figure 11:The comparison of three sets of results (diameter) obtained from signals injected in three different levels of artificial random noise
using BN and LS regression methods, respectively, (a) noise-free, (b) 10% noise, and (c) 20% noise (specimen number 2).

In this example, the randomvariables are the defect diam-
eter X, defect depth Y, and the probe response signals Z. The
defect diameter and depth are two independent influencing
factors of the probe signals. Using this special relationship,
we can obtain the BN structure given in Figure 8. Node X
and node Y are linked to node Z by an arc, respectively. Like
the first example, the distributions of X, Y, and Z are also
assumed as multivariate Gaussian with unknown means and
variances.

In the experiment, a dataset with 150 records is acquired
during scanning.Thedataset contains EC signals from5 types

of defects (each type having 30 records). As described in the
previous experiments, the same procedures are carried out.
The diameter and depth estimation results obtained from
signals containing three different levels of artificial random
noise (noise-free, 10%, and 20% noise) using the BN method
are shown in Figures 9 and 10, respectively. The comparison
results of the estimated diameter and depth obtained from
signals containing three different levels of artificial random
noise (noise-free, 10%, and 20% noise) using the BN and
LS regression methods are shown in Figures 11 and 12 and
Table 2, respectively.
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Figure 12: The comparison of three sets of results (depth) obtained from signals injected in three different levels of artificial random noise
using BN and LS regression methods, respectively, (a) noise-free, (b) 10% noise, and (c) 20% noise (specimen number 2).

Tables 1 and 2 show quantitatively the estimation error
and the corresponding methods. It can be seen that the BN
methodhas a higher precision than the LS regressionmethod.
The LS regression method has difficulty performing more
accurate estimation and the satisfactory solution becomes
unlikely in the case of signals containing high-level noise.

In contrast, the BN method can achieve greater accuracy
and robustness, even in the case of signals containing high-
level noise. It provides not only the accurate estimation
of defect characteristic parameters, but also the probability
distributions of these values. With increasing noise level,

the estimated variances also increase, whereas the estimated
means deviations from their actual values increase very lim-
itedly. This demonstrates that although the variances growth
means increasing the uncertainty of the results, the estimated
error of BNs increases only slightly with the increasing noise
level. It shows that BNs are effective in the quantitative
evaluation of defects, due to their remarkable characteristics
such as the combination of the domain knowledge and the
reasoning under uncertainty in AI. This eventually results in
better generalization performance in the BN method than
the LS regression method. In brief, the BN method is able to
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Table 1: Defect parameter estimation errors obtained by the BN
method and the LS method (specimen number 1).

Signals LS BN

Diameter error (RMSE)
Noise-free 0.6465 0.2597
10% noise 0.6761 0.3119
20% noise 0.7556 0.3915

Table 2: Defect parameter estimation errors obtained by the BN
method and the LS method (specimen number 2).

Signals LS BN

Diameter error (RMSE)
Noise-free 0.6596 0.2813
10% noise 0.6918 0.3709
20% noise 0.7271 0.4464

Depth error (RMSE)
Noise-free 0.7050 0.3213
10% noise 0.7942 0.4140
20% noise 0.8893 0.4944

successfully cope with highly complex and ill-posed ECNDE
inverse problems, where each defect is hidden deeply in a
multilayered structure.

5. Conclusions

A new approach for quantitative evaluation of defects in
multilayered structures from ECNDT signals using BNs has
been proposed and investigated. BNs discussed in this paper
are simple and powerful, and their structures and parameters
are easily learned from the domain knowledge of ECNDT
and experimental data. The generative model can predict
the probe response signals given the defect characteristic
parameters or estimate the defect characteristic parameters
from the inspection signals by using probability inference.
In this paper, we mainly describe how the problem of defect
characteristic parameter estimation fromECNDT signals can
be modeled using BNs, in which the general model accom-
modates the uncertainties of the EC inspection. Two experi-
ments have been carried out. Compared with the LS regres-
sionmethod, BNs have the advantage of being a bidirectional
inferential mechanism and higher accuracy and robustness.
They allow results to be obtained in the form of full CPDs,
accounting for all the information available (evidences). It
can be seen that the estimation results are probabilities rather
than a single value. More information about the estimated
parameters can be deduced from their probabilities, such
as the means and variances, which describe the value itself
and the degree of uncertainty respectively. The experimental
results demonstrate the feasibility and effectiveness of the
BN method proposed in this paper. This also encourages the
attempts to tackle the other evaluation problems.

In this paper, the multivariate Gaussian assumption of
all variables has been taken. Nevertheless, in real problems
where the distributions are nonuniform, a non-Gaussian
assumption also could be more suitable. In fact, the validity
of BNs is not restricted to the particular case of multivariate
Gaussian distributions but to more general distributions

(Gamma, Poisson, etc.). BNs can handle the problem where
each conditional distribution of each variable can be any
distributions. However, these possibilities are out of the scope
of this paper and are the topic of current and future work of
the authors. It will be helpful to analyze the EC signals more
accurately in detail and lead to more precise predictions.

In addition, it is necessary to note that, in this paper,
the problem under investigation is simple. However, in
most ECNDT problems, the more complex configuration
(interacting defects, partially conducting defects, defects with
nonregular shape as corrosions, real defects, etc.) is to be
handled. Future work, hopefully, will be done to extend the
proposed BNmethod to themore complex ECNDTproblems
where the more unknown parameters of defects need to
be estimated. We consider that the independence of causal
influence can be exploited in Bayesian networks to reduce
both the time and space cost of inference. The increase of
the computational costs with the increase of the unknown
parameters is the computation of the decomposed additional
local joint probability density inference.
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