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Abstract. A study of Pc-5 magnetic pulsations using data
from the Combined Release and Radiation Effects Satellite
(CRRES) was carried out. Three-component dynamic mag-
netic field spectrograms have been used to survey ULF pul-
sation activity for the approximate fourteen month lifetime
of CRRES. Two-hour panels of dynamic spectra were exam-
ined to find events which fall into two basic categories: 1)
toroidal modes (fundamental and harmonic resonances) and
2) poloidal modes, which include compressional oscillations.
The occurence rates were determined as a function of L value
and local time. The main result is a comparable probabil-
ity of occurence of toroidal mode oscillations on the dawn
and dusk sides of the magnetosphere inside geosynchronous
orbit, while poloidal mode oscillations occur predominantly
along the dusk side, consistent with high azimuthal mode
number excitation by ring current ions.

Pc-5 pulsations following Storm Sudden Commencements
(SSCs) were examined separately. The spatial distribution of
modes for the SSC events was consistent with the statistical
study for the lifetime of CRRES. The toroidal fundamental
(and harmonic) resonances are the dominant mode seen on
the dawn-side of the magnetosphere following SSCs. Power
is mixed in all three components. In the 21 dusk side SSC
events there were only a few examples of purely compres-
sional (two) or radial (one) power in the CRRES study, a few
more examples of purely toroidal modes (six), with all three
components predominant in about half (ten) of the events.

Key words. Magnetospheric physics (MHD waves and in-
stabilities; magnetospheric configuration and dynamics) –
Space plasma physics (waves and instabilities)

1 Introduction

Ultra-low-frequency (ULF) waves were first observed in
ground-based magnetometer measurements more than a
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century ago by Stewart (1861) including the appearance of
quasi-sinusoidal magnetic oscillations with periods of a few
minutes (150–600 s, 2–7 mHz frequency), now categorized
as Pc-5 oscillations (Jacobs, 1964). In situ measurements of
ULF oscillations, primarily at geosynchronous orbit, were
reported in the 1960s. Statistical studies were performed
with the ISEE 1 and 2 (Zhu and Kivelson, 1991), AMPTE
CCE (Anderson et al., 1990) and AMPTE IRM (Lessard et
al., 1999) satellites with more eccentric orbits. A number of
studies using different devices such as ground magnetome-
ters, radars, and geosynchronous satellites, have been car-
ried out (see review by Hughes, 1994) prior to the ISEE and
AMPTE studies. Since magnetometers measure the mag-
netic field at a single point, the definition of wave propaga-
tion direction and wavelength is ambiguous unless multipoint
measurements are made (Takahashi et al., 1985) or wave
electric field measurements are incorporated (Clemmons et
al., 2000). Radar measurements have provided additional
constraints on these parameters, radial localization and local
time distribution (Walker et al., 1979; Fenrich et al., 1995).
The purpose of these and the present CRRES study has been
to understand the global morphology and to identify the gen-
eration mechanisms of ULF waves.

There are several properties of pulsations to be taken into
account in such studies: frequency characteristics, including
harmonic structure; spatial distribution; polarization proper-
ties; correlation with solar wind parameters; relation to ge-
omagnetic activity, for example, phases of storms and sub-
storms; correlation with particle signatures. ULF waves have
a range of frequencies from 1 mHz corresponding to the low-
est frequency that the magnetospheric cavity can support
to the ion gyrofrequency, which is in the 1 Hz range out-
side the plasmapause. The amplitude of the perturbations
varies from fractions of a nanotesla to several hundred, with
the largest amplitude usually occurring in the longer-period
waves at high latitudes (auroral zone). A variety of mecha-
nisms can produce ULF waves. Dungey (1954) first recog-
nized that magnetic pulsations observed on the ground are
hydromagnetic eigenmodes of approximately dipolar geo-
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Fig. 1. Toroidal and poloidal mode fundamental and second har-
monic perturbations sketched in a meridional plane, right, and look-
ing earthward at a field line stretched from north to south, left
(Hughes, 1994).1D and1H refer to east-west and north-south
perturbations, respectively.

magnetic field lines. The physical model is that of field lines
fixed at both ends in a perfectly conducting ionosphere, with
harmonic standing waves between hemispheres whose fre-
quency is a function of the length of the field line and number
of nodes along the field line, as well as the plasma density
and magnetic field which determine the Alfvén speed. As-
suming that a wave propagates in the form of exp(imφ−iωt)

in an axially symmetric field, whereφ is the azimuthal phase
angle andm is the azimuthal mode number, we can write the
full hydrodynamic wave equations in cylindrical coordinates
in terms of the usual fluid densityρ, velocity u, electric and
magnetic field variables as follows (Radoskii, 1967; Hughes,
1994):
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The left-hand sides of the first two equations have deriva-
tives along the magnetic field directionb, B · 5 (defined in
terms of the total magnetic field, background plus perturbed);
they can be considered as one-dimensional wave equations.

The right-hand sides of both equations depend on the com-
pressional part of the hydromagnetic wave. The third equa-
tion closes the set. Though the equations are coupled and
have not been solved in general, with certain assumptions
they can be solved for toroidal, poloidal and compressional
mode waves.

In the limit that the azimuthal mode numberm goes to in-
finity, the productB·b must be zero, in order for the left-hand
side of the first equation to be finite. Then, the right-hand
side of the second equation vanishes and the equation de-
scribes a poloidal mode standing Alfvén wave (in a homoge-
neous system, the dispersion relation would beω2

= k2
||
V 2

A,

whereV 2
A = B2/(µ0ρ)). The corresponding fundamental

and next (here labeled second) harmonic poloidal modes are
shown on the right side of Fig. 1.

The electric field varies azimuthally (east-west) and the
magnetic field oscillates radially. For this limit, perturba-
tions on a meridional plane can be considered to be decou-
pled from those on adjacent planes.

In them = 0 limit, the first two equations decouple and two
independent solutions result. The first equation describes the
toroidal mode. The left side of Fig. 1 illustrates the two low-
est harmonics of this mode. The magnetic field and velocity
oscillate in the azimuthal direction, while the electric field
has radial fluctuations. Each L-shell oscillates azimuthally
independent of the others. The second equation describes
the compressive (or fast) mode.

If m goes to 0 but is not equal to it, modes described
by Eq. (1) and (2) can couple. Physically, field lines with
standing Alfv́en wave frequencies matching one of the cav-
ity mode eigenfrequencies may be excited (Goldstein et al.,
1999). Thus, the energy of the magnetospheric cavity trans-
fers to field line resonances. Ultimately, ULF pulsations
derive their energy from the solar wind. Pulsations pro-
duced either in the solar wind/magnetosheath or at the mag-
netopause/boundary layer (so-called “upstream source”) may
couple energy directly from the solar wind, while the ring
current can act as an intermediary in transferring solar wind
energy. It is important to determine whether the source of the
waves is external or internal to the magnetosphere (Fenrich
et al., 1995), in order to understand the efficiency and time-
scale of solar wind driven excitation of ULF waves. Those
modes, typically lowm number toroidal oscillations, excited
directly by upstream solar wind perturbations and velocity
shear instability at the magnetopause (Miura, 1992), will re-
spond more immediately to changing solar wind conditions
than internal instabilities requiring a buildup of the ring cur-
rent. Internal instabilities of highm-number poloidal modes
are excited by ring current ions injected into the dusk to
noon sector (Southwood, 1976; Chen and Hasegawa, 1991),
which, in turn have been energized by the convection electric
field imposed by the solar wind. According to their origin,
Pc perturbations have been classified as in Table 1 (Ander-
son, 1994).

The focus of the present study is on Pc-5 oscillations, par-
ticularly poloidal and toroidal Pc-5 modes. Poloidal Pc-5
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Table 1. Category, location and source of different types of Pc 3-5 oscillations (based on Anderson, 1994).

Category Location Source Note

Compressional Pc3 Day-side Upstream

Toroidal Pc3 Day-side Upstream

or multi harmonics
Poloidal Pc4 Afternoon evening Local

Compressional Pc-5 Night-side, Local Related to
(Poloidal) dawn and dusk ion injections

Toroidal Pc-5 Dawn and dusk Upstream Fundamental
flanks mode field line

resonances

waves with power in both radial and compressional com-
ponents were first observed in situ and reported by Son-
nerup et al. (1969), based on Explorer 26 magnetometer
data. These waves commonly occur on the dusk-side of
the magnetosphere. It has been shown that poloidal Pc5
pulsations may be generated by the pressure anisotropy of
the ions, which drives local wave-particle instability (South-
wood, 1974; Chen and Hasegawa, 1974). The excitation
mechanism is fundamentally kinetic for a plasma beta (ratio
of kinetic to magnetic pressure) typical of the ring current,
involving drift bounce resonance of ring current ions with
high (m∼ 100) azimuthal mode number oscillations.

Toroidal mode Pc-5 waves are lowm number field line res-
onances (see review by Glassmeier, 1995). Statistical stud-
ies using radar and ground magnetometers have shown that
toroidal mode Pc-5s have a peak occurrence on the dawn-side
of the magnetosphere. Some satellite studies have shown
greater dawn-dusk symmetry (Glassmeir and Stellmacher,
2000), while others support a higher probability of occur-
rence on the dawn-side (Anderson et al., 1990; Lessard et
al., 1999; Takahashi et al., 2002). Toroidal mode Pc-5 waves
have been attributed to excitation by the Kelvin-Helmholz
instability due to velocity shear, which is greatest along the
flanks of the magnetosphere (Miura, 1992).

2 Observations

The Combined Release and Radiation Effects Satellite (CR-
RES) was launched on 25 July 1990, at 19:21 UT into a
geosynchronous transfer orbit, with an apogee near geosyn-
chronous orbit (actually 6.3RE , but larger in L), perigee
at 350 km, an orbital period of 9.9 h and an inclination of
18.2 degrees relative to the equatorial plane. The spin axis
was oriented within 15 degrees of the Sun such that the so-
lar panels (located on top of the spacecraft) were continu-
ously illuminated by the Sun and the spin period was about
30 s. The orientation and relatively low spin rate provided
very low levels of solar-array interference as compared to
most other magnetospheric spacecraft. In the approximate

fourteen months that CRRES operated, the magnetic local
time (MLT) of apogee regressed at a rate of 15 h/yr from
≈08:00 MLT through midnight to 13:30 MLT, so a complete
local time sweep was not covered. CRRES carried a wide
range of particle detectors and a triaxial fluxgate magnetome-
ter mounted at the end of a 6.1 m boom (Singer et al., 1992),
and a plasma wave receiver connected to a 100 m long-wire
electric dipole antenna perpendicular to the spin axis (An-
derson et al., 1992). The magnetic field data was sampled
at a rate of 16 samples per second. The telemetered data
stream in sensor coordinates was routinely calibrated and
transformed into a 2-s data base in a VDH coordinate system.
In this cylindrical system, H is anti-parallel to the magnetic
dipole axis (parallel to the magnetic field at the equator), V
is radially outward in the magnetic equatorial plane (in the
magnetic meridian perpendicular to H), and D is eastward,
completing the set. The spin axis of CRRES was roughly
parallel to the x-component of the GSE system. The mag-
netometer was capable of operating in two resolution modes
and was controlled automatically, however, for the data used
in this analysis, it was operated in high gain mode with a
sensitivity of 0.43 nT (for fields< 850 nT).

The total observation time is presented in Fig. 2, binned in
equatorial plane radial distance (referred to here as L-shell)
and local time. The hatched bins are those where CRRES
spent less than 9 h. As can be seen, while the CRRES satel-
lite covered most local times and L-shells in a range from
2 to 9, it spent more time on the dawn and dusk sides of the
magnetosphere and nightside, with little coverage on the day-
side around noon.

The magnetic field data with a 2-s resolution was first lin-
early interpolated to fill the gaps of 120 s or less and then
averaged over a period of 30 min, to obtain the background
magnetic field. For each data point, a segment of 900 data en-
tries centered on a given data point was fitted with a straight
line. The value of the midpoint of the fitted line was taken
to be the magnitude of the background magnetic field at
the time of the given data point. The segment of 900 data
points was chosen in order to remove the background field
without reducing Pc-5 pulsation amplitudes. The calculated
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Fig. 2. Total observation time spent in each L-LT bin (L = 4–9) by
the CRRES satellite.

background field was subtracted from the original data and
the obtained detrended data were used to calculate the dy-
namic spectra. For each component, segments of 256 points
were extracted and a Hanning window was applied (Lessard
et al., 1999). The spectral power was calculated using a
fast Fourier transform. The calculations were repeated un-
til enough spectra were accumulated to fill two-hour panels.
The power spectral density was then plotted using a log scale
that spans several orders of magnitude to cover the range in
wave power. The magnetic local time, L-shell and magnetic
latitude are included on the plot. The plots of detrended
magnetic field data and its dynamic spectra were visually
scanned to find various events. The data were compared
with the fundamental field line resonance (FLR) frequency
calculated using the electron density determined from mea-
surements by the plasma wave instrument on CRRES (An-
derson et al., 1992) of either the upper hybrid resonance or
the electron plasma frequency. Physically, the FLR model is
a standing Alfv́en wave with endpoints tied to an assumed
perfectly conducting ionosphere. Figure 1 shows examples
of harmonics.

Calculation of the normalized FLR toroidal mode fun-
damental frequency from the measured plasma density and
background magnetic field is described by Schulz (1996) or
Denton and Gallagher (2000), using the mass factor (ratio
of mass density to electron density) from the Global Core
Plasma Model (GCPM) (Gallagher et al., 2000). (In the
GCPM, the mass factor is close to 1.15 in the regions we
will be considering.) This frequency is superimposed on the
spectral plots of each field component shown later to assist
in mode identification. In the following section we present
a statistical analysis of Pc-5 oscillations as measured by the
CRRES magnetometer and sorted by toroidal and poloidal

polarization in the VDH coordinate system. An analysis
of Storm Sudden Commencement (SSC) events during the
14-month lifetime of CRRES is then summarized. In the
absence of continuous solar wind measurements during the
lifetime of CRRES, SSCs were chosen to enable a focus on
sudden changes in solar wind conditions as a driver of ULF
wave oscillations. This was a particularly active time period
around the Cycle 22 solar maximum, rich in SSC events.

3 Statistical study

The purpose of this study is to determine the occurrence
rates of different types of pulsations over all local times in
the region from L=2 to L=10 for the lifetime of CRRES
(14 months). Two types of events were considered in the
study: toroidal and poloidal mode pulsations, including both
fundamental and harmonic resonances. Plots with dynamic
spectra and magnetic field data along with coordinate plots
were visually examined to find those events. The duration
of the events, the magnetic local time and the position of the
satellite were recorded. The resulting occurrence rates were
normalized to the total observation time for each space bin
(L-shell, MLT), shown in Fig. 2.

4 Toroidal pulsations

Toroidal pulsations are the most frequently observed and
well-defined magnetic pulsations. In this study the defini-
tion given by Anderson et al. (1990) was used to identify
fundamental and harmonic resonances. The narrow band
signal, with1f <2 mHz seen in the toroidal component and
frequency decreasing as L-shell increases (Samson and Ros-
toker, 1972), is considered to be the resonance. If the fre-
quency is less than 10 mHz, the event is identified as a fun-
damental resonance, otherwise as a harmonic. An example of
such an event is shown in Fig. 3 for the time interval 08:00–
10:00 UT, orbit 81, 28 August 1990. The first two panels
show the dynamic spectra and detrended magnetic field data
radial component (V component). The second set presents
the eastward component (D) and the third is the compres-
sional (parallel toB) component (H). The next three plots
show the magnetic local time (MLT), L-shell and magnetic
latitude (Mlat). The black curve on the dynamic spectra
represents the fundamental Field Line Resonance (FLR) fre-
quency calculated using local density determined from the
upper hybrid resonance or electron plasma frequency mea-
sured by the plasma wave instrument on CRRES (Anderson
et al., 1992). The frequency range on the dynamic spectra is
0–20 mHz, chosen in order to see the signature of Pc-5 os-
cillations. The magnetic field range is−20 nT to 20 nT in
this example,−5 nT to 5 nT or−50 nT to 50 nT in other ex-
amples, depending on the maximum value of the magnetic
field perturbation for a given interval. A well-defined sig-
nal is seen in the eastward magnetic field component for the
time interval 08:30–10:00 UT. The frequency of the pulsation
is about 3 mHz, with a 2 mHz bandwidth, and is consistent
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Fig. 3. Sample of toroidal pulsation measured by the CRRES magnetometer on 28 August 1990. See Toroidal Pulsations text for detailed
description of panels.
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Fig. 4. Occurence rates of toroidal Pc-5 pulsations measured by
CRRES.

with the theoretical fundamental FLR frequency, indicated
by the solid curve. The amplitude is 5 nT, which is com-
mon for satellite measurements of toroidal Pc-5 oscillations
near geosynchronous orbit. The L dependence of the funda-
mental frequency can be observed. While the L-shell is de-
creasing from 7 to 6.15, the fundamental frequency slowly
increases from 3 mHz to 4 mHz. Along with the funda-
mental resonance, the third and fourth harmonics are seen
in the toroidal component with frequencies of 12 mHz and
17 mHz, respectively. The second harmonic which has an
equatorial maximum could not be observed at CRRES be-
cause the satellite had an 18.2 degree inclination. (These
identifications are consistent with a mass density distribution
ρ = ρ0(LRE/R)1, whereρ0 is the equatorial mass density
(Schulz, 1996; Denton and Gallagher, 2000).) These har-
monics are observed for the time periods 08:55–09:10 UT
and 09:28–09:38 UT. No signal is seen in the poloidal com-
ponents consistent with the fundamental or harmonics.

The statistical distribution of the fundamental toroidal res-
onance is presented in Fig. 4, normalized by the observation
time spent in each L–LT bin (Fig. 2). As seen, toroidal os-
cillations tend to occur on the dawn and dusk sides of the
magnetosphere at L = 6 to 8 for the CRRES study. Lack of
spatial coverage between 08:00–13:00 LT (Fig. 2) precludes
a conclusion about dayside occurence, but there is a clear
absence of fundamental toroidal mode power near midnight.
The local time distribution is consistent with the compara-
ble dawn-dusk occurence of narrow band Pc-5 wave power
reported by Glassmeier and Stellmacher (2000) based on
geosynchronous GOES 6 data, while the AMPTE IRM study
by Lessard et al., (1999) found more events on the dawn than
dusk side of the magnetosphere at higher L-values, as did
the AMPTE CCE study of Anderson et al., (1990) and Taka-
hashi et al., (2002). The apogee of CRRES was at 6.3RE ,

so the satellite spent most of its time at L-values between
5 and 8, while AMPTE IRM had an apogee at 18RE , and
thus crossed low L-shells rapidly. AMPTE CCE, with a 9RE

apogee, was intermediate in L-coverage. AMPTE IRM also
had a higher geographic inclination (28.6 degrees) than CR-
RES (18.2 degrees), while AMPTE CCE was lower (4.8 de-
grees), which can affect the probability of observing modes
with an equatorial or near-equatorial node (Denton et al.,
2001).

The interpretation of toroidal mode FLRs as standing
Alfv én waves is well suported by our calculation of the fun-
damental frequency based on the CRRES plasma wave in-
strument determination of local plasma density. The dawn-
dusk occurrence has been attributed to the excitation of sur-
face waves on the magnetopause by the Kelvin-Helmholtz
instability (Miura, 1992). Coupling of surface wave energy
into field line resonances has been examined by Chen and
Hasegawa (1974). Figure 4 is consistent with other studies in
finding a greater probability of occurrence at higher L-values,
closer to the magnetopause source (Anderson et al., 1990;
Lessard et al., 1999). Ground-based observations of Pc-5
pulsations show a strong dawn-dusk asymmetry which has
been attributed to, among other things, ionospheric screen-
ing of shorter wavelength modes on the dusk side (Yumoto
et al., 1983), local time dependence of field line resonance
widths (Glassmeier and Stellmacher, 2000) and a variation
in the instability at the magnetopause. The critical veloc-
ity threshold for the Kelvin-Helmholz instability increases
with the intensity of the magnetosheath magnetic field (Lee
et al., 1981), which is greater at the dusk side due to mag-
netosheath compression. Since the magnetosheath flow ve-
locity increases along the flanks of the magnetosphere from
an ideal subsolar stagnation point, the flow may be unsta-
ble farther downstream on the dusk side than dawn-side, due
to magnetosheath magnetic field compression (Lee et al.,
1981), leading to the type of asymmetry observed by Lessard
et al. (1999, Fig. 6).

5 Poloidal pulsations

Poloidal mode pulsations are characterized by a narrow band
signal in the radial and compressional components with fre-
quencies less than 10 mHz. Figure 5 shows an example of
this type of event. The pulsation starts at 22:15 UT and lasts
for half an hour. It has an amplitude of 9 nT and a frequency
of 4–5 mHz. The signal is 3 mHz wide and is about equal
to the theoretical fundamental FLR frequency (black curve).
For zero pressure, poloidal pulsations are expected to have
slightly lower FLR frequencies than the toroidal mode, as
discussed in Cummings et al. (1969). A larger effect (for
odd modes, not necessarily the fundamental) occurs when
an inward pressure gradient reduces the poloidal but not the
toroidal mode frequency (Vetoulis and Chen, 1996). The
agreement here of the observed poloidal mode frequency and
that of the fundamental toroidal mode argues that the ob-
served wave may have fundamental structure along the field
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Fig. 5. Sample of poloidal Pc-5 pulsations measured by the CRRES magnetometer on 15 May 1991, same format as Fig. 3.



296 M. K. Hudson et al.: Pc-5 ULF oscillations

Fig. 6. Occurence rates of poloidal Pc-5 pulsations measured by
CRRES.

line, although on theoretical grounds, we would expect the
second harmonic (Cheng and Lin, 1987). The black curve
in Fig. 5 shows a variation in frequency which most likely
results from the large amplitude oscillation inB. This obser-
vation is rare and not a necessary feature of poloidal pulsa-
tions. While there is strong evidence of oscillations in radial
and compressional components with the same shape, the dy-
namic spectra in the eastward (toroidal) component shows
very weak activity. Other events similar to the one shown in
Fig. 5 were found and recorded.

Figure 6 shows the occurrence rates of poloidal pulsations.
The oscillations occur predominantly on the dusk side of the
magnetosphere. None are seen at noon, where spacecraft
coverage was limited (Fig. 2). Higher occurence rates are
evident at L = 7–9. This distribution suggests ion injection as
a possible source of poloidal mode oscillation. Ions injected
into the ring current during geomagnetic storms produce high
m number poloidal modes, as they drift around the dusk side,
by a drift-bounce resonant kinetic interaction (Southwood et
al., 1969; Chen and Hasegawa, 1991). Dipolarization during
substorms and bursty bulk flows will also produce a poloidal
mode signature in the evening sector (Lessard et al., 1999).

6 Storm Sudden Commencement (SSC) events

In this section several Storm Sudden Commencement (SSC)
events are discussed. Times were chosen according to the
A-Quality (“very remarkable”) SSC list from the IAGA Bul-
letin, Geomagnetic Data 1990–91 (Table 2).

Classification of the SSC events was based on low latitude
ground magnetometer observatories. An SSC or sudden im-
pulse (SI) is defined as a sudden increase in the geomagnetic-
field intensity of a few tens or more nanotesla, caused ulti-
mately by an increase in solar-wind dynamic pressure. This

Table 2. SSC List.

Date UT Date UT

01 Aug. 1990 07:41 04 Jun. 1991 03:37
26 Aug. 1990 05:43 07 Jun. 1991 22:28
29 Aug. 1990 11:22 09 Jun. 1991 00:40
01 Sep. 1990 12:39 10 Jun. 1991 17:16
26 Oct. 1990 11:34 12 Jun. 1991 10:12
29 Oct. 1990 20:11 17 Jun. 1990 10:19
26 Nov. 1990 23:32 17 Jun. 1991 19:22
08 Dec. 1990 14:25 30 Jun. 1991 01:16
12 Jan. 1991 01:51 06 Jul. 1991 15:28
01 Feb. 1991 18:42 08 Jul. 1991 16:36
04 Feb. 1991 22:14 12 Jul. 1991 09:24
04 Mar. 1991 16:19 19 Jul. 1991 19:04
09 Mar. 1991 22:45 30 Jul. 1991 05:57
21 Mar. 1991 06:00 02 Aug. 1991 05:33
24 Mar. 1991 03:41 05 Aug. 1991 20:46
04 Apr. 1991 11:22 11 Aug. 1991 02:53
19 Apr. 1991 10:56 18 Aug. 1991 18:33
24 Apr. 1991 20:45 20 Aug. 1991 08:00
13 May 1991 08:57 27 Aug. 1991 15:15
16 May 1991 20:41 01 Oct. 1991 18:14
22 May 1991 00:18 07 Oct. 1991 13:58
31 May 1991 10:39 17 Oct. 1991 13:31

sudden increase is called an SSC if the event is followed by
a storm and an SI, if it is not.

During the lifetime of CRRES, there were 44 such SSC
events from which we have excluded 13 due to the absence of
data, invalid measurements, for example, near perigee where
the background magnetic field strength precludes an accu-
rate measurement of the fluctuating field, or the presence of
very strong activity which saturates the measurement of FLR
mode structure. The spatial distribution of the remaining 31
events are shown in Fig. 7.

The events are color coded by their dominant polariza-
tion, with toroidal (red), compressional (green), radial (light
blue), all three components (black) and no response (yellow).
Open circles indicate less certainty in the identification of
the modes, but a clear presence of ULF oscillations in the
1–10 mHz range. The dawn-side SSC events were clearly
dominated by toroidal mode oscillations (red), while there is
a mixture of polarizations observed on the dusk side. The
predominant noon to dusk signature is power in all three
modes (black).

For each event we examined 2-s CRRES detrended mag-
netic field data, its dynamic spectra and orbital summary
plots for the appropriate time interval. Two are presented
as examples, 26 August 1990, because of the availability of
simultaneous IMP 8 solar wind data, and 1 September 1990,
as an example of a double SSC interval.

6.1 26 August 1990

A sample SSC event occurred at 05:43 UT, orbit 76,
26 August 1990. Figure 8 shows data for the interval
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X

Y

Fig. 7. CRRES SSC events color coded by their dominant polariza-
tion, with toroidal (red), compressional (green), radial (light blue),
all three components (black) and no response (yellow). Open circles
indicate less certainty in identification of the modes.

05:20–08:00 UT. The CRRES satellite was near apogee at
L = 6.3, MLT = 6.8 and Mlat = 12.0 degrees at the time of the
SSC. The magnetic field increased in 3 min by 14.5 nT in the
compressional component, 11 nT in the radial and by 7 nT in
the eastward component, with a rise of 22 nT in the total field.
Oscillations are evident in all three components for almost
8 h. The toroidal oscillation, with amplitude of 3 nT, is seen
for the interval 05:32–05:43 UT. The dynamic spectra show
power around 7 mHz, which is consistent with the theoretical
fundamental FLR frequency calculated from the local plasma
density measurement (solid curve). A precursor toroidal os-
cillation of amplitude 1–2 nT at the same fundamental fre-
quency indicated by the line plot is seen prior to the SSC,
greatly amplified and lasting about 90 minutes after the SSC,
along with enhanced power in the poloidal (radial and com-
pressional) components. IMP 8 data atx = 0, y = −30RE ,
z = 5RE in GSM coordinates, along the dawn-side of the
magnetosphere, is shown in Fig. 9.

These data show evidence of solar windBx oscillations
prior to the SSC in the same frequency range as the precur-
sor oscillations evident at CRRES inBy (eastward compo-
nent), both following a sudden increase in solar windBx at
05:26 UT. The data also shows a sudden increase in the solar
wind speed and density that corresponds to the arrival of the
interplanetary shock at 05:43 UT, responsible for the SSC.

In the toroidal component of Fig. 8 we can also see the
presence of the second harmonic during the intervals 05:40–
06:00 UT and 06:10–06:40 UT. The frequency of this pulsa-
tion is about 16–18 mHz for the first period and 15–17 mHz
for the second one. Presence of the harmonic is seen in

the radial component for the first period with a frequency
of 17 mHz. The theoretically calculated frequency for the
second harmonic is 18.4 mHz in this case.

6.2 1 September 1990

Figure 10 shows plots for 10:10–13:00 UT, orbit 91, 1
September 1990, with an example of a double SSC, a “B-
Quality” (fair, ordinary but unmistakable) SSC at 10:24 UT
followed by an “A-Quality” SSC at 12:39 UT, from IAGA
Bulletin, Geomagnetic Data 1990–91, Table 2). Such events
are not uncommon, caused by forward and reverse solar wind
shocks, resulting from a steepening of a disturbance propa-
gating upstream and downstream in the solar wind frame,
away from a discontinuity (Holzer, 1979). When the sec-
ond SSC occurred at 12:39 UT, CRRES was near apogee at
L = 7.68, Mlat = 28.2 degrees and MLT = 8.3. Following the
first SSC, toroidal oscillations are evident with a frequency
fitting the theoretical fundamental FLR calculation (black
curve). This pulsation starts at 10:24 UT and lasts for 2 h,
continuing after the second SSC. The amplitude after the first
SSC is about 5 nT, and it increases to 20–50 nT after the sec-
ond, stronger SSC. The frequency of the pulsation slowly
increases from 7 mHz at 12:00 UT to 8 mHz at 13:05 UT.
There are weak and long period (below the fundamental) os-
cillations in the toroidal and compressional components prior
to the first SSC at 10:24 UT, but there is no solar wind data
available for this period for comparison.

After the second SSC, power is evident in all three com-
ponents during the time interval 12:35–13:00 UT. There is an
average increase in the fundamental mode frequency due to
increasing magnetic field strength, as indicated by the line
plot on the color spectrograms, as CRRES moved radially
inward in L. Any decrease in frequency due to increasing
density as the plasmapause is approached is more subtle, as
one might expect from the stronger dependence of Alfvén
speed, which determines the standing wave frequencies, on
B rather than on

√
ρ.

From the 31 SSC events analyzed, 10 were observed when
CRRES was post midnight, on the dawn-side of the magne-
tosphere; 21 were observed when CRRES was premidnight
on the dusk side, reflecting the large number of SSC events
from March – October, 1991, and rotation of the CRRES or-
bital plane. A comparison of Fig. 7 with Fig. 2 shows that
CRRES sampled SSC at all local times covered by the orbit.
Figure 7 shows that dawn-side SSCs excite predominantly
toroidal modes (red), and there is mixture of polarizations
observed on the dusk side. The predominant noon to dusk
signature is power in all three modes (black).

7 Discussion and conclusions

Analysis of magnetometer data from the CRRES satellite has
been presented in two parts: a statistical study of the polar-
ization and spatial distribution of modes in L and local time,
independent of geomagnetic conditions; and a study of time
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Fig. 8. SSC event of 26 August 1990, same format as Fig. 3.
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intervals marked by the occurence of Storm Sudden Com-
mencements.

From the statistical survey for all conditions we conclude
that:

1. Toroidal magnetic pulsations are fundamental field line
resonances that match the frequency calculated from a deter-
mination of the local plasma density based on the upper hy-
brid resonance frequency or the electron plasma frequency
measured by the CRRES plasma wave instrument (Ander-
son, 1992). While there have been many studies, going back
to Cummings et al. (1969), which compare measured Pc-5
ULF wave frequencies with model calculations, few have
used local plasma density measurements to validate the cal-
culation (Denton et al., 2001).

2. Toroidal mode power is distributed fairly equally be-
tween the dawn and dusk flanks of the magnetosphere in-
side L = 8, with greater probability of occurrence at higher
L-values. The former result differs from AMPTE CCE and
AMPTE IRM satellite studies at higher L-values at solar min-
imum (Anderson et al., 1990; Lessard et al., 1999; Takahashi
et al., 2002), but is consistent with a recent analysis of a six
month interval of GOES 6 geosynchronous data in 1993, a
period characterized by 27-day recurring high speed solar
wind streams characteristic of the declining phase of the solar
cycle (Knipp et al., 1998). The occurence of Pc-5 oscillations
has been correlated with high speed solar wind periods (En-
gebretson et al., 1998; O’Brien et al., 2001), providing some
support for the Kelvin-Helmholtz theory of toroidal mode
FLR excitation. The high occurrence rate of toroidal modes
on the dusk side in the CRRES study may be affected by the
large occurrence rate of SSCs during the March – October,
1991 phase of the CRRES orbit, see Table 2. To examine
this posibility, a separate study of the SSC polarizations was
undertaken.

3. Poloidal modes were observed to occur premidnight,
consistent with the distribution of storm-time pulsations (An-
derson et al., 1990; Lessard et al., 1999) and the injection of
ring current ions as a source population for exciting highm-
number poloidal modes via drift bounce resonance (South-
wood et al., 1969; Chen and Hasegawa, 1988). They could
also be signatures of substorm dipolarization or bursty bulk
flows (Lessard et al., 1999).

The study of SSC events provides two main conclusions:
1. The toroidal fundamental (and harmonic) resonances

are the dominant mode seen on the dawn-side of the magne-
tosphere following a Storm Sudden Commencement (SSCs).

2. Power is mixed in all three components on the dusk side
following SSCs, with few examples of purely compressional
(two) or radial (one) power in the CRRES study, and more
examples of purely toroidal (six) modes, but all three com-
ponents predominant (ten) in the 21 dusk-side SSCs. The
magnetosphere is more strongly disturbed during SSC peri-
ods, with the injection of ring current ions available to drive
poloidal modes in the dusk sector superimposed on any mag-
netopause boundary-driven toroidal oscillations. It is not sur-
prising that the SSC polarization characteristics indicated in
Fig. 7 combine the spatial distribution of modes integrated
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Fig. 9. Magnetic field at CRRES (top three panels) compared with
IMP 8 measurements of solar wind (next six panels) density, veloc-
ity, dynamic pressure, and magnetic field in GSM coordinates for
the time interval 05:10–05:50 UT, 26 August 1990.
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Fig. 10. SSC event of 1 September 1990, same format as Fig. 3.
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over all levels of geomagnetic activity (Fig. 4 for toroidal
and Fig. 6 for poloidal modes). It is important to note that
our statistical study is based on 2–4 h intervals of data en-
compassing the SSCs, which allows for the buildup of the
ring current. A study of the polarization characteristics of
ULF waves associated with SSCs with a longer period than
the fourteen month lifetime of CRRES will improve our con-
fidence in the statistical significance of Fig. 7.

CRRES provides the only near-equatorial plane,
geosynchronous-transfer orbit data to date on ULF wave
mode structure and power in the inner magnetosphere.
CRRES measurements covered a period of high geomag-
netic activity at the Cycle 22 solar maximum, which may
account for the greater dawn-dusk symmetry in toroidal
mode power than reported in the AMPTE studies from solar
minimum. Consistency with the GOES 6 study during the
active six month interval from July until December 1993
(Glassmeier and Stellmacher, 2000) suggests that one should
look for a greater longitudinal extent of in situ toroidal
mode power in the more recent Cycle 23 solar maximum
data. Unfortunately, there is no comparable near-equatorial
plane coverage available for the most recent solar maximum,
although the Polar satellite apogee passes through the geo-
magnetic equatorial plane in summer 2002, and may provide
some complimentary data to that currently available from
geosynchronous spacecraft. Also, there is now continuous
solar wind data available from the Advanced Composition
Explorer satellite located in a halo orbit about the L1
point, 230RE upstream from Earth, unlike the CRRES
era when only one of the SSCs examined in the present
study (26 August 1990) had good solar wind coverage by
the Earth-orbiting IMP 8 spacecraft. Future studies will be
able to address the question of directly driven oscillations
in the magnetosphere, as Kepko et al. (2002) have recently
shown in comparing WIND solar wind pressure measure-
ments at L1 with GOES 10 geosynchronous magnetometer
data. They conclude that discrete spectral peaks below
∼3 mHz at geosynchronous orbit may be directly driven
by solar wind pressure variations at the same frequencies,
below fundamental FLR eigenfrequencies. Simultaneous
measurement of the local plasma density and calculation of
the fundamental and harmonic eigenfrequencies has enabled
us to distinguish higher frequency ULF wave observations
as discrete eigenmodes of the magnetosphere at and inside
geosynchronous orbit using the CRRES data set.
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