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This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional
order calculus is employed in the parameter updating stage.The underlying stability analysis as well as parameter update law design
is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer
order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the
control performance is better for the fractional order updating law than that of traditional integer order.

1. Introduction

Fuzzy systems have been applied to many control problems
effectively because they do not need accurate mathematical
model of the controlled system and they can also cooperate
with human expert knowledge. It is well known that fuzzy
systems and neural networks can uniformly approximate any
nonlinear continuous function over some compact set [1].
Based on the universal approximation theorem [1], some
adaptive fuzzy control methods [2–5] have been developed
forMIMOnonlinear uncertain systems.The stability analysis
of the underlying closed loop system has been carried out
by means of Lyapunov approach. To deal with the ubiquitous
fuzzy approximation errors and external disturbances, these
controllers are usually augmented by a robust compensator,
which can be a sliding mode control [2, 3, 6–8] or an 𝐻

∞

control [3]. And many important results have been given.
In [9], fuzzy logic systems are used to obtain an adaptive
boundary layer. Erbatur et al. [10] utilize the concept of
fuzziness for reducing the adverse effects of chattering of
the sliding mode control. The parameter’s adaptation law is
introduced in [11], where quicker reaching with suppressed
oscillations is designed with a comparison with classical
sliding mode controller. In [12], a robust control method
for uncertain chaotic systems which comprises a nonlinear

inversion-based controller with a fuzzy robust compensator
is proposed.

Parameter tuning in adaptive control systems is an impor-
tant part of the overall mechanism alleviating the influence
associated with the changes in the parameters and uncertain-
ties of the systems. Many studies can be found in the past two
decades, and the domain of adaptation has become a blend
of techniques of dynamical systems theory, optimization, soft
computing, and heuristics. Now, tuning of parameters based
on some set of observations has been facilitated [2, 3, 8, 13–
16]. In [16], an in-depth discussion for parameter tuning in
continuous as well as discrete time is proposed.

A common feature of all these control methods and
the cited research is the fact that the differentiation and
integration are performed in integer order. Up to now, with
the development of complex engineering applications and
natural science, fractional calculus as well as fractional differ-
ential equation theory and their applications begin to attract
more andmore attention fromphysicists to engineers [17–19].
Particularly for gradient descent rule, which is considered in
the integer order in [16], it has been designed in fractional
order in [18], where the integer-order integration is replaced
with an integration with fractional order of 1.25. On the other
hand, sliding mode control (SMC) is an effective technique
to robustly control uncertain nonlinear systems [20–22]. The
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main idea of SMC is to switch the control input to drive
the states of the system from the initial states onto some
predefined sliding surface. Once the system operates on the
sliding surface, it has desired properties such as stability,
disturbance rejection capability, and tracking capability. SMC
to accommodate fractional order nonlinear systems has not
yet attracted much attention, due primarily to the mathe-
matical difficulties in stability analysis. Moreover, there are
only limited published results which concern fractional order
chaotic systems under SMC.

In the stability analysis of fractional order systems, the
Lyapunov function 𝑉(𝑡) = 𝑥

𝑇

(𝑡)𝑥(𝑡) is often used. The 𝛼th-
order of 𝑉(𝑡) can be given as

0
𝐷
𝛼

𝑡
𝑉 (𝑡) = (

0
𝐷
𝛼

𝑡
𝑥 (𝑡))
𝑇

𝑥 (𝑡) + 𝑥
𝑇

(𝑡)
0
𝐷
𝛼

𝑡
𝑥 (𝑡) + 2Λ, (1)

whereΛ = ∑
∞

𝑘=1
(Γ(1+𝛼)/(Γ(1+𝑘)Γ(1−𝑘+𝛼)))

0
𝐷
𝑘

𝑡
𝑧̃
0
𝐷
𝛼−𝑘

𝑡
𝑧̃.

In order to obtain the results by using the stability theorems
of fractional order systems, in [8, 23], the authors assume that
the bounded condition |Λ| ≤ 𝑏|𝑥(𝑡)| holds, where 𝑏 is a pos-
itive constant. In this paper, we will prove the condition and
establish a fundamental lemma. This lemma is established
for stability analysis of fractional order systems, especially
for Mittag-Leffler stability [24] analysis of fractional order
nonlinear systems.

As a result of the discussion above, the absence of
methods designed by fractional differintegration in robust
control is visible. The objective of this paper is to fill this
gap to the extent that covers the following aspects: (1) better
robustness and system uncertainties rejection capabilities
than those using conventional integer-order operators; (2)
conditions for hitting in finite time; and (3) sliding mode
control corporate with fractional order adaptation law. And
the aforementioned ideas constitute the major contributions
of this paper advancing the subject area to the fractional order
adaptation methods.

2. Problem Formulation and Preliminaries

2.1. Problem Formulation. Consider the following MIMO
nonlinear dynamic system which can be described by

𝑦
(𝑟
1
)

1
= 𝑓
1
(𝑥) +

𝑝

∑

𝑗=1

𝑔
1𝑗
(𝑥) 𝑢
𝑗
,

...

𝑦
(𝑟
𝑝
)

𝑝
= 𝑓
𝑝
(𝑥) +

𝑝

∑

𝑗=1

𝑔
𝑝𝑗
(𝑥) 𝑢
𝑗
,

(2)

where 𝑥 = [𝑥
1
, 𝑥̇
1
, . . . , 𝑥

(𝑟
1
−1)

1
, . . . , 𝑥

𝑝
, 𝑥̇
𝑝
, . . . , 𝑥

(𝑟
𝑝
−1)

𝑝
]

𝑇

∈ 𝑅
𝑟,

𝑟 = 𝑟
1
+𝑟
2
+⋅ ⋅ ⋅+𝑟

𝑝
is the system state vector which is assumed

to be available for measurement. 𝑢 = [𝑢
1
, . . . , 𝑢

𝑝
]
𝑇

∈ 𝑅
𝑝 and

𝑦 = [𝑥
1
, . . . , 𝑥

𝑝
]
𝑇

∈ 𝑅
𝑝 are control input and output vector,

respectively. 𝑓
𝑖
(𝑥), 𝑖 = 1, . . . , 𝑝, are unknown nonlinear

functions and 𝑔
𝑖𝑗
(𝑥), 𝑖, 𝑗 = 1, . . . , 𝑝 are unknown constant

control gains.

If we denote

𝑦
(𝑟)

= [𝑥
(𝑟
1
)

1
, . . . , 𝑥

(𝑟
𝑝
)

𝑝
]

𝑇

,

𝐹 (𝑥) = [𝑓
1
(𝑥) , . . . , 𝑓

𝑝
(𝑥)]
𝑇

,

𝐺 (𝑥) =
[
[

[

𝑔
11
(𝑥) ⋅ ⋅ ⋅ 𝑔

1𝑝
(𝑥)

... d
...

𝑔
𝑝1

(𝑥) ⋅ ⋅ ⋅ 𝑔
𝑝𝑝

(𝑥)

]
]

]

,

(3)

then, system (2) can be rewritten as

𝑦
(𝑟)

= 𝐹 (𝑥) + 𝐺 (𝑥) 𝑢. (4)

Theobjective of this paper is to construct a control input 𝑢
such that the output 𝑦 tracks the specified desired signal 𝑦

𝑑
=

[𝑦
𝑑1
, . . . , 𝑦

𝑑𝑝
] ∈ 𝑅
𝑝 with all involved signals in the closed loop

system keep bounded. To meet the objective, let us make the
following assumptions.

Assumption 1. The desired trajectory signal [𝑦
𝑑1
, . . . ,

𝑦
(𝑟
1
)

𝑑1
, . . . , 𝑦

𝑑𝑝
, . . . , 𝑦

(𝑟
𝑝
)

𝑑𝑝
] is continuous, bounded, and available

for measurement.

Assumption 2. The control gain matrix 𝐺(𝑥) is positive
definite and satisfies

1

2

󵄩󵄩󵄩󵄩󵄩
𝐺̇
−1

(𝑥)
󵄩󵄩󵄩󵄩󵄩
≤ 𝛽 (𝑥) , (5)

where 𝛽(𝑥) > 0 is an unknown continuous nonlinear
function.

Remark 3. Assumption 2 is not restrictive. There are many
systems, such as electrical machines and robotic systems
which satisfy Assumption 2. And we only assume the exis-
tence of the nonlinear function 𝛽(𝑥) and not its knowledge.

Let us define the tracking error as

𝑒
𝑖
= 𝑦
𝑑𝑖
− 𝑦
𝑖
, 𝑖 = 1, . . . , 𝑝, (6)

and the sliding mode surface as

𝑠
𝑖
= (

𝑑

𝑑𝑡
+ 𝜆
𝑖
)

𝑟
𝑖
−1

𝑒
𝑖
(𝑡) , 𝑖 = 1, . . . , 𝑝. (7)

Equation (7) can be rewritten as

𝑠
𝑖
= 𝑒
(𝑟
𝑖
−1)

𝑖
+ (𝑟
𝑖
− 1) 𝜆

𝑖
𝑒
(𝑟
𝑖
−2)

𝑖
+ ⋅ ⋅ ⋅

+ (𝑟
𝑖
− 1) 𝜆

𝑟
𝑖
−2

𝑖
̇𝑒
𝑖
+ 𝜆
𝑟
𝑖
−1

𝑖
𝑒
𝑖
.

(8)

Notice that if we select 𝜆
𝑖

> 0, then the roots of the
polynomial𝐻

𝑖
(𝑠) = 𝑠

𝑟
1
−1

+(𝑟
𝑖
−1)𝜆
𝑖
𝑠
𝑟
𝑖
−2

+ ⋅ ⋅ ⋅ + (𝑟
𝑖
−1)𝜆
𝑟
𝑖
−2

𝑖
̇𝑠 +

𝜆
𝑟
𝑖
−1

𝑖
= 0 are all in the left-half complex plane. In other words,

the objective of this paper becomes the design of controller to
force the filtered tracking error 𝑠

𝑖
(𝑡) → 0. Differentiating 𝑠

𝑖

with respect to time we obtain

̇𝑠
𝑖
= V
𝑖
− 𝑓
𝑖
(𝑥) −

𝑝

∑

𝑗=1

𝑔
𝑖𝑗
(𝑥) 𝑢
𝑗
, (9)
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with V
𝑖
= 𝑦
(𝑟
𝑖
)

𝑑1
+𝛾
1,𝑟
𝑖
−1
𝑒
(𝑟
𝑖
−1)

1
+ ⋅ ⋅ ⋅ + 𝛾

1,1
̇𝑒
𝑖
, 𝛾
𝑖,𝑗

= ((𝑟
𝑖
− 1)!/((𝑟

𝑖
−

𝑗)!(𝑗 − 1)!))𝜆
𝑟
𝑖
−𝑗

𝑖
, 𝑖 = 1, . . . , 𝑝 and 𝑗 = 1, . . . , 𝑟

𝑖
− 1. Denote 𝑠 =

[𝑠
1
, . . . , 𝑠

𝑝
]
𝑇 and V = [V

1
, . . . , V

𝑝
]
𝑇; then (9) can be rewritten

in the following compact form:

̇𝑠 = V − 𝐹 (𝑥) − 𝐺 (𝑥) 𝑢. (10)

Thereafter, (10) will be used in the construct of the controller
as well as the stability analysis.

2.2. Description of the Fuzzy Logic System. The fuzzy logic
system that employs singleton fuzzification, sum-product
inference, and center-of-sets defuzzification, as shown in
Figure 1, can be modeled by

𝛼 (𝑥) =

∑
𝑁

𝑗=1
𝜃
𝑗
∏
𝑛

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)

∑
𝑁

𝑗=1
[∏
𝑛

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)]

, (11)

where 𝛼(𝑥) is the output of the fuzzy system, 𝑥 is the input
vector, 𝜇

𝐹
𝑗

𝑖

(𝑥
𝑖
) is 𝑥
𝑖
’s membership of the 𝑗th rule, and 𝜃

𝑗
is

the centroid of the 𝑗th consequent set. Equation (6) can be
rewritten as following equation:

𝛼 (𝑥) = 𝜃
𝑇

𝜓 (𝑥) , (12)

with = [𝜃
1
, . . . , 𝜃

𝑁
]
𝑇, 𝜓(𝑥) = [𝑝

1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑁
(𝑥)]
𝑇,

and the fuzzy basis function can be written as 𝑝
𝑗
(𝑥) =

∏
𝑛

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)/∑
𝑁

𝑗=1
[∏
𝑛

𝑖=1
𝜇
𝐹
𝑗

𝑖

(𝑥
𝑖
)]. Suppose there are𝑁 rules of

the fuzzy system used to approximate the unknown function
𝛼(𝑥).

Rule i. if 𝑥
1
is 𝐹
𝑖

1
and ⋅ ⋅ ⋅ and 𝑥

𝑛
is 𝐹
𝑖

𝑛
then 𝛼(𝑥) is 𝐵

𝑖

, 𝑖 =

1, 2, . . . , 𝑁.

3. Adaptive Fractional Fuzzy Controller Design

3.1. Ideal Controller. Suppose that the functions 𝐺(𝑥) and
𝐹(𝑥) are known in advance. From (10) we know

𝐺
1
(𝑥) ̇𝑠 = 𝐺

1
(𝑥) V − 𝐺

1
(𝑥) 𝐹 (𝑥) − 𝑢, (13)

where 𝐺
1
(𝑥) = 𝐺

−1

(𝑥).
Then we can construct the following ideal controller 𝑢∗:

𝑢 = 𝑢
∗

= 𝐺
1
(𝑥) V − 𝐺

1
(𝑥) 𝐹 (𝑥) + (𝐾 + 𝛽 (𝑥) 𝐼) 𝑠, (14)

where𝐾 = diag[𝑘
1
, . . . , 𝑘

𝑝
] with 𝑘

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑝.

Theorem 4. Consider system (2). If Assumptions 1 and 2 are
satisfied. The control input (14) can guarantee that all signals
in the closed loop system will remain bounded and the tracking
errors and their derivatives converge to origin asymptotically;
that is, 𝑒(𝑗)

𝑖
→ 0, 𝑡 → ∞, 𝑖 = 1, . . . , 𝑝, and 𝑗 = 1, . . . , 𝑟

𝑗
− 1.

Proof. Substituting the ideal control input (14) to the tracking
error dynamics (13) gives

𝐺
1
(𝑥) ̇𝑠 = −𝛽 (𝑥) 𝐼𝑠 − 𝐾𝑠. (15)

Multiplying 𝑠
𝑡 to both sides of (15) we have

𝑠
𝑇

𝐺
1
(𝑥) ̇𝑠 = −𝑠

𝑇

𝛽 (𝑥) 𝐼𝑠 − 𝑠
𝑇

𝐾𝑠. (16)

Let us define the following Lyapunov function:

𝑉 =
1

2
𝑠
𝑇

𝐺
1
(𝑥) 𝑠. (17)

Its derivative with respect to time can be given by

𝑉̇ = 𝑠
𝑇

𝐺
1
(𝑥) ̇𝑠 +

1

2
𝑠
𝑇

𝐺̇
1
(𝑥) 𝑠. (18)

By using Assumption 2 and (16), we can obtain

𝑉̇ = 𝑠
𝑇

𝐺
1
(𝑥) ̇𝑠 +

1

2
𝑠
𝑇

𝐺̇
1
(𝑥) 𝑠

≤ −𝑠
𝑇

(𝐾 + 𝛽 (𝑥) 𝐼) 𝑠 +
1

2

󵄩󵄩󵄩󵄩󵄩
𝐺̇
1
(𝑥)

󵄩󵄩󵄩󵄩󵄩
‖𝑠‖
2

≤ −𝑠
𝑇

𝐾𝑠.

(19)

From (19) we can conclude that 𝑠
𝑖

→ 0 as 𝑡 → ∞.
Therefore, the tracking errors and their derivatives converge
to origin. And this ends the proof of Theorem 4.

3.2. Fractional order Adaption Law of Parameters of Fuzzy
Systems. Let 0 < 𝛼 < 1. The Riemann-Liouville (R-L)
definition of the 𝛼th-order fractional integration can be given
as

0
𝐷
−𝛼

𝑡
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, (20)

and the 𝛼th-order fractional derivative can be given as

0
𝐷
𝛼

𝑡
𝑓 (𝑡) = 𝑓

(𝛼)

(𝑡) =
1

Γ (1 − 𝛼)

𝑑

𝑑𝑡
∫

𝑡

0

(𝑡 − 𝜏)
−𝛼

𝑓 (𝜏) 𝑑𝜏,

(21)

where Γ(⋅) represents the Gamma function Γ(𝛼) =

∫
∞

0

𝑒
−𝑡

𝑡
𝛼−1

𝑑𝑡. From the above definition, we can get the
following properties of the fractional calculus [8, 17]:

0
𝐷
𝛼

𝑡
𝑡
𝛽

=
Γ (𝛽 + 1)

Γ (𝛽 + 1 − 𝛼)
𝑡
𝛽−𝛼

,

0
𝐷
−𝛼

𝑡
(
0
𝐷
𝛼

𝑡
) 𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓

𝛼−1

(0)
𝑡
𝛼−1

Γ (𝛼)

0
𝐷
−𝛼

𝑡
(
0
𝐷
𝛼

𝑡
) 𝑓 (𝑡) = 𝑓 (𝑡) .

(22)

In the rest of this section, we assume that the target output
of the fuzzy system is known such that the approximation
error is available for parameter updating process. Let 𝑧 and 𝑧

𝑑

be the output of the fuzzy system (12) and the target output,
respectively. Then we have

𝑧 = 𝜃
𝑇

𝜓 (𝑥) . (23)

Let the approximation error of the fuzzy system be

𝑧̃ = 𝑧 − 𝑧
𝑑
. (24)

Now we are ready to give the following results.
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Fuzzification

Knowledge

Inference
engine

Rule base

DefuzzificationInputs Outputs

base

Figure 1: Structure of a fuzzy inference system.

Theorem 5. Suppose the following boundedness conditions
hold:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

𝑁

∑

𝑖=1

(
𝛼

𝑘
)
0
𝐷
𝛼−𝑘

𝑡
𝜃
𝑖 0
𝐷
𝑘

𝑡
𝜓
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑎
1
, (25)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

Γ (1 + 𝛼)

Γ (1 + 𝑘) Γ (1 − 𝑘 + 𝛼)
0
𝐷
𝑘

𝑡
𝑧̃
0
𝐷
𝛼−𝑘

𝑡
𝑧̃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑎
2
|𝑧̃| , (26)

󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑧
𝑑

󵄨󵄨󵄨󵄨 ≤ 𝑎
3
, (27)

where 𝑎
𝑖
> 0, 𝑖 = 1, 2, 3 are constants. If the adaption law is

chosen as

0
𝐷
𝛼

𝑡
𝜃 = −𝑏

𝜓

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2
sign (𝑧̃) , (28)

where 𝜃 = [𝜃
1
, . . . , 𝜃

𝑝
]
𝑇 and 𝜓 = [𝜓

1
, . . . , 𝜓

𝑝
]
𝑇.

Then the approximation error will converge to zero within
some finite time satisfying

𝑏 − 𝑎
1

Γ (1 + 𝛼)
𝑡
𝛼

ℎ
≤

󵄨󵄨󵄨󵄨󵄨 0
𝐷
𝛼−1

𝑡
𝑧̃ (0)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨 0
𝐷
𝛼−1

𝑡
𝑧
𝑑
(0)

󵄨󵄨󵄨󵄨󵄨

Γ (𝛼)
𝑡
𝛼−1

ℎ
+
󵄨󵄨󵄨󵄨𝑧𝑑 (𝑡ℎ)

󵄨󵄨󵄨󵄨

(29)

if 𝑏 > 𝑎
1
+ 𝑎
2
+ 𝑎
3
is satisfied.

Proof. Noting that 𝑠 = 0 corresponds to the fact that the states
are on the sliding manifold. While 𝑧̃ = 0 represents that the
control signal eventually results in 𝑠 = 0. As a result, the
dynamical conclusions of 𝑧̃ = 0 are different from 𝑠 = 0.

Let us define

Ξ =

∞

∑

𝑘=1

𝑁

∑

𝑖=1

(
𝛼

𝑘
)
0
𝐷
𝛼−𝑘

𝑡
𝜃
𝑖 0
𝐷
𝑘

𝑡
𝜓
𝑖
. (30)

Consider the following Lypunov function candidate:

𝑉
1
= 𝑧̃
2

. (31)

According to the Leibniz rule of the fractional differenti-
ation, we have

0
𝐷
𝛼

𝑡
𝑉
1
= (
0
𝐷
𝛼

𝑡
𝑧̃) 𝑧̃ + Λ, (32)

where

Λ =

∞

∑

𝑘=1

Γ (1 + 𝛼)

Γ (1 + 𝑘) Γ (1 − 𝑘 + 𝛼)
0
𝐷
𝑘

𝑡
𝑧̃
0
𝐷
𝛼−𝑘

𝑡
𝑧̃. (33)

Then we have
(
0
𝐷
𝛼

𝑡
𝑧̃) 𝑧̃ = (

0
𝐷
𝛼

𝑡
𝑧 −
0
𝐷
𝛼

𝑡
𝑧
𝑑
) 𝑧̃

= (
0
𝐷
𝛼

𝑡
(

𝑚

∑

𝑖=1

𝜃
𝑖
𝜓
𝑖
) −
0
𝐷
𝛼

𝑡
𝑧
𝑑
) 𝑧̃

= (

∞

∑

𝑘=0

𝑁

∑

𝑖=1

(
𝛼

𝑘
)
0
𝐷
𝛼−𝑘

𝑡
𝜃
𝑖 0
𝐷
𝑘

𝑡
𝜓
𝑖
−
0
𝐷
𝛼

𝑡
𝑧
𝑑
) 𝑧̃

= (

𝑁

∑

𝑖=1

𝜓
𝑖 0
𝐷
𝛼

𝑡
𝜃
𝑖
+

∞

∑

𝑘=1

𝑁

∑

𝑖=1

(
𝛼

𝑘
)
0
𝐷
𝛼−𝑘

𝑡
𝜃
𝑖 0
𝐷
𝑘

𝑡
𝜓
𝑖

−
0
𝐷
𝛼

𝑡
𝑧
𝑑
) 𝑧̃

= 𝑧̃𝜓
𝑇

0
𝐷
𝛼

𝑡
𝜃 + (Ξ −

0
𝐷
𝛼

𝑡
𝑧
𝑑
) 𝑧̃

= −𝑏𝑧̃𝜓
𝑇

𝜓

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2
sign (𝑧̃) + (Ξ −

0
𝐷
𝛼

𝑡
𝑧
𝑑
) 𝑧̃

= −𝑏 sign (𝑧̃) 𝑧̃ + (Ξ −
0
𝐷
𝛼

𝑡
𝑧
𝑑
) 𝑧̃

≤ −𝑏 |𝑧̃| + |Ξ𝑧̃| +
󵄨󵄨󵄨󵄨 0
𝐷
𝛼

𝑡
𝑧
𝑑

󵄨󵄨󵄨󵄨 |𝑧̃|

≤ (−𝑏 + 𝑎
1
+ 𝑎
3
) |𝑧̃| .

(34)

Substituting (34) into (32) and using (26) yields

0
𝐷
𝛼

𝑡
𝑉
1
≤ (𝑏 − 𝑎

1
− 𝑎
2
− 𝑎
3
) |𝑧̃| < 0. (35)
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Since
0
𝐷
𝛼

𝑡
𝑉
1
< 0, as the same discuss in [24], we know

that the phase space are attracted by 𝑧̃ = 0.
Now, let us prove that first hitting to the switching surface

happens in some finite time 𝑡
ℎ
. From (34) and the fractional

order adaption law (28) we have

0
𝐷
𝛼

𝑡
𝑧̃ = −𝑏 sign (𝑧̃) + Ξ −

0
𝐷
𝛼

𝑡
𝑧
𝑑
. (36)

Applying the fractional integration operator
0

𝐷
−𝛼

𝑡
ℎ

on
both sides of (36) we can obtain

𝑧̃ (𝑡
ℎ
) −
0

𝐷
𝛼−1

𝑡
ℎ

𝑧̃ (0)
𝑡
𝛼−1

ℎ

Γ (𝛼)

=
−𝑏 sign (𝑧̃ (0))

Γ (𝛼 + 1)
𝑡
𝛼

ℎ
+
0

𝐷
−𝛼

𝑡
ℎ

(Ξ −
0

𝐷
𝛼

𝑡
ℎ

𝑧
𝑑
) .

(37)

Multiplying sign(𝑧̃(0)) to both sides of (37) we have

−
0

𝐷
𝛼−1

𝑡
ℎ

𝑧̃ (0) sign (𝑧̃ (0))
𝑡
𝛼−1

ℎ

Γ (𝛼)

=
−𝑏

Γ (𝛼 + 1)
𝑡
𝛼

ℎ
+ sign (𝑧̃ (0))

0

𝐷
−𝛼

𝑡
ℎ

Ξ

− sign (𝑧̃ (0))
0

𝐷
−𝛼

𝑡
ℎ

(
0

𝐷
𝛼

𝑡
ℎ

𝑧
𝑑
) .

(38)

Noting that

sign (𝑧̃ (0))
0

𝐷
−𝛼

𝑡
ℎ

Ξ ≤
0

𝐷
−𝛼

𝑡
ℎ

|Ξ|

≤
0

𝐷
−𝛼

𝑡
ℎ

𝑎
1

= 𝑎
1

𝑡
𝛼

ℎ

Γ (𝛼 + 1)
,

sign (𝑧̃ (0))
0

𝐷
−𝛼

𝑡
ℎ

(
0

𝐷
𝛼

𝑡
ℎ

𝑧
𝑑
)

= sign (𝑧̃ (0)) (𝑧
𝑑
(𝑡
ℎ
) −
0

𝐷
𝛼−1

𝑡
ℎ

𝑧
𝑑
(0)

𝑡
𝛼−1

ℎ

Γ (𝛼)
) ,

(39)

then we have

−
0

𝐷
𝛼−1

𝑡
ℎ

𝑧̃ (0) sign (𝑧̃ (0))
𝑡
𝛼−1

ℎ

Γ (𝛼)

≤
−𝑏

Γ (𝛼 + 1)
𝑡
𝛼

ℎ
+ 𝑎
1

𝑡
𝛼−1

ℎ

Γ (𝛼 + 1)
− sign (𝑧̃ (0)) 𝑧

𝑑
(𝑡
ℎ
)

+ sign (𝑧̃ (0))
0

𝐷
𝛼−1

𝑡
ℎ

𝑧
𝑑
(0)

𝑡
𝛼−1

ℎ

Γ (𝛼)
.

(40)

After some straightforward manipulators, we can obtain

𝑏 − 𝑎
1

Γ (1 + 𝛼)
𝑡
𝛼

ℎ
≤

󵄨󵄨󵄨󵄨󵄨 0
𝐷
𝛼−1

𝑡
𝑧̃ (0)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨 0
𝐷
𝛼−1

𝑡
𝑧
𝑑
(0)

󵄨󵄨󵄨󵄨󵄨

Γ (𝛼)
𝑡
𝛼−1

ℎ

+
󵄨󵄨󵄨󵄨𝑧𝑑 (𝑡ℎ)

󵄨󵄨󵄨󵄨 .

(41)

And this ends the proof of Theorem 5.

Remark 6. The assumptions (25)–(27) in Theorem 5 are
rather stringent. We know that the control system will be
stable if these conditions hold; yet, imposing such conditions
makes the proposed design valid only in a local region.
In the simulation, we present examples to show that the
aforementioned region is large enough to achieve a highly
satisfactory performance.

Remark 7. The boundedness condition (26) can also be seen
in [23, pp. 6927].

In this paper, we will prove the boundedness conditions
and establish a fundamental lemma. This lemma is estab-
lished for stability analysis of fractional order systems, espe-
cially for Mittag-Leffler stability [24] analysis of fractional
order nonlinear systems. As an example, we will prove the
boundedness condition (26).

Lemma 8. Let

Λ =

∞

∑

𝑘=1

Γ (1 + 𝛼)

Γ (1 + 𝑘) Γ (1 − 𝑘 + 𝛼)
0
𝐷
𝑘

𝑡
𝑧̃
0
𝐷
𝛼−𝑘

𝑡
𝑧̃. (42)

Then there exists some positive constant 𝑎
2
> 0 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

Γ (1 + 𝛼)

Γ (1 + 𝑘) Γ (1 − 𝑘 + 𝛼)
0
𝐷
𝑘

𝑡
𝑧̃
0
𝐷
𝛼−𝑘

𝑡
𝑧̃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑎
2
|𝑧̃| . (43)

Proof. Since
0
𝐷
𝑘

𝑡
𝑧̃
0
exists, it is obvious that

0
𝐷
𝑘

𝑡
𝑧̃
0
are

bounded. As a result, there exists𝑀 such that
󵄩󵄩󵄩󵄩󵄩 0

𝐷
𝑘

𝑡
𝑧̃
0

󵄩󵄩󵄩󵄩󵄩
≤ 𝑀. (44)

On the other hand, because 0 < 𝛼 < 1, we have
󵄩󵄩󵄩󵄩󵄩 0

𝐷
𝛼−𝑘

𝑡
𝑧̃
󵄩󵄩󵄩󵄩󵄩
≤ 𝐾 ‖𝑧̃‖ . (45)

It is known that the Gamma function is nonzero every-
where along the real line, and there is in fact no complex
number 𝑧 for which Γ(𝑧) = 0. As a result the reciprocal
Gamma function 1/Γ(𝑧) is an entire function. There exists
a lower bound 𝐿 such that 0 < 𝐿 ≤ |Γ(1 − 𝛼 + 𝑘)| for
𝑘 = 1, 2, 3, . . ..

Since Γ(𝑘)/(Γ(𝑘 + 1)) = 1/𝑘 and the infinite series
∑
∞

𝑘=1
1/(Γ(𝑘+1)) is convergence, there exists an upper bound

𝐻 > 0 such that

0 <

∞

∑

𝑘=1

1

Γ (𝑘 + 1)
< 𝐻. (46)

From above discussion, we can obtain the following
inequality:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑘=1

Γ (1 + 𝛼)

Γ (1 + 𝑘) Γ (1 − 𝑘 + 𝛼)
0
𝐷
𝑘

𝑡
𝑧̃
0
𝐷
𝛼−𝑘

𝑡
𝑧̃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑎
2
|𝑧̃| (47)

in which

𝑎
2
=

Γ (1 + 𝛼)𝑀𝐾𝐻

𝐿
. (48)
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3.3. Controller Design. Since the nonlinear functions 𝐹(𝑥)

and 𝐺(𝑥) are uncertain, the ideal controller in Section 3.1
cannot be used directly. Firstly, let us rearrange the ideal
controller (14) as

𝑢
∗

= 𝐺
1
(𝑥) V − 𝐺

1
(𝑥) 𝐹 (𝑥) + (𝐾 + 𝛽 (𝑥) 𝐼) 𝑠

= 𝛾 (𝑥) + 𝐾𝑠,

(49)

where 𝛾(𝑥) = 𝐺
1
(𝑥)V − 𝐺

1
(𝑥)𝐹(𝑥) + 𝛽(𝑥)𝐼𝑠 = [𝛾

1
(𝑥), . . . ,

𝛾
𝑝
(𝑥)]
𝑇 represents the system uncertainty. Then from the

discussions in Section 3.2, the unknown function 𝛾
𝑗
(𝑥) can

be approximated by the fuzzy logic system as

𝛾
𝑗
(𝑥) = 𝜃

𝑇

𝑗
𝜓 (𝑥) , 𝑗 = 1, 2, . . . , 𝑝. (50)

Let us denote

𝛾 (𝑥) = 𝜃𝜓 (𝑥) = [𝜃
1
𝜓 (𝑥) , . . . , 𝜃

𝑝
𝜓 (𝑥)]

𝑇

, (51)

then the controller can be designed as

𝑢 = 𝜃
𝑇

𝜓 (𝑥) + 𝐾𝑠 + 𝐾
1
sign (𝑠) , (52)

where 𝐾
1
sign(𝑠) is a robust term used to cancel the approxi-

mation error of the fuzzy systems.

Remark 9. Noting that there are 𝑝 fuzzy logic systems are
employed to approximate the unknown function 𝛾(𝑥). And
for every fuzzy system, the parameters are updated by the
adaption law (28); that is, there are 𝑝 fractional adaption laws
which are used in this paper.

From above discussions, now we are ready to give the
following theorem.

Theorem 10. Consider system (2). Suppose that Assumptions
1 and 2 are satisfied. If the control input is defined by (52) with
fraction adaption laws (28), then all signals in the closed loop
system will remain bounded and the tracking errors and their
derivatives converge to origin asymptotically; that is, 𝑒(𝑗)

𝑖
→ 0,

𝑡 → ∞, 𝑖 = 1, . . . , 𝑝, 𝑗 = 1, . . . , 𝑟
𝑗
− 1.

From Theorems 4 and 5, we can easily get Theorem 5.
Here we omit the proof of Theorem 10.

4. Simulation Results

Two nonlinear systems are utilized to show the effectiveness
of the proposed hybrid control scheme.
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Figure 2: Membership functions in fuzzy system.

4.1. Example 1. Firstly, let us use the followingMIMOsystem:

𝑥̇
11

= 𝑥
12
,

𝑥̇
12

= 𝑥
21

− 0.3 sin (𝑥
11
𝑥
12
) + 𝑥
2

12

+ (4 + cos (𝑥
11
)) 𝑢
1
+ (1 + sin2 (𝑥

21
)) 𝑢
2
,

𝑥̇
21

= 𝑥
22
,

𝑥̇
22

= 𝑥
3

22
+ 𝑒
𝑥
11 − 1 + 𝑥

2

12

+ (1 + sin2 (𝑥
21
)) 𝑢
1
+ (1 + sin2 (𝑥

22
)) 𝑢
2
,

𝑦
1
= 𝑥
11
, 𝑦

2
= 𝑥
21
.

(53)

System (53) can bewritten as the following compact form:

𝑥̈ = 𝐹 (𝑥) + 𝐺 (𝑥) 𝑢, (54)

where 𝐹(𝑥) = [
𝑥
21
−0.3 sin(𝑥

11
𝑥
12
)+𝑥
2

12

𝑥
3

22
+𝑒
𝑥11
−1+𝑥
2

12

], 𝐺(𝑥) =

[
4+cos(𝑥

11
) 1+sin2(𝑥

21
)

1+sin2(𝑥
21
) 1+sin2(𝑥

22
)

].
The fuzzy systems have [𝑥

11
, 𝑥
12
, 𝑥
21
, 𝑥
22
]
𝑇 as input. For

each variable of these fuzzy systems, we define five Gaussian
membership functions distributed on the interval [−10, 10].
The Gaussian membership functions are shown in Figure 2.
So there are 5

4

= 625 rules that are used in the simulation.
The initial value of 𝜃

𝑗
, 𝑗 = 1, 2, 3, 4, is chosen as 0.

The design parameters are chosen as 𝜆 = 3, 𝑏 = 10, 𝐾 =

diag[5, 5], and 𝐾
1
= 𝐾. The initial value of the system and

the desired signal are chosen as 𝑥(0) = [1, −1, 2, −2]
𝑇 and

𝑦
𝑑
= [0, 0]

𝑇, respectively.
Figure 3 shows the simulation results of the proposed

method. Figures 3(a) and 3(b) indicate that the tracking
errors are bounded and converge to zero rapidly. Figure 3(c)
shows the boundedness of control inputs. Figure 3(d) gives
the time response of the sliding surface. From these results,
we can conclude that the sliding surface and the tracking
errors converge in the vicinity of the origin. To show the
change and boundedness of the fuzzy system parameters,
time responses of ‖𝜃

1
‖ and ‖𝜃

2
‖ are depicted in Figure 4.
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Figure 3: Simulation results for Example 1: (a) tracking errors: 𝑒
1
(solid line) and ̇𝑒

1
(dashed line). (b) Tracking errors: 𝑒

2
(solid line) and ̇𝑒

2

(dashed line). (c) Control inputs: 𝑢
1
(solid line) and 𝑢

2
(dashed line). (d) Sliding surface: 𝑠

1
(solid line) and 𝑠

2
(dashed line).
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Figure 5: 3D multiscroll attractor: (a) 𝑥 − 𝑦 plane and (b) 𝑥 − 𝑧 plane.

4.2. Example 2. In this Section, a 3D saturated multiscroll
chaotic system will be used. The comparison between our
control method and the control method proposed in [12] will
be made.

A 3D saturated multiscroll chaotic system can be
described by [12, 25]

𝑥̇
1
= 𝑥
2
−

𝑑
2
𝑠 (𝑥
2
; 𝑘
2
, ℎ
2
, 𝑝
2
, 𝑞
2
)

𝑏
+ 𝑢
1
= 𝑓
1
(𝑥) + 𝑢

1
,

𝑥̇
2
= 𝑥
3
−

𝑑
3
𝑠 (𝑥
3
; 𝑘
3
, ℎ
3
, 𝑝
3
, 𝑞
3
)

𝑐
+ 𝑢
2
= 𝑓
2
(𝑥) + 𝑢

2
,

𝑥̇
3
= −𝑎𝑥

1
− 𝑏𝑥
2
− 𝑐𝑥
3
+

3

∑

𝑖=1

𝑑
𝑖
𝑠 (𝑥
𝑖
; 𝑘
𝑖
, ℎ
𝑖
, 𝑝
𝑖
, 𝑞
𝑖
) + 𝑢
3

= 𝑓
3
(𝑥) + 𝑢

3
,

where the saturated function series 𝑠(𝑥; 𝑘, ℎ, 𝑝, 𝑞) is defined
as

𝑠 (𝑥; 𝑘, ℎ, 𝑝, 𝑞)

=

{{{{{{{

{{{{{{{

{

2𝑞 + 1 if 𝑥 > 𝑞ℎ + 1

𝑘 (𝑥 − 𝑖ℎ) + 2𝑖𝑘 if |𝑥 − 𝑖ℎ| ≤ 1, −𝑝 ≤ 𝑖 ≤ 𝑞

(2𝑖 + 1) 𝑘 if 𝑖ℎ + 1 < 𝑥 < (𝑖 + 1) ℎ − 1,

−𝑝 ≤ 𝑖 < 𝑞

− (2𝑝 + 1) 𝑘 if 𝑥 < −𝑝ℎ − 1.

(55)

When 𝑎 = 𝑑
1
= 0.7, 𝑏 = 𝑐 = 𝑑

2
= 𝑑
3
= 0.8, 𝑘

1
= 100,

ℎ
1
= 200, 𝑘

2
= 𝑘
3
= 40, ℎ

2
= ℎ
3
= 80, and 𝑝

𝑖
= 𝑞
𝑖
= 2, the

unforced system (34) has a 3D 6 × 6 × 6-grid scroll chaotic
attractor, as shown in Figure 5.

The initial values are chosen as 𝑥
1
(0) = 5, 𝑥

2
(0) = −5,

𝑥
3
(0) = −4, 𝜃

𝑖
(0) = 0, and 𝜀̂

𝑖
(0) = 0, 𝑖 = 1, 2, 3. The desired

trajectories are 𝑥
𝑑1

= 𝑥
𝑑2

= 𝑥
𝑑3

= sin 𝑡.
The design parameters are chosen as 𝜆 = 3, 𝑏 = 10,

𝐾 = diag[0.5, 0.5, 0.5], and 𝐾
1
= 𝐾. Note that 𝑘

𝑖
are chosen

the same as in [12]. The discontinuous function sign(⋅) has
been replaced by smooth function arctan(20⋅) to cancel the
chattering phenomenon.

Figure 6 shows the simulation results of the proposed
scheme. From the simulation results, we can see that
the tracking significantly decreased by using the proposed
method. Compared with the control scheme in [12], the
proposed controller can achieve a better performance in the
presence of disturbances and system uncertainties.

5. Conclusions

This paper proposes a fractional order integration method
for updating the parameters of fuzzy systems. It is shown
that the proposed controller is applicable toMIMOnonlinear
systems. According to the results in this paper, the fractional
order updating law outperforms the updating mechanisms
exploiting integer-order operators. To demonstrate the effec-
tiveness of fractional order operators in the fuzzy system
parameters updating, this paper investigates a wide range of
applications from the domain of adaptive control. Specifically,
the adaptive fuzzy slidingmode controlmethod is focused on
in this paper.
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Figure 6: Comparison between our control method and the control method proposed in [12]. (a), (b), (c) Tracking of 𝑥
1
, 𝑥
2
, and 𝑥

3
: control

method proposed in [12] (dotted line), desired curve (dashed line), and our control method (solid line). (d) The control inputs: 𝑢
1
(dotted

line), 𝑢
2
(dashed line), and 𝑢

3
(solid line).
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