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We introduce a general composite iterative scheme for nonexpansive semigroups in Banach spaces.
We establish some strong convergence theorems of the general iteration scheme under different
control conditions. The results presented in this paper improve and extend the corresponding
results of Marino and Xu (2006), and others, from Hilbert spaces to Banach spaces.

1. Introduction

LetX be a real Banach space, and let C be a nonempty closed convex subset of X. A mapping
T of C into itself is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for each x, y ∈ C. We denote
F(T) the set of fixed points of T . We know that F(T) is nonempty if C is bounded, for more
detail see [1]. A one-parameter family T = {T(t) : 0 ≤ t < ∞} from C of X into itself is said to
be a nonexpansive semigroup on C if it satisfies the following conditions:

(i) T(0)x = x for all x ∈ C;

(ii) T(s + t) = T(s) ◦ T(t) for all s, t ≥ 0;

(iii) for each x ∈ C the mapping t �→ T(t)x is continuous;

(iv) ‖T(t)x − T(t)y‖ ≤ ‖x − y‖ for all x, y ∈ C and t ≥ 0.
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We denote by F(T) the set of all common fixed points of T, that is F(T) =
⋂

t≥0 F(T(t)). We
know that F(T) is nonempty if C is bounded, see [2]. Recall that a self-mapping f : C → C
is a contraction if there exists a constant α ∈ (0, 1) such that ‖f(x) − f(y)‖ ≤ α‖x − y‖ for
each x, y ∈ C. As in [3], we use the notation ΠC to denote the collection of all contraction
on C, that is, ΠC = {f : C → C a contraction}. Note that each f ∈ ΠC has a unique fixed
point in C. Iterative methods for nonexpansive mappings have recently been applied to solve
minimization problems; see, for example, [4–10] and references therein.

A typical problem is to minimize a quadratic function over the set of the fixed points
of a nonexpansive mapping on a real Hilbert spaceH :

min
x∈F

1
2
〈Ax, x〉 − 〈x, u〉, (1.1)

where F is the fixed point set of a nonexpansive mapping T on H and u is a given point in
H . Assume A is strongly positive; that is there is a constant γ such that 〈Ax, x〉 ≥ γ‖x‖2 for
all x ∈ H .

In 2003, Xu [7] proved that the sequence {xn} generated by

x0 = x ∈ H chosen arbitrarily;

xn+1 = αnu + (1 − αn)Txn, ∀n ≥ 0,
(1.2)

converges strongly to the unique solution of the minimization problem (1.1) provided the
sequence {αn} satisfies certain conditions. On the other hand, Moudafi [11] introduced the
viscosity approximation method and proved that if H is a real Hilbert space, the sequence
{xn} generated by the following algorithm:

x0 = x ∈ H chosen arbitrarily;

xn+1 = αnf(xn) + (1 − αn)Txn, ∀n ≥ 0,
(1.3)

where f : C → C is a contraction mapping with constant α ∈ (0, 1) and {αn} ⊂ (0, 1) satisfies
certain conditions, converges strongly to a fixed point of T in C which is the unique solution
of the following variational inequality:

〈(
f − I

)
x∗, y − x∗〉 ≤ 0, ∀y ∈ F(T). (1.4)

Recently, Marino and Xu [12] combined the iterative method (1.2) with the viscosity
approximation method (1.3) considering the following general iterative process:

x0 = x ∈ H chosen arbitrarily;

xn+1 = αnγf(xn) + (I − αnA)Txn, ∀n ≥ 0.
(1.5)
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They proved the sequence {xn}, generated by (1.5), converges strongly to the unique solution
of the variational inequality

〈(
γf −A

)
x∗, y − x∗〉 ≤ 0, ∀y ∈ F(T), (1.6)

which is the optimality condition for the minimization problem

min
x∈C

1
2
〈Ax, x〉 − h(x), (1.7)

where C is the fixed point set of a nonexpansive mapping T and h is a potential function
for γf (i.e., h′(x) = γf(x) for all x ∈ H). Xu [3] studied further the viscosity approximation
method for nonexpansive semigroup in uniformly smooth Banach spaces. This result extends
Theorem 2.2 of Moudafi [11] to a Banach space. Kim and Xu [13] studied the sequence
generated by the algorithm

x1 = x ∈ C chosen arbitrarily;

yn = αnxn + (1 − αn)Txn;

xn+1 = βnu +
(
1 − βn

)
yn, ∀n ≥ 1,

(1.8)

and proved strong convergence of scheme (1.8) in the framework of a uniformly smooth
Banach space. Later, Yao et al. [14] introduced a new iteration process by combining the
modified Mann iteration [13] and the viscosity method introduced by Moudafi [11]. Let C
be a closed convex subset of a Banach space, T : C → C a nonexpansive mapping such that
F(T)/= ∅; and f ∈ ΠC. Define {xn} in the following way:

x1 = x ∈ C chosen arbitrarily;

yn = αnxn + (1 − αn)Txn;

xn+1 = βnf(xn) +
(
1 − βn

)
yn, ∀n ≥ 1,

(1.9)

where {αn} and {βn} are two sequences in (0, 1). They proved, under different control
conditions on the sequences {αn} and {βn}, that {xn} converge strongly to a fixed point of T .

In 2008, Sahu and O’Regan [15] studied several strong convergence theorems for a
family of nonexpansive or pseudocontractive nonself-mappings in a reflexive strictly convex
Banach space with a uniformly Gâteaux differentiable norm. Recently, Li and Gu [16] studied
the sequence generated by the algorithm in Banach spaces, as follows:

x1 = x ∈ C chosen arbitrarily;

yn = αnxn + (1 − αn)T(tn)xn;

xn+1 = βnf(xn) +
(
1 − βn

)
yn, ∀n ≥ 1,

(1.10)



4 ISRN Mathematical Analysis

and they proved the sequence {xn} defined by (1.10) that, converges strongly to the unique
solution of the variational inequality:

〈(
f − I

)
x∗, J

(
y − x∗)〉 ≤ 0, ∀y ∈ F(T). (1.11)

Very recently, Kumam and Wattanawitoon [5] introduced the following new composite
explicit iterative schemes defined by given x0 = x ∈ C and

xn+1 = αnγf(xn) + βnxn +
((
1 − βn

)
I − αnA

) 1
tn

∫ tn

0
T(s)ynds,

yn = δnγf(xn) + γnxn +
((
1 − γn

)
I − δnA

)
xn, ∀n ≥ 0,

(1.12)

for the approximation of common fixed point of a one parameter nonexpansive semigroup
in a real Hilbert space under some appropriate control conditions. They proved strong
convergence theorems of the composite iterative schemes which solve some variational
inequalities under some appropriate conditions.

Question 1. Can the theorem of Marino and Xu [12] be extend from a Hilbert space to a
general Banach space, such as uniformly smooth Banach space?

Question 2. Can we extend the iterative method of algorithm (1.10) to a general iterative
process?

The purpose of this paper is to give affirmative answer to these questions mentioned
above. In this paper, inspired and motivated by the iterative sequence (1.5) given by Marino
and Xu [12] and (1.10) given by Li and Gu [16], we introduce a composite iterative algorithm
{xn} in a Banach space as follows:

x1 = x ∈ C chosen arbitrarily;

yn = βnxn +
(
1 − βn

)
T(tn)xn;

xn+1 = αnγf(xn) + δnxn + ((1 − δn)I − αnA)yn, ∀n ≥ 1,

(1.13)

where f : C → C is a contraction mapping, T(tn) is a nonexpansive semigroup and A
is a strongly positive linear bounded operator, and prove, under certain different control
conditions on the sequences {αn}, {βn}, and {δn}, that {xn} defined by (1.13) converges
strongly to a common fixed point, which solves some variational inequality in Banach spaces.
The results presented in this paper extend the corresponding results announced by Marino
and Xu [12] and some others from Hilbert spaces to Banach spaces.
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2. Preliminaries

Throughout this paper, let X be a real Banach space, C be a closed convex subset of X. Let
J : X → 2X

∗
be a normalized duality mapping by

J(x) =
{
f∗ ∈ X∗ :

〈
x, f∗〉 = ‖x‖2 =

∥
∥f∗∥∥2

}
, (2.1)

where X∗ denotes the dual space of X and 〈·, ·〉 denotes the generalized duality paring. In
the following, the notation ⇀ and → denote the weak and strong convergence, respectively.
Also, a mapping I : C → C denotes the identity mapping.

The norm of a Banach space X is said to be Gâteaux differentiable if the limit

lim
t→ 0

∥
∥x + ty

∥
∥ − ‖x‖
t

(2.2)

exists for each x, y ∈ C on the unit sphere S(X) of X. In this case X is smooth. Recall that the
Banach spaceX is said to be smooth if duality mapping J is single valued. In a smooth Banach
space, we always assume that A is strongly positive (see [17]), that is, a constant γ > 0 with
the property

〈Ax, J(x)〉 ≥ γ‖x‖2, ‖aI − bA‖ = sup
‖x‖≤1

‖〈(aI − bA)x, J(x)〉‖, a ∈ [0, 1], b ∈ [−1, 1].

(2.3)

Moreover, if for each y in S(X) the limit (2.2) is uniformly attained for x ∈ S(X), we
say that the norm X is uniformly Gâteaux differentiable. The norm of X is said to be Frêchet
differentiable, if for each x ∈ S(X), the limit (2.2) is attained uniformly for y ∈ S(X). The norm
of X is said to be uniformly Frêchet differentiable (or X is said to be uniformly smooth), the limit
(2.2) is attained uniformly for (x, y) ∈ S(X) × S(X). A Banach space X is said to be strictly
convex if ‖x‖ = ‖y‖ = 1, x /=y implies ‖x + y‖/2 < 1; uniformly convex if δX(ε) > 0 for all ε > 0,
where δX(ε) is modulus of convexity of X defined by

δX(ε) = inf

{

1 −
∥
∥x + y

∥
∥

2
: ‖x‖ ≤ 1,

∥
∥y

∥
∥ ≤ 1,

∥
∥x + y

∥
∥ ≥ ε

}

, ∀ε ∈ [0, 2]. (2.4)

A uniformly convex Banach space X is reflexive and strictly convex (see [18, Theorems 4.1.6
and 4.1.2]) and every uniformly smooth Banach spaceX is a reflexive Banachwith uniformly
Gâteaux differentiable norm (see [18, Theorems 4.3.7 and 4.1.6]) (also see [19]).

Now, we present the concept of a uniformly asymptotically regular semigroup (see
[20–22]). Let C be a nonempty closed convex subset of a Banach spaceX, T = {T(t) : t > 0} is
a continuous operator semigroup on C. Then T is said to uniformly asymptotically regular (in
short, u.a.r.) on C if for all h ≥ 0 and any bounded subset B of C,

lim
t→∞

sup
x∈B

‖T(h)T(t)x − T(t)x‖ = 0. (2.5)
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Lemma 2.1 (Chen and Song [23]). Let C be a nonempty closed convex subset of a uniformly Banach
space X, B a bounded closed convex subset of C. If we denote T = {T(t) : t > 0} a nonexpansive
semigroup onC such that F :=

⋂
t>0 F(T(t))/= ∅. For all h ≥ 0, the set σt(x) = (1/t)

∫ t
0 T(s)xds, then

lim
t→∞

sup
x∈B

‖σt(x) − T(h)σt(x)‖ = 0. (2.6)

It is easy to check that the set {σt : t > 0} defined by Lemma 2.1 is a u.a.r. nonexpansive
semigroup on C (see [24] for more detail).

Lemma 2.2 (Cai and Hu [17]). Assume that A is a strongly positive linear bounded operator on a
smooth Banach space X with coefficient γ > 0 and 0 < ρ ≤ ‖A‖−1. Then ‖I − ρA‖ ≤ 1 − ργ .

Lemma 2.3 (Suzuki [25]). Let {xn} and {yn} be bounded sequences in a Banach space X and
let {βn} be a sequence in [0, 1] with 0 < lim infn→∞βn ≤ lim supn→∞βn < 1. Suppose xn+1 =
(1 − βn)yn + βnxn for all integers n ≥ 0 and lim supn→∞(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0. Then,
limn→∞‖yn − xn‖ = 0.

If a Banach space X admits a sequentially continuous duality mapping J from weak
topology to weak star topology, then by Lemma 1 of [26], we have that duality mapping J is a
single value. In this case, the dualitymapping J is said to be a weakly sequentially continuous
duality mapping, that is, for each {xn} ⊂ X with xn ⇀ x, we have J(xn)⇀∗J(x) (see [26–28]
for more details).

A Banach space X is said to be satisfying Opial’s condition if for any sequence xn ⇀ x
for all x ∈ X implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥
∥xn − y

∥
∥ ∀y ∈ X, with x/=y. (2.7)

By Theorem 1 in [26], it is well known that if X admits a weakly sequentially
continuous duality mapping, then X satisfies Opial’s condition and X is smooth.

Lemma 2.4 (Demiclosed principle (Jung [27])). Let C be a nonempty closed convex subset of a
reflexive Banach space X which satisfies Opial’s condition, and suppose T : C → X is nonexpansive.
Then the mapping I − T is demiclosed at zero, that is, xn ⇀ x and xn − Txn → 0 implies x = Tx.

Lemma 2.5 (Liu [29]). Let X be a real Banach space and J : X → 2X
∗
be the normalized duality

mapping. Then, for any x, y ∈ X, we have

∥
∥x + y

∥
∥2 ≤ ‖x‖2 + 2

〈
y, j

(
x + y

)〉
, (2.8)

for all j(x + y) ∈ J(x + y) with x/=y.
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Lemma 2.6 (Aoyama et al. [30]). Let {sn} be a sequence of nonnegative real numbers, {an} a
sequence of [0, 1] with

∑∞
n=1 an = ∞, {cn} a sequence of nonnegative real number with

∑∞
n=1 cn < ∞,

and {bn} a sequence of real numbers with lim supn→∞bn ≤ 0. Suppose that

sn+1 = (1 − an)sn + anbn + cn, (2.9)

for all n ∈ �. Then limn→∞sn = 0.

3. Main Results

We need following the lemma to prove our theorem.

Lemma 3.1. Let C be a nonempty bounded closed convex subset of a reflexive, smooth Banach space
X with admits a weakly sequentially continuous duality mapping J fromX to X∗ with C±C ⊂ C and
let T = {T(t) : 0 ≤ t < ∞} be a nonexpansive semigroup on C such that F(T)/= ∅. Let f : C → C be
a contraction mapping with a coefficient α ∈ (0, 1), A be a strongly positive linear bounded operator
with a coefficient γ > 0 such that 0 < γ < γ/α and {λt}0<t<1 be a net of positive real sequence such
that limt→ 0λt = ∞. Suppose that {T(λt)} is a u.a.r. nonexpansive semigroup. Then the sequence {xt}
define by

xt = tγf(xt) + (I − tA)T(λt)xt, (3.1)

converges strongly to the common fixed point x∗, where x∗ solves the variational inequality

〈
γf(x∗) −Ax∗, J

(
y − x∗)〉 ≤ 0, ∀y ∈ F(T). (3.2)

Proof. Observe that for t ∈ (0, ‖A‖−1). By Lemma 2.2, we have ‖I − tA‖ ≤ 1 − tγ .
Firstly, we show that {xt} defined by (3.1) is well define. Define the mapping Sf : C →

C provided by Sf := tγf + (I − tA)T(λt), for each t ∈ (0, 1). Then, for each x, y ∈ C that

∥
∥
∥Sfx − Sfy

∥
∥
∥ =

∥
∥tγ

(
f(x) − f

(
y
))

+ (I − tA)
(
T(λt)x − T(λt)y

)∥
∥

≤ tγα
∥
∥x − y

∥
∥ +

(
1 − tγ

)∥
∥x − y

∥
∥

=
(
1 − t

(
γ − γα

))∥
∥x − y

∥
∥ <

∥
∥x − y

∥
∥.

(3.3)

This show that Sf is a contraction mapping. Thus, by Banach’s contraction principle
guarantees that Sf has a unique fixed point xt ∈ C, that is, xt defined by (3.1) is well define.

Next, we show the uniqueness of a solution of the variational inequality (3.2).
Supposing x∗, x̃ ∈ F(T) satisfy the inequality (3.2), we have

〈(
γf −A

)
x̃, J(x∗ − x̃)

〉
≤ 0,

〈(
γf −A

)
x∗, J(x̃ − x∗)

〉
≤ 0.

(3.4)
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Adding up both equations of (3.4), we get that

0 ≥
〈(
γf −A

)
x̃ −

(
γf −A

)
x∗, J(x∗ − x̃)

〉

= 〈A(x∗ − x̃), J(x∗ − x̃)〉 − γ
〈
f(x∗) − f(x̃), J(x∗ − x̃)

〉

≥ γ‖x∗ − x̃‖2 − γ
∥
∥f(x∗) − f(x̃)

∥
∥‖J(x∗ − x̃)‖

≥ γ‖x∗ − x̃‖2 − γα‖x∗ − x̃‖2

=
(
γ − γα

)
‖x∗ − x̃‖2.

(3.5)

Since 0 < γ < γ/α this implies that γ − γα > 0, which is a contradiction. Hence x̃ = x∗ and the
uniqueness is proved.

Next, we show that {xt} is bounded. Indeed, for any p ∈ F(T), we have

∥
∥xt − p

∥
∥ =

∥
∥tγf(xt) + (I − tA)T(λt)xt − p

∥
∥

=
∥
∥t
(
γf(xt) −Ap

)
+ (I − tA)

(
T(λt)xt − p

)∥
∥

≤ t
∥
∥γf(xt) −Ap

∥
∥ + ‖I − tA‖

∥
∥T(λt)xt − p

∥
∥

≤ t
∥
∥γf(xt) −Ap

∥
∥ +

(
1 − tγ

)∥
∥xt − p

∥
∥

≤ t
∥
∥γ

(
f(xt) − f

(
p
))

+ γf
(
p
)
−Ap

∥
∥ +

(
1 − tγ

)∥
∥xt − p

∥
∥

≤ t
(
γα

∥
∥xt − p

∥
∥ +

∥
∥γf

(
p
)
−Ap

∥
∥
)
+
(
1 − tγ

)∥
∥xt − p

∥
∥

=
(
1 − t

(
γ − γα

))∥
∥xt − p

∥
∥ + t

∥
∥γf

(
p
)
−Ap

∥
∥.

(3.6)

It follows that ‖xt − p‖ ≤ ‖γf(p) −Ap‖/(γ − γα). Hence {xt} is bounded.
Next, we show that ‖xt − T(h)xt‖ → 0 as t → 0. We observe that

‖xt − T(h)xt‖ ≤ ‖xt − T(λt)xt‖ + ‖T(λt)xt − T(h)T(λt)xt‖ + ‖T(h)T(λt)xt − T(h)xt‖

≤ 2‖xt − T(λt)xt‖ + ‖T(λt)xt − T(h)T(λt)xt‖
(3.7)

for all h ≥ 0. On the other hand, we note that

xt − T(λt)xt = t
(
γf(xt) −AT(λt)xt

)
, (3.8)

for all t > 0. By assuming that limt→ 0λt = ∞ and {T(λt)} be a u.a.r. nonexpansive semigroup,
then for all h ≥ 0, we get

lim
λt →∞

‖T(λt)xt − T(h)T(λt)xt‖ ≤ lim
λt →∞

sup
z∈C

‖T(λt)z − T(h)T(λt)z‖ = 0. (3.9)

From (3.7)–(3.9), letting t → 0, we get

lim
t→ 0

‖xt − T(h)xt‖ = 0 (3.10)



ISRN Mathematical Analysis 9

for all h ≥ 0. Assume {tn}∞n=1 ⊂ (0, 1) is such that tn → 0 as n → ∞. Put xn := xtn and λn := λtn .
We will show that {xn} contains a subsequence converges strongly to x∗, where x∗ ∈ F(S).
Since {xn} is bounded sequence and Banach space X is reflexive, there exists a subsequence
{xnj } of {xn} which converges weakly to x∗ ∈ C as j → ∞. Again since Banach space X has
a weakly sequentially continuous duality mapping satisfying Opial’s condition. It follows by
Lemma 2.4 and noting (3.10), we have x∗ ∈ F(T). For each n ≥ 1, we note that

xn − x∗ = tnγf(xn) + (I − tnA)T(λn)xn − x∗

= tn
(
γf(xn) −Ax∗) + (I − tnA)(T(λn)xn − x∗).

(3.11)

Thus, we have

‖xn − x∗‖2 = tn〈γf(xn) −Ax∗, J(xn − x∗)〉 + 〈(I − tnA)(T(λn)xn − x∗), J(xn − x∗)〉

≤ tn
〈
γf(xn) −Ax∗, J(xn − x∗)

〉
+ ‖I − tnA‖‖T(λn)xn − x∗‖‖J(xn − x∗)‖

≤ tn
〈
γf(xn) −Ax∗, J(xn − x∗)

〉
+
(
1 − tnγ

)
‖xn − x∗‖2.

(3.12)

It follows that

‖xn − x∗‖2 ≤ 1
γ

〈
γf(xn) −Ax∗, J(xn − x∗)

〉

=
1
γ

[〈
γf(xn) − γf(x∗), J(xn − x∗)

〉
+
〈
γf(x∗) −Ax∗, J(xn − x∗)

〉]

≤ 1
γ

[
γα‖xn − x∗‖2 +

〈
γf(x∗) −Ax∗, J(xn − x∗)

〉]
.

(3.13)

Hence,

‖xn − x∗‖2 ≤ 1
γ − γα

〈
γf(x∗) −Ax∗, J(xn − x∗)

〉
. (3.14)

In particular, we have

∥
∥
∥xnj − x∗

∥
∥
∥
2
≤ 1
γ − γα

〈
γf(x∗) −Ax∗, J

(
xnj − x∗

)〉
. (3.15)

Since {xn} is bounded and the duality mapping J is single-valued and weakly sequentially
continuous from X into X∗, it follows (3.15), we have xnj → x∗ as j → ∞.

Next, we show that x∗ solves the variational inequality (3.2). Since

xt = tγf(xt) + (I − tA)T(λt)xt, (3.16)
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we derive that

(
γf −A

)
xt = −1

t
(I − tA)(T(λt)xt − xt). (3.17)

Notice that

〈
(T(λt)xt − xt) −

(
T(λt)y − y

)
, J
(
y − xt

)〉
≥
∥
∥xt − y

∥
∥2 −

∥
∥T(λt)xt − T(λt)y

∥
∥
∥
∥xt − y

∥
∥

≥
∥
∥xt − y

∥
∥2 −

∥
∥xt − y

∥
∥2

= 0.

(3.18)

It follows that, for any y ∈ F(T),

〈(
γf −A

)
xt, J

(
y − xt

)〉
= −1

t

〈
(I − tA)(T(λt)xt − xt), J

(
y − xt

)〉

= −1
t

〈
(T(λt)xt − xt) −

(
T(λt)y − y

)
, J
(
y − xt

)〉

+
〈
A(T(λt)xt − xt), J

(
y − xt

)〉

≤
〈
A(T(λt)xt − xt), J

(
y − xt

)〉
.

(3.19)

Now, replacing t and λt with tnj and λnj , respectively in (3.19), and letting j → ∞, noting
(3.8), we obtain 〈(γf −A)x∗, J(y − x∗)〉 ≤ 0. That is, x∗ is a solution of variational inequality
(3.2). By uniqueness, as x∗ = x̃, we have shown that each cluster point of the sequence {xt} is
equal to x∗. Then, we conclude that xt → x∗ as t → 0. This completes the proof.

Now, we prove the following theorem which is the main result of this paper.

Theorem 3.2. LetC be a nonempty bounded closed convex subset of a uniformly smooth Banach space
X which admit a weakly sequentially continuous duality mapping from X into X∗ with C ± C ⊂ C
and T = {T(t) : 0 ≤ t < ∞} be a nonexpansive semigroup on C such that F(T)/= ∅. Let f : C → C
be a contraction mapping with a coefficient α ∈ (0, 1) and A be a strongly positive bounded linear
operator with coefficient γ > 0 such that 0 < γ < γ/α. Let {αn}∞n=1, {βn}

∞
n=1, {δn}

∞
n=1 be the sequences

in (0, 1) and {tn}∞n=1 be a positive real divergent sequence such that tn ≤ tn+1 for all n ∈ �. Assume
the following control conditions are hold:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞ and
∑∞

n=1 |δn+1 − δn| < ∞;

(C3)
∑∞

n=1 supz∈C{‖T(h)T(tn)z − T(tn)z‖} < ∞ for all h ≥ 0.

Then the sequence {xn} defined by (1.13) converges strongly to the common fixed point x∗, where x∗

is the unique solution in F(T) of the variational inequality (3.2).
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Proof. First, we show that {xn} is bounded. By the control condition (C1), we may assume,
without loss of generality, that αn ≤ (1 − δn)‖A‖−1 for all n ≥ 0. Since A is a linear bounded
operator on X, by (2.3), we have ‖A‖ = sup{|〈Au, J(u)〉| : u ∈ X, ‖u‖ = 1}. Observe that

〈((1 − δn)I − αnA)u, J(u)〉 = 1 − δn − αn〈Au, J(u)〉

≥ 1 − δn − αn‖A‖

≥ 0,

(3.20)

that is to say (1 − δn)I − αnA is positive. It follows that

‖(1 − δn)I − αnA‖ = sup{〈((1 − δn)I − αnA)u, J(u)〉 : u ∈ X, ‖u‖ = 1}

= sup{1 − δn − αn〈Au, J(u)〉 : u ∈ X, ‖u‖ = 1}

≤ 1 − δn − αnγ.

(3.21)

For any p ∈ F(T), we compute

∥
∥yn − p

∥
∥ =

∥
∥βnxn +

(
1 − βn

)
T(tn)xn − p

∥
∥

=
∥
∥βn

(
xn − p

)
+
(
1 − βn

)(
T(tn)xn − p

)∥
∥

≤ βn
∥
∥xn − p

∥
∥ +

(
1 − βn

)∥
∥T(tn)xn − p

∥
∥

≤ βn
∥
∥xn − p

∥
∥ +

(
1 − βn

)∥
∥xn − p

∥
∥

=
∥
∥xn − p

∥
∥,

∥
∥xn+1 − p

∥
∥ =

∥
∥αnγf(xn) + δnxn + ((1 − δn)I − αnA)yn − p

∥
∥

=
∥
∥αn

(
γf(xn) −Ap

)
+ δn

(
xn − p

)
+ ((1 − δn)I − αnA)

(
yn − p

)∥
∥

≤ αn

[
γ
∥
∥f(xn) − f

(
p
)∥
∥ +

∥
∥γf

(
p
)
−Ap

∥
∥
]
+ δn

∥
∥xn − p

∥
∥

+ ‖(1 − δn)I − αnA‖
∥
∥yn − p

∥
∥

≤ αn

[
γα

∥
∥xn − p

∥
∥ +

∥
∥γf

(
p
)
−Ap

∥
∥
]
+ δn

∥
∥xn − p

∥
∥ +

(
1 − δn − αnγ

)∥
∥xn − p

∥
∥

=
[
1 −

(
γ − γα

)
αn

]∥
∥xn − p

∥
∥ +

(
γ − γα

)
αn

∥
∥γf

(
p
)
−Ap

∥
∥

γ − γα
.

(3.22)

By induction, we get

∥
∥xn+1 − p

∥
∥ ≤ max

{
∥
∥x1 − p

∥
∥,

∥
∥γf

(
p
)
−Ap

∥
∥

γ − γα

}

, (3.23)

for n ≥ 1. Hence {xn} is bounded, so are {yn}, {f(xn)} and {T(tn)xn}.
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Next, we show that limn→∞‖xn+1 − xn‖ = 0. From definition of {yn}, observing that

yn = βnxn +
(
1 − βn

)
T(tn)xn,

yn+1 = βn+1xn+1 +
(
1 − βn+1

)
T(tn+1)xn+1.

(3.24)

We note that

yn+1 − yn = βn+1xn+1 +
(
1 − βn+1

)
T(tn+1)xn+1 − βnxn −

(
1 − βn

)
T(tn)xn

=
(
1 − βn+1

)
(T(tn+1)xn+1 − T(tn)xn) + βn+1(xn+1 − xn) +

(
βn+1 − βn

)
(xn − T(tn)xn).

(3.25)

It follows that

∥
∥yn+1 − yn

∥
∥ ≤

(
1 − βn+1

)
‖T(tn+1)xn+1 − T(tn)xn‖ + βn+1‖xn+1 − xn‖

+
∣
∣βn+1 − βn

∣
∣‖xn − T(tn)xn‖.

(3.26)

Now, we consider the first term on the right side of (3.2), we have

‖T(tn+1)xn+1 − T(tn)xn‖ ≤ ‖T(tn+1)xn+1 − T(tn+1)xn‖ + ‖T(tn+1)xn − T(tn)xn‖

≤ ‖xn+1 − xn‖ + ‖T(tn+1)xn − T(tn)xn‖.
(3.27)

Substituting (3.27) into (3.26), we get

∥
∥yn+1 − yn

∥
∥ ≤

(
1 − βn+1

)
‖xn+1 − xn‖ +

(
1 − βn+1

)
‖T(tn+1)xn − T(tn)xn‖

+ βn+1‖xn+1 − xn‖ +
∣
∣βn+1 − βn

∣
∣‖xn − T(tn)xn‖

≤ ‖xn+1 − xn‖ + ‖T(tn+1)xn − T(tn)xn‖ +
∣
∣βn+1 − βn

∣
∣‖xn − T(tn)xn‖

= ‖xn+1 − xn‖ + ‖T(tn+1 − tn)T(tn)xn − T(tn)xn‖ +
∣
∣βn+1 − βn

∣
∣‖xn − T(tn)xn‖

≤ ‖xn+1 − xn‖ + sup
z∈C

‖T(tn+1 − tn)T(tn)z − T(tn)z‖ +
∣
∣βn+1 − βn

∣
∣‖xn − T(tn)xn‖.

(3.28)

Similarly, from definition of {xn}, observing that

xn+1 = αnγf(xn) + δnxn + ((1 − δn)I − αnA)yn,

xn+2 = αn+1γf(xn+1) + δn+1xn+1 + ((1 − δn+1)I − αn+1A)yn+1.
(3.29)
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We note that

xn+2 − xn+1 = αn+1γf(xn+1) + δn+1xn+1 + ((1 − δn+1)I − αn+1A)yn+1

− αnγf(xn) − δnxn − ((1 − δn)I − αnA)yn

= ((1 − δn+1)I − αn+1A)
(
yn+1 − yn

)
− (αn+1 − αn)Ayn − (δn+1 − δn)yn

+ (δn+1xn+1 − δnxn) + γ
(
αn+1f(xn+1) − αnf(xn)

)

= ((1 − δn+1)I − αn+1A)
(
yn+1 − yn

)
+ (δn+1xn+1 − δn+1xn) + γαn+1

(
f(xn+1) − f(xn)

)

+ (αn+1 − αn)
(
γf(xn) −Ayn

)
+ (δn+1 − δn)

(
xn − yn

)
.

(3.30)

It follows that

‖xn+2 − xn+1‖ ≤ ‖(1 − δn+1)I − αn+1A‖
∥
∥yn+1 − yn

∥
∥ + δn+1‖xn+1 − xn‖ + γαn+1

∥
∥f(xn+1) − f(xn)

∥
∥

+ |αn+1 − αn|
∥
∥γf(xn) −Ayn

∥
∥ + |δn+1 − δn|

∥
∥xn − yn

∥
∥

≤
(
1 − δn+1 − αn+1γ

)∥
∥yn+1 − yn

∥
∥ + δn+1‖xn+1 − xn‖ + γααn+1‖xn+1 − xn‖

+ |αn+1 − αn|
(
γ
∥
∥f(xn)

∥
∥ +

∥
∥Ayn

∥
∥
)
+ |δn+1 − δn|

∥
∥xn − yn

∥
∥.

(3.31)

Substituting (3.28) into (3.31), we get

‖xn+2 − xn+1‖

≤
[
1 −

(
γ − γα

)
αn+1

]
‖xn+1 − xn‖ +

(
1 − δn+1 − αn+1γ

)
sup
z∈C

‖T(tn+1 − tn)T(tn)z − T(tn)z‖

+
(
1 − δn+1 − αn+1γ

)∣
∣βn+1 − βn

∣
∣‖xn − T(tn)xn‖ + |αn+1 − αn|

(
γ
∥
∥f(xn)

∥
∥ +

∥
∥Ayn

∥
∥
)

+ |δn+1 − δn|
(
1 − βn

)
‖T(tn)xn − xn‖

≤
[
1 −

(
γ − γα

)
αn+1

]
‖xn+1 − xn‖ + sup

z∈C
‖T(tn+1 − tn)T(tn)z − T(tn)z‖

+
∣
∣βn+1 − βn

∣
∣‖xn − T(tn)xn‖ + |αn+1 − αn|

(
γ
∥
∥f(xn)

∥
∥ +

∥
∥Ayn

∥
∥
)

+ |δn+1 − δn|‖T(tn)xn − xn‖

≤
[
1 −

(
γ − γα

)
αn+1

]
‖xn+1 − xn‖ + sup

z∈C
‖T(tn+1 − tn)T(tn)z − T(tn)z‖

+M1
(
|αn+1 − αn| +

∣
∣βn+1 − βn

∣
∣ + |δn+1 − δn|

)
,

(3.32)

where M1 is an appropriate constant such that

M1 ≥ ‖xn − T(tn)xn‖ + γ
∥
∥f(xn)

∥
∥ +

∥
∥Ayn

∥
∥ ∀n ∈ �. (3.33)
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Putting cn := M1(|αn+1 − αn| + |βn+1 − βn| + |δn+1 − δn|) + supz∈C‖T(tn+1 − tn)T(tn)z − T(tn)z‖,
observing control conditions (C2) and (C3), we have

∞∑

n=1

cn =
∞∑

n=1

(

M1
(
|αn+1 − αn| +

∣
∣βn+1 − βn

∣
∣ + |δn+1 − δn|

)
+ sup

z∈C
‖T(tn+1 − tn)T(tn)z − T(tn)z‖

)

≤ M1

∞∑

n=1

(
|αn+1 − αn| +

∣
∣βn+1 − βn

∣
∣ + |δn+1 − δn|

)

+
∞∑

n=1

sup
z∈C

{‖T(tn+1 − tn)T(tn)z − T(tn)z‖} < ∞.

(3.34)

Hence, by Lemma 2.6 to (3.32), we get that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.35)

Next, we show that

lim
n→∞

‖T(h)xn − xn‖ = 0. (3.36)

Observe that

∥
∥yn − xn

∥
∥ ≤ ‖xn − xn+1‖ +

∥
∥xn+1 − yn

∥
∥

= ‖xn − xn+1‖ +
∥
∥αnγf(xn) + δn

(
xn − yn

)
− αnAyn

∥
∥

≤ ‖xn − xn+1‖ + δn
∥
∥xn − yn

∥
∥ + αn

(
γ
∥
∥f(xn)

∥
∥ +

∥
∥Ayn

∥
∥
)
.

(3.37)

It follows that

∥
∥yn − xn

∥
∥ ≤ 1

1 − δn

(
‖xn − xn+1‖ + αn

(
γ
∥
∥f(xn)

∥
∥ +

∥
∥Ayn

∥
∥
))
. (3.38)

Observing control condition (C1) and noting (3.10), we have

lim
n→∞

∥
∥yn − xn

∥
∥ = 0. (3.39)

Moreover, we note that

‖xn − T(tn)xn‖ ≤
∥
∥xn − yn

∥
∥ +

∥
∥yn − T(tn)xn

∥
∥

=
∥
∥xn − yn

∥
∥ + βn‖xn − T(tn)xn‖.

(3.40)
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It follows that

‖xn − T(tn)xn‖ ≤ 1
1 − βn

∥
∥xn − yn

∥
∥. (3.41)

Noting (3.19), hence

lim
n→∞

‖xn − T(tn)xn‖ = 0. (3.42)

On the other hand, we note that

‖T(h)xn − xn‖ ≤ ‖T(h)xn − T(h)T(tn)xn‖ + ‖T(h)T(tn)xn − T(tn)xn‖ + ‖T(tn)xn − xn‖

≤ 2‖xn − T(tn)xn‖ + ‖T(h)T(tn)xn − T(tn)xn‖

≤ 2‖xn − T(tn)xn‖ + sup
z∈C

‖T(h)T(tn)z − T(tn)z‖.

(3.43)

Therefor, by (3.26) and control condition (C3) imply that limn→∞supz∈C‖T(h)T(tn)z −
T(tn)z‖ = 0, we have

lim
n→∞

‖T(h)xn − xn‖ = 0. (3.44)

Next, we show that

lim sup
n→∞

〈
γf(x∗) −Ax∗, J(xn − x∗)

〉
≤ 0. (3.45)

For each t ∈ (0, 1), let xt be a unique point of C such that xt = tγf(xt) + (I − tA)T(λt)xt.
By Lemma 3.1, we have

‖xt − xn‖2 ≤ ‖(I − tA)(T(λt)xt − xn)‖2 + 2t
〈
γf(xt) −Axn, J(xt − xn)

〉

≤ ‖I − tA‖2‖T(λt)xt − xn‖2 + 2t
〈
γf(xt) −Axn, J(xt − xn)

〉

≤
(
1 − tγ

)2(‖T(λt)xt − T(λt)xn‖ + ‖T(λt)xn − xn‖)2 + 2t
〈
γf(xt) −Axn, J(xt − xn)

〉

≤
(
1 − 2γt + γ2t2

)
‖xt − xn‖2 + fn(t) + 2t

〈
γf(xt) −Axt, J(xt − xn)

〉

+ 2t〈Axt −Axn, J(xt − xn)〉,
(3.46)

where fn(t) := (2‖xt − xn‖ + ‖xn − T(λt)xn‖)‖xn − T(λt)xn‖.
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On the other hand, observe that A is a strongly positive linear bounded operator, it
follows from (2.3), we have

〈Axt −Axn, J(xt − xn)〉 = 〈A(xt − xn), J(xt − xn)〉 ≥ γ‖xt − xn‖2. (3.47)

Combining (3.47) with (3.46), we have

2t
〈
Axt − γf(xt), J(xt − xn)

〉

≤
(
γ2t2 − 2γt

)
‖xt − xn‖2 + an(t) + 2t〈Axt −Axn, J(xt − xn)〉

≤
(
γt2 − 2t

)
〈Axt −Axn, J(xt − xn)〉 + 2t〈Axt −Axn, J(xt − xn)〉 + fn(t)

= γt2〈Axt −Axn, J(xt − xn)〉 + fn(t).

(3.48)

It follows that

〈
Axt − γf(xt), J(xt − xn)

〉
≤

γt

2
〈Axt −Axn, J(xt − xn)〉 +

1
2t
fn(t). (3.49)

Now, taking limit superior as n → ∞ firstly, and then as t → 0 in (3.49) (using (3.44)), we
have

lim sup
n→∞

〈
Axt − γf(xt), J(xt − xn)

〉
≤ t

2
M2, (3.50)

whereM2 > 0 is a constant such thatM2 ≥ γ〈Axt −Axn, J(xt −xn)〉 for all t ∈ (0, 1) and n ≥ 1.
Now, taking limit superior as t → 0 in (3.50). Hence, we get

lim sup
t→ 0

lim sup
n→∞

〈
Axt − γf(xt), J(xt − xn)

〉
≤ 0. (3.51)

Moreover, we note that

〈
γf(x∗) −Ax∗, J(xn − x∗)

〉

= 〈γf(x∗) −Ax∗, J(xn − x∗)〉 −
〈
γf(x∗) −Ax∗, J(xn − xt)

〉

+ 〈γf(x∗) −Ax∗, J(xn − xt)〉 −
〈
γf(x∗) −Axt, J(xn − xt)

〉

+ 〈γf(x∗) −Axt, J(xn − xt)〉 −
〈
γf(xt) −Axt, J(xn − xt)

〉

+
〈
γf(xt) −Axt, J(xn − xt)

〉

= 〈γf(x∗) −Ax∗, J(xn − x∗) − J(xn − xt)〉 + 〈Axt −Ax∗, J(xn − xt)〉

+
〈
γf(x∗) − γf(xt), J(xn − xt)

〉
+
〈
γf(xt) −Axt, J(xn − xt)

〉
.

(3.52)
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Taking limit superior as n → ∞ in (3.52), we have

lim sup
n→∞

〈
γf(x∗) −Ax∗, J(xn − x∗)

〉
≤ lim sup

n→∞

〈
γf(x∗) −Ax∗, J(xn − x∗) − J(xn − xt)

〉

+ ‖A‖‖xt − x∗‖lim sup
n→∞

‖xn − xt‖

+
∥
∥γf(x∗) − γf(xt)

∥
∥lim sup

n→∞
‖xn − xt‖

+ lim sup
n→∞

〈
γf(xt) −Axt, J(xn − xt)

〉

≤ lim sup
n→∞

〈γf(x∗) −Ax∗, J(xn − x∗) − J(xn − xt)〉

+
(
‖A‖ + γα

)
‖xt − x∗‖lim sup

n→∞
‖xn − xt‖

+ lim sup
n→∞

〈
γf(xt) −Axt, J(xn − xt)

〉
.

(3.53)

By Lemma 3.1, xt → x∗ ∈ F(T) as t → 0. Since X is a uniformly smooth Banach space, imply
that J is norm-to-norm uniformly continuous on bounded subset of C (see, e.g., [18, Lemma
1]), we obtain

lim sup
t→ 0

lim sup
n→∞

〈
γf(x∗) −Ax∗, J(xn − x∗) − J(xn − xt)

〉
= 0. (3.54)

Therefore, from (3.53), we have

lim sup
n→∞

〈
γf(x∗) −Ax∗, J(xn − x∗)

〉
= lim sup

t→ 0
lim sup
n→∞

〈
γf(x∗) −Ax∗, J(xn − x∗)

〉

≤ lim sup
t→ 0

lim sup
n→∞

〈
γf(xt) −Axt, J(xn − xt)

〉

≤ 0.

(3.55)

Finally, we show that limn→∞‖xn − x∗‖ = 0. By Lemma 2.5, we have

‖xn+1 − x∗‖2

=
∥
∥αnγf(xn) + δnxn + ((1 − δn)I − αnA)yn − x∗∥∥2

=
∥
∥((1 − δn)I − αnA)(yn − x∗) + δn(xn − x∗) + αn

(
γf(xn) −Ax∗)∥∥2

≤
∥
∥((1 − δn)I − αnA)(yn − x∗) + δn(xn − x∗)

∥
∥2

+ 2αn

〈
γf(xn) −Ax∗, J(xn+1 − x∗)

〉
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≤
[∥
∥((1 − δn)I − αnA)

(
yn − x∗)∥∥ + δn‖xn − x∗‖

]2

+ 2αn

〈
γf(xn) −Ax∗, J(xn+1 − x∗)

〉

≤
[
‖(1 − δn)I − αnA‖

∥
∥yn − x∗∥∥ + δn‖xn − x∗‖

]2 + 2αn

〈
γf(xn) −Ax∗, J(xn+1 − x∗)

〉

≤
[∥
∥1 − δn − αnγ

∥
∥‖xn − x∗‖ + δn‖xn − x∗‖

]2 + 2αn

〈
γf(xn) −Ax∗, J(xn+1 − x∗)

〉

≤
(
1 − αnγ

)2‖xn − x∗‖2 + 2αn〈γf(xn) − γf(x∗), J(xn+1 − x∗)〉

+ 2αn

〈
γf(x∗) −Ax∗, J(xn+1 − x∗)

〉

≤
(
1 − αnγ

)2‖xn − x∗‖2 + 2αnγα‖xn − x∗‖‖xn+1 − x∗‖ + 2αn

〈
γf(x∗) −Ax∗, J(xn+1 − x∗)

〉

≤
(
1 − αnγ

)2‖xn − x∗‖2 + αnγα
(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)

+ 2αn

〈
γf(x∗) −Ax∗, J(xn+1 − x∗)

〉
.

(3.56)

It follows that

‖xn+1 − x∗‖2 ≤
[(

1 − αnγ
)2 + αnγα

1 − αnγα

]

‖xn − x∗‖2 + 2αn

1 − αnγα

〈
γf(x∗) −Ax∗, J(xn+1 − x∗)

〉

=
[
1 − 2αnγ + αnγα

1 − αnγα

]

‖xn − x∗‖2 +
α2
nγ

2

1 − αnγα
‖xn − x∗‖2

+
2αn

1 − αnγα

〈
γf(x∗) −Ax∗, J(xn+1 − x∗)

〉

=

[

1 −
2αn

(
γ − γα

)

1 − αnγα

]

‖xn − x∗‖2 +
α2
nγ

2

1 − αnγα
‖xn − x∗‖2

+
2αn

1 − αnγα

〈
γf(x∗) −Ax∗, J(xn+1 − x∗)

〉
.

(3.57)

Put an := 2αn(γ − γα)/(1− αnγα) and bn := (αnγ
2/2(γ − γα))‖xn −x∗‖2 + (1/(γ − γα))〈γf(x∗)−

Ax∗, J(xn+1 − x∗)〉. The above reduces to formula ‖xn+1 − x∗‖2 ≤ (1 − an)‖xn − x∗‖2 + anbn.
Observing control condition (C1) and noting (3.55), it is easily seen that

∑∞
n=1 an = ∞ and

lim supn→∞bn ≤ 0. By Lemma 2.6, we conclude that limn→∞‖xn − x∗‖ = 0. This completes the
proof.

Corollary 3.3. Let C be a nonempty bounded closed convex subset of a real Hilbert space H with
C ± C ⊂ C and T = {T(t) : 0 ≤ t < ∞} be a nonexpansive semigroup on C such that F(T)/= ∅.
Let f : C → C be a contraction mapping with a coefficient α ∈ (0, 1) and A be a strongly positive
bounded linear operator with coefficient γ > 0 such that 0 < γ < γ/α. Let {αn}∞n=1, {βn}

∞
n=1, {δn}

∞
n=1
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be the sequences in (0, 1) and {tn}∞n=1 be a positive real divergent sequence such that tn ≤ tn+1 for all
n ∈ �. Assume that the following control conditions that hold:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞, and
∑∞

n=1 |δn+1 − δn| < ∞;

(C3)
∑∞

n=1 supz∈C{‖T(h)T(tn)z − T(tn)z‖} < ∞ for all h ≥ 0.

Then the sequence {xn} defined by (1.13) converges strongly to the common fixed point x∗, where x∗

is the unique solution in F(T) of the variational inequality (1.6).

Proof. From Theorem 3.2, if X := H is a real Hilbert space, we get the desired conclusion
easily.

Corollary 3.4. Let C be a nonempty bounded closed convex subset of a uniformly smooth Banach
space X which admit a weakly sequentially continuous duality mapping from X into X∗ and T =
{T(t) : 0 ≤ t < ∞} be a nonexpansive semigroup mapping on C such that F(T)/= ∅. Let f : C → C
be a contraction mapping with a coefficient α ∈ (0, 1). Let {αn}∞n=1, {βn}

∞
n=1, {δn}

∞
n=1 be the sequences

in (0, 1) and {tn}∞n=1 be a positive real divergent sequence such that tn ≤ tn+1 for all n ∈ �. Assume
that the following control conditions hold:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2)
∑∞

n=1 |αn+1 − αn| < ∞,
∑∞

n=1 |βn+1 − βn| < ∞, and
∑∞

n=1 |δn+1 − δn| < ∞;

(C3)
∑∞

n=1 supz∈C{‖T(h)T(tn)z − T(tn)z‖} < ∞ for all h ≥ 0.

Then the sequence {xn} defined by

x1 = x ∈ C chosen arbitrarily,

yn = βnxn +
(
1 − βn

)
T(tn)xn;

xn+1 = αnf(xn) + δnxn + (1 − δn − αn)yn, ∀n ≥ 1,

(3.58)

converges strongly to the fixed point x∗, where x∗ is the unique solution in F(T) of the variational
inequality (1.11).

Proof. Taking A = I and γ = 1, then (1.13) is reduced to (3.58).

Corollary 3.5 (Marino and Xu [12]). Let H be a real Hilbert space. Let T be a nonexpansive
mapping on H such that F(T)/= ∅, f be a contraction mapping with a coefficient α ∈ (0, 1) and
A be a strongly positive bounded linear operator with a coefficient γ > 0 such that 0 < γ < γ/α.
Assume that the following control conditions hold:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2)
∑∞

n=1 |αn+1 − αn| < ∞.

Then the sequence {xn} defined by

x0 = x ∈ H chosen arbitrarily;

xn+1 = αnγf(xn) + (I − αnA)Txn, ∀n ≥ 0,
(3.59)
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converges strongly to the fixed point x∗, where x∗ is the unique solution in F(T) of the variational
inequality (1.6).

Proof. If X := H is a real Hilbert space, we get the desired conclusion easily. Taking δn = 0,
βn = 0, and T(tn) = T , then (1.13) is reduced to (3.59).

Now, we prove the following theorem, under certain different control conditions on
the sequence {αn}, {βn} and {δn}.

Theorem 3.6. LetC be a nonempty bounded closed convex subset of a uniformly smooth Banach space
X which admit a weakly sequentially continuous duality mapping from X into X∗ with C ± C ⊂ C
and T = {T(t) : 0 ≤ t < ∞} be a nonexpansive semigroup on C such that F(T)/= ∅. Let f : C → C
be a contraction mapping with a coefficient α ∈ (0, 1) and A be a strongly positive bounded linear
operator with coefficient γ > 0 such that 0 < γ < γ/α. Let {αn}∞n=1, {βn}

∞
n=1, {δn}

∞
n=1 be the sequences

in (0, 1) and {tn}∞n=1 be a positive real divergent sequence such that tn+1 = h + tn for all n ∈ � and for
all h ≥ 0. Assume that the following control conditions are hold:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) limn→∞|βn+1 − βn| = 0;

(C3) 0 < lim infn→∞δn ≤ lim supn→∞δn < 1.

Suppose that {T(tn)} is a u.a.r. nonexpansive semigroup on C. Then the sequence {xn} defined by
(1.13) converges strongly to the common fixed point x∗, where x∗ is the unique solution in F(T) of
the variational inequality (3.2).

Proof. By using the same argument and techniques as those of Theorem 3.2, we note that {xn}
is bounded, and so are the set {yn}, {f(xn)} and {T(tn)xn}. We will show that limn→∞‖xn+1 −
xn‖ = 0.

From Theorem 3.2, we note that

∥
∥yn+1 − yn

∥
∥ ≤ ‖xn+1 − xn‖ + ‖T(tn+1)xn − T(tn)xn‖ +

∣
∣βn+1 − βn

∣
∣‖xn − T(tn)xn‖. (3.60)

Define xn+1 = (1 − δn)ln + δnxn. That is ln = (xn+1 − δnxn)/(1 − δn). Now, we compute
ln+1 − ln.

Then, we note that

ln+1 − ln =
xn+2 − δn+1xn+1

1 − δn+1
− xn+1 − δnxn

1 − δn

=
αn+1γf(xn+1) + ((1 − δn+1)I − αn+1A)yn+1

1 − δn+1
−
αnγf(xn) + ((1 − δn)I − αnA)yn

1 − δn

=
αn+1

1 − δn+1

(
γf(xn+1) −Ayn+1

)
+

αn

1 − δn

(
Ayn − γf(xn)

)
+ yn+1 − yn,

(3.61)

one has

‖ln+1 − ln‖ ≤ αn+1

1 − δn+1

∥
∥γf(xn+1) −Ayn+1

∥
∥ +

αn

1 − δn

∥
∥Ayn − γf(xn)

∥
∥ +

∥
∥yn+1 − yn

∥
∥. (3.62)
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Substituting (3.60) into (3.62), we have

‖ln+1 − ln‖ ≤ αn+1

1 − δn+1

∥
∥γf(xn+1) −Ayn+1

∥
∥ +

αn

1 − δn

∥
∥Ayn − γf(xn)

∥
∥ + ‖xn+1 − xn‖

+ ‖T(tn+1)xn − T(tn)xn‖ +
∣
∣βn+1 − βn

∣
∣‖xn − T(tn)xn‖.

(3.63)

By assuming that tn+1 = h + tn, it follows that

‖ln+1 − ln‖ − ‖xn+1 − xn‖ ≤ αn+1

1 − δn+1

∥
∥γf(xn+1) −Ayn+1

∥
∥ +

αn

1 − δn

∥
∥Ayn − γf(xn)

∥
∥

+ ‖T(h)T(tn)xn − T(tn)xn‖ +
∣
∣βn+1 − βn

∣
∣‖xn − T(tn)xn‖.

(3.64)

Since {T(tn)} is a u.a.r. nonexpansive semigroup and limn→∞tn = ∞, then for all h ≥ 0, we
have

lim
n→∞

‖T(h)T(tn)xn − T(tn)xn‖ ≤ lim
n→∞

sup
z∈C

‖T(h)T(tn)z − T(tn)z‖ = 0. (3.65)

Moreover, since {xn}, {T(tn)xn} are bounded, observing control conditions (C1), (C2), (C3),
and noting (3.65) then, inequality (3.64) implies that

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn‖) ≤ 0. (3.66)

It follows by Lemma 2.5 that

lim
n→∞

‖ln − xn‖ = 0. (3.67)

Observing that

xn+1 − xn = (1 − δn)ln + δnxn − xn

= (1 − δn)(ln − xn),
(3.68)

and hence,

lim
n→∞

‖xn+1 − xn‖ = 0. (3.69)

By the same proof in Theorem 3.2, we note that

∥
∥yn − xn

∥
∥ ≤ 1

1 − δn

(
‖xn − xn+1‖ + αn

(
γ
∥
∥f(xn)

∥
∥ +

∥
∥Ayn

∥
∥
))
. (3.70)
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Hence limn→∞‖yn − xn‖ = 0. Moreover, by Theorem 3.2, we note that

lim
n→∞

‖xn − T(tn)xn‖ = 0. (3.71)

Next, we show that limn→∞‖T(h)xn − xn‖ = 0. We note that

‖T(h)xn − xn‖ ≤ ‖T(h)xn − T(h)T(tn)xn‖ + ‖T(h)T(tn)xn − T(tn)xn‖ + ‖T(tn)xn − xn‖

≤ 2‖xn − T(tn)xn‖ + ‖T(h)T(tn)xn − T(tn)xn‖.
(3.72)

Since {T(tn)} is a u.a.r. nonexpansive semigroup, and noting (3.65), we have

lim
n→∞

‖T(h)xn − xn‖ = 0 (3.73)

for all h ≥ 0. By using the same argument and techniques as those of Theorem 3.2, we have
{xn} converges strongly to a common fixed point x∗ ∈ F(T). This completes the proof.

Corollary 3.7. Let C be a nonempty bounded closed convex subset of a real Hilbert space H with
C ± C ⊂ C and let T = {T(t) : 0 ≤ t < ∞} be a nonexpansive semigroup on C such that F(T)/= ∅.
Let f : C → C be a contraction mapping with a coefficient α ∈ (0, 1) and A be a strongly positive
bounded linear operator with coefficient γ > 0 such that 0 < γ < γ/α. Let {αn}∞n=1, {βn}

∞
n=1, {δn}

∞
n=1

be the sequences in (0, 1) and {tn}∞n=1 be a positive real divergent sequence such that tn+1 = h + tn for
all n ∈ � and for all h ≥ 0. Assume that the following control conditions are hold:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) limn→∞|βn+1 − βn| = 0;

(C3) 0 < lim infn→∞δn ≤ lim supn→∞δn < 1.

Suppose that {T(tn)} is a u.a.r. nonexpansive semigroup on C. Then the sequence {xn} defined by
(1.13) converges strongly to the fixed point x∗, where x∗ is the unique solution in F(T) of the
variational inequality (1.6).

Proof. From Theorem 3.6, if X := H is a real Hilbert space, we get the desired conclusion
easily.

If we taking A = I and γ = 1, then (1.13) is reduced to (3.74). So, we obtain the
following corollary.

Corollary 3.8. Let C be a nonempty bounded closed convex subset of a uniformly smooth Banach
space X which admit a weakly sequentially continuous duality mapping from X into X∗ and let T =
{T(t) : 0 ≤ t < ∞} be a nonexpansive semigroup on C such that F(T)/= ∅. Let f : C → C be a
contraction mapping with a coefficient α ∈ (0, 1) and {αn}∞n=1, {βn}

∞
n=1, {δn}

∞
n=1 be the sequences in
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(0, 1) and {tn}∞n=1 be a positive real divergent sequence such that tn+1 = h + tn for all n ∈ � and for all
h ≥ 0. Assume that the following control conditions hold:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) limn→∞|βn+1 − βn| = 0;

(C3) 0 < lim infn→∞δn ≤ lim supn→∞δn < 1.

Suppose that {T(tn)} is a u.a.r. nonexpansive semigroup on C. Then the sequence {xn} defined by

x1 = x ∈ C chosen arbitrarily;

yn = βnxn +
(
1 − βn

)
T(tn)xn;

xn+1 = αnf(xn) + δnxn + (1 − δn − αn)yn, ∀n ≥ 1,

(3.74)

converges strongly to the fixed point x∗, where x∗ is the unique solution in F(T) of the variational
inequality (1.11).
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