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By applying the properties of Schur complement and some inequality techniques, some new estimates of diagonally and doubly
diagonally dominant degree of the Schur complement of Ostrowski matrix are obtained, which improve the main results of Liu and
Zhang (2005) and Liu et al. (2012). As an application, we present new inclusion regions for eigenvalues of the Schur complement
of Ostrowski matrix. In addition, a new upper bound for the infinity norm on the inverse of the Schur complement of Ostrowski

matrix is given. Finally, we give numerical examples to illustrate the theory results.

1. Introduction

Let C™" denote the set of all n x n complex matrices, N =
{1,2,...,n},and A = (a;;) € C™"(n > 2). Denote

B8 =) | 0
Jj#i
We know that A is called a strictly diagonally dominant
matrix if

|a;| > R;(A), VieN. (2)

A is called a generalized Ostrowski matrix if
|| |ajj| > R, (A)R;(A), Vi,jeN, i#]. 3)

A is called Ostrowski matrix if all strict inequalities in (3)
hold (see [1]).

SD,, and OS,(GOS,,) will be used to denote the sets of all
n x n strictly diagonally dominant matrices and the sets of all
n x n (generalized) Ostrowski matrices, respectively.

As shown in [2], for all i € N, we call |g;| — R;(A)
and |a;] Ia]-jl - Ri(A)Rj(A) the ith diagonally and doubly
diagonally dominant degree of A, respectively.

The infinity norm of A is defined as

lAlloo = max {R; (A) + |a} . )

For B € N, denote by || the cardinality of 8 and 8 =
N/B.If B,y € N, then A(B, y) is the submatrix of A with row
indices in 3 and column indices in y. In particular, A(S, f) is
abbreviated to A(f). Assuming that = {i},i,,...,i} € N,
B = N/B = {j,jp---»ji} and the elements of § and f8 are
both conventionally arranged in an increasing order. For 1 <
t < I, we denote

A =ABU{i). (5)
If A(p) is nonsingular,
A A
B A

is called the Schur complement of A with respect to A(3).
The comparison matrix of A, u(A) = (a;7), is defined by

~A(B)-A(B.B)[APB]A(BB) (6

'aij| ,ifi=j )
o =
T ay|s ifi#
A matrix A = (a;) € C™" is called an M-matrix if there exist
a nonnegative matrix B and a number s > p(B) such that
A = sI — B, where p(B) is the spectral radius of B. We know
that A isan H-matrix ifand only if #(A) is an M-matrix, and if



A is an M-matrix, then the Schur complement of A is also an
M-matrix and det A > 0 (see [3]). H,, and M,, will denote the
set of all nxn H-matrices and the set of all n x#n M-matrices,
respectively.

The Schur complement has been proved to be a useful
tool in many fields such as control theory, statistics, and
computational mathematics. A lot of work has been done on it
(see [2,4-15]). It is well known that the Schur complements of
SD,, and OS,, are SD,, and OS,,, respectively. These properties
have been used for the derivation of matrix inequalities
in matrix analysis and for the convergence of iterations in
numerical analysis (see [16-19]). Meanwhile, estimating the
upper bound for the infinity norm of the inverse of the Schur
complement is of great significance. We know that the upper
bound of |A™"||, plays an important role in some iterations
for large scale nonhomogeneous system of linear equation
Ax = b (see [20]).

The paper is organized as follows. In Section 2, we give
several new estimates of diagonally and doubly diagonally
dominant degree on the Schur complement of matrices. In
Section 3, new inclusion regions for eigenvalues of the Schur
complement are obtained. A new upper bound of ||(A/ ﬁ)*1
is given in Section 4. In Section 5, we present numerical
examples to illustrate the theory results.

2. The Diagonally Dominant Degree for the
Schur Complement

In this section, we give several new estimates of diagonally
and doubly diagonally dominant degree on the Schur com-
plement of OS,,.

Lemma 1 (see [3]). IfA € H,, then [u(A)]™" > |A7"].

Lemma 2 (see [3]). IfA € SD, or A € OS,, then A € H,; that
is, u(A) € M,,.

Lemma 3 (see [6]). If A € SD, or A € OS,, and 3 € N, then

the Schur complement of A is in SDlﬁl or OS g, where f = N-f3
is the complement of B in N and || is the cardinality of B.

Lemma 4 (see [12]). Let A € SD,, B = {i},i5...,i} C N,
B=1{j1Jp---> Ji} and k + 1 = n. For any j, € 5, denote

- 'ajri1| 'altlkj

u(A(P)) )

Then B; € GOSy,, if and only if

R (A)
x>12113<)§c.a |Z'1t’

)
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When the strict inequality in (9) holds, B; € M., and thus
det B; > 0. If the equality in (9) occurs, then det B; > 0.

Lemma 5. Let A = (a;) € OS, and = {iy,i,,..., i} with
an index iy (1 < d < k) satisfying la; i | < R; (A) la;; | >
Yiepsiin i b B = U jp--sib 1 < k < nand AJB =
(a;,). Then, forall 1 < t <1,
) A
|att| R <_> 'aJ ]r| ~R; (4)
B
'aidid' B pid (A) i |
a; :
]t’v|
|%id| v=1 (10)
P, (A)
> |y | - Ta ] (4)
i
> 0,
where
h = max { max 'a“d' |ald’d| }
ieN/ia} |“ii| - jeN/{i,id} '“z;| R; (A) (11)
P, (A) = hR; (A).

Proof. From Lemmas 2 and 3, we know that A(f8) € H) and
U(A(B)) € M. Further, by Lemma 1, we have

[ (AB)] ™ = [[A(B)]]- (12)
Thus, forany 1 <t <1,
- il :lz )
%iji
= ;5. = (@ a35) [A(B)]
Gicji

1 lljs

N Z ajtjs - (ajti1’ ]t’k) [A (ﬁ)]
st
Dy

- R, (4)

k
| Z| Jely

>la.
- 'a]t]r|
| ’dld|

|a’d’d

=S (lag] oo |ag|) le (A BN

s=1 |
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Further,
.atlt| - R <%)
- |a1t1t' R (A) | 1dld| Z |a]r’ '
b
det [ (A (B))]
P, (A) &
| | Z |am | |“1m| T |“J}ik|
i,
1
x det _; 'ailjs
l u(A(P))
‘S:ZI '“ikfs|
= ]t]tl R (A) ' ld1d=_ | Z| Jt’|
o etB
det[p(A(B)]

(14)

By Lemma 4, we can prove that det B > 0. Thus, inequality
(10) holds. O

Remark 6. Note that

P, (A) R, (4)
S (15)
|aidid | |aidid |
This shows that Lemma 5 improves Theorem 2 of [12].
Theorem 7. Let A = (a;) € OS,, f = {i,iy,...,ix} C N,

B=N/B=1jijp-sjih 1 <k <nand A/ = (a,).

(a) If there existsan iy € 3 (1 < d < k) such that |q;
R; (A), then, forall1 <s, t <1, t#s,

il - (5) . ()

did

P, (A)
= [|“jtjt| T e  (A4) (16)
P, (A)
X [ a; ;. rlngx |a R; (A,

3
A A
il o] + & (5 ) 2. (5)
P, (A)
< [l i by g o) (17)
i, (A)
x |14, +I;rvl§é( . st (A) |,

where

B =h Y agl+lay| G#id), g
JEN/i,ig}

and P, (A) and h are such as in Lemma 5.

(b) Ifla,d,dl >R;, (A) foranyiy € (1 < d < k), then, for
alll1 <s, t <1, t#s,

1-=(5)~(3)

) ['%J‘ max 2 (A)Rjt (4)

ueN/{ji} |auu|

!
aS

!
att

(19)

Q;, (A)

X

— max
i,ep

aj, R; (A) [,

lVlV

o+ 5 (4) R (4)

< [i%| max 2@ g, (4 >] (20)

ueN/{ji} |auu|

Q; (A)
X |: a; ; | + max———rR; (A)
zeﬁ |a1 |
where
Zl
7 = max { max fuly
Zt#w il
% j, }
l<w<k V! ’
1?21 v=1 |%,j, D)
I
Q;, (A) = @it Z |aiwjv| >
t+w =1

l1<w<k,

and if there exists some 1 < w < k such that
I
Y-1la; ;| =0, one denotes 1y = 1.
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Proof. (a) If there exists an iy € f3such that |a; ; | < R; (A),
then, for all j, € 3,

P,(4) P (4) P@

ueN/{j;} || i El3 |a | 'a,-d,-d' (22)
By Lemma 5, forall 1 <t <1,
P, (A)
- ()2 ol - 2R @20

ldld

Thus, forall1 <t, s< I, t+s,

- (@)= (5)] o e

From Lemma 3, A/B is in OS5; that is, for all 1 < £, s <
I t#s,

!
tt

!

Jn(2)n(2)0 o

Further, forall1 <t, s <, t#s,
- (3)x(5)
B B
A
= [le-%.(5)

X[MJ_&<%>] (26)

> [|ajtjt| - max B (A)Rjt (A)

! !

ueN/{ji} |auu|

P, (A)

['a”' ma’é( | R; (A)

aul

Therefore, inequality (16) holds. Similarly, we can prove
inequality (17).

(b) If |a,d1 | > Rid(A) foranyi; € B (1 < d < k), then,
from Lemmasland 2, forall1 < ¢, s <[, t#s,

1(3)s(3)

! !

X |a
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I
- |:Z ajj (ajsil """ aj rk)
VES
ailjv
-1 .
x [A(B)] :
aikjv
i
X Z “jtju‘(“j,il """" “jtik)
u#t

. [A(/3)]1< )H
|ai1js'
<A
|a’1Jt'
SO0 I
'aikjt'
|ai1fv'
< (AP
'“ikjv'

1
x {Z [ '“jtju| + ('“Jti1| """ |“ftik|)
u#t

|ailju|
x [#(A(ﬁ))]1< :
'a7k1 |
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1 2,
xwaB)l |
|aikjs|
% { a1l -

R, (A)
+ max
ueN/{j.} |auu|

|“i1jt'
~(Jaji |- lajal) [M(A(ﬁ))]1< :
'aikjt'
|ailf|»|
x u(a@B) |
a5
|ai1ju|
x [u(a@) | :
|aikju'

R, (A)

m
ueN/{ji} |auu|

R; (A)

R; (A)

(27)
Therefore,

|“iu;|
x [u(a(p)]” < :
'“fkjs'

R, (A)
Ll T
1 il = (agaloolaga)

'allJ |
x[u(A(B))] < :
|alkJ |

x | max Ry (A)R (A)
ueN/{j;} |auu|

|a11]r|
= (il |aial) [M(A(ﬂ))]1< :
|a‘th|

'ailju'
x [u(A(B)]” < : :
'aikju|

(28)
Further,
O |a’11 |
'“JJ' '“J i1| """ 'ajrikl)[‘/l(A (B))] :
'alkl '
Q (A) & Q (A) &
|ajsJ| R l%- Jl|+rlngé< 'a Vzl|n|
o 'ah] |
~ (il nlag) A |
'aikjs|
Q, (A) &
=[ays[~max = |a IE Z|;z| m
e e sl tls o
x det |a’11 l
: (A (B))
7|aikjs|
def.
_JAI%P EVJdawmwn““

(29)



InBl,forallp: 1,2,3,...,k,

=1Q;, (4) 3 [ay (30)

k
=11<HZ
v#p

i k
G| + Z %,j, Z a
v=1 v=1

Jsty

k k
> (172 i, | T | j, >Z |’7 A,
vED =1

Andforall p,g=1,2,3,...

k, p#q,
a i |1\a | >nR; (A)nR; (A)

k 1
=<’72 ‘@u*’?Z“ >< )
vVED v=1
k k
> ( a; ; >< a
v# v#q
(31)

ipJs
Hence, by (30) and (31), we have B, € GOS,,, and so det B, >
0. Further, by (29), we obtain

n

+nz

ipjv q]v

igjs

. |ai1,fs
ayi | = (laja |- |as]) [ (A BN
|“z'kj5‘
Q; (A) & (32)
2 |a;,j, -fpgg'—; aj;,
(A
> \a; —Ilneaé(QZ'(‘ )st (A).

By (28) and a similar method as the proof of Theorem 2.1
in [2], we can prove £ > 0. Therefore, by (29) and (32), we
obtain inequality (19). Similarly, we can prove inequality (20).

O

Remark 8. Note that
0<h, n<lL (33)

This shows that Theorem 7 improves Theorem 2.1 of [2].
3. Eigenvalue Inclusion Regions of
the Schur Complement

In this section, we present new inclusion regions for eigenval-
ues of the Schur complement of OS,,.

B=N/p=

Journal of Applied Mathematics

Lemma 9 (Brauer Ovals theorem). Let A = (ay;) € C™". Then
the eigenvalues of A are in the union of the following sets:

U, ={zeClz-ay|z-a; < R (A)R; (A},
(34)

Vi,j=N, i#]j.
Theorem 10. Let A = (a;;) € OS,, B = {i},iy,..

{jirjor-- > ihb 1 <k <nand Al =
A be eigenvalue of A/p.

i} © N,
(at's), and let

(a) If there existsan iy € 3 (1 < d < k) such that Ialdldl <

R, d(A) then there exist 1 < t, s < I, t #s, such that

_ det(4) 1 det(A,)
det A (p) det A (
P, (A)
<2 [ T T 0 Y (35)
P, (A)
+| ]t]t| max—~ RJs (A)
WP a,
det(A,) A det(A;)
CdetA(B)||T detA(
(A)
= |:|ajt.7t + EIE?{],} |auu| jt (A) (36)
i, (A)
x| |4 ;. +maé< |a R; (A)

where P, (A) is such as in Lemma 5 and PiV(A) (v#d)
is such as in Theorem 7.

(®) If la;; | > R; (A) foranyiy € B(1 < d < k), then
thereexist1 <t, s <, t #s, such that

det(A,)
l‘wA@

SZ[a

det(A;)
‘_MA@

R, (A)
max
ueN/{j} lauu|

Q;, (A)

lVlV

i R;, (A) (37)

max

+la] nay R; (4)

det(A,)
l  detA(B)

det(A;)
‘ " detA(B)

R; (A)

< [|a1m'+ max R (A) (38)

ueN/ ]r} |auu|

Q;, (A)

>

iy

where Q; (A) is such as in Theorem 7.
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Proof. By Lemma 9, we know that there exist 1 < ¢, s < |,

t #s, such that

| r-a R(%)R(%)

(a) If there exists iy € f3satisfying |a;

igig
we have
A A
R <E) & (E>
P, (A)
< |at,t| as’s - [|ajtjt| - ME%?{th} |uauu| R]t (A):|

P, (A)
X | |a; ;| — max R. (A)
I TN o |
ailjs
-1
= % ~ (“jsil’---’“jsik) [A(B)]
D j,
i j,
-1
X ajtjt - (ajtil >t a]}ik) [A (ﬁ)]
G j,

P, (4)

P (A
‘['“M‘J‘ max £l )Rjt (4)
a; i

“EN/{jt} |auu|
d

< [.ajtjt + max ijt (A)]

”EN/{jt} Iauul

— max
i€

aj, R; (A)

. (A)
X | |@;, ;.| + max R; (A)
i s)s lveﬁ |al(i s
[ P, (A
- 'ajj|— max b4 )Rj (A)
L o “EN/{jt} lauu| !
[ P, (4)
X | |a; ; | — max— R; (A)
00 a; Js
P, (A
= a; ;| max u )Rjt (A)
e MEN/{jt} |auu|
| LT
a; ;| max .
Jele i,ep aivjv Js

| < R, (), by (16),

On the other hand, forall1 <t <1,

!
|/\ —att|

(39) a. .
B¥)
= A= ajtjt + (ajtil i ajzik) [A(ﬁ)]_l (41)
D j,
B A\ det (A,)
i A_det<A(ﬁ)>l_’A_detA(ﬂ)

Therefore, by (39), (40), and (41), we obtain inequality
(35). With a Similar method, we can prove inequality
(36).

(b) Ifla; ; | > R, (A) forany iy € B (1 < d < k), then
by (19), (32), and a similar method as the part (a),
we obtain inequality (37). Similarly, we can prove
inequality (38). ]

4. Upper Bound for the Infinity Norm on the
Inverse of the Schur Complement

In this section, we present a new upper bound of || (A/[j’)_1 oo
Lemma 11 (see [2]). Let A = (aij) € OS,and M = (m,-j) €
C™". Then,

'ajj' Yo [mi |+ R (A) X)) |mjv
|aii| |ajj - R; (A) R; (A) '

“A_IM“OO < max

1<i,j<n

(40) i#j

(42)

Theorem 12. Let A = (ay) € SD,, M = (m;) € c B =

{itsigs.sit) CN, B=N/B=1{j1sjps-rsjibs 1 <k < n,and
A/B = (a},). Then,

R, (A)
X<<|“j,j,|‘u€fgj‘{’§t} o] R, (A)>

(A -1
(b nw)) )

(43)

9 j,




G

< max |a--'+R- A
1st,ssl< ( Jede Is (4)

t#s

+ max

Iveﬁ

A
 (4) (R; (A)+R; (A))>

a i

R, (A)
X(('“ﬁjJ‘uE‘}\’,j‘{’i} o] R; (A)>
Q, (4) -
(ol T, w)) )

(44)
where
Q;, (4) !
Ajtjs = <|aJtJt| + max R (A)> Z |ms"|
V€ a1 i, y=1
(45)
Q;, (4)
+< S (A)+rln:1;( o R; (A) >Z|mw
and Q;, (A) is such as in Theorem 7.
Proof. By Lemma 11, we have
5) ]
- M
I(5) ],
(46)
'atlt| Zlvzl |msv| + Rs (A/ﬁ) Zf/:l |mtv|
I [alal - R (AR, (A/B)
Similar to (29), we obtain
%y j,
-1
|“t't| = |y = (a0, [A(B)]
Gij,
. '“iljt|
< gl + (Jaga | las ) ma@) ™|
|a’kft'
i, (A)
< |amt| + max R; (A)
a; i,
(47)
Thus, by Theorem 1 of [12], we have
A
R, (—) < asls
1) < - |
(48
A
< maxQ ( )R (A) +R; L (A).

Journal of Applied Mathematics

Since A € SD,,, then A € OS,,. Thus, by Theorem 7, we have

w(3)e (3

A
- |:|ajtjt' - max Rl )th (A):| (49)

ueN/{j} |auu|
X [ a

! !
att ass

Q. (4)

a

— max
i,€p

oo R; (A)

iy,

Further, by (46), (47), (48), and (49), we obtain inequality

(43).
Let M = I = diag(1,1,...,1); we can prove inequality
(44). O

5. Numerical Examples

In this section, we present several numerical examples to
illustrate the theory results.

Example I (see Example 2 in [2]). Let

1.3 0.2 0.3 0.4 0.5
02 2 04 05 0.1

A=| 0304 2 0102 |,
04 05 01 3 0.3 (50)
05 0.1 02 0.3 3

B=1{1,2}.
By Theorem 10, the eigenvalues of A/f are in the set
={AA - 187 A -2.78 | < 11.20}
U{AA = 1.87 A — 2.81 | < 10.40} (51)
UL = 2.78] A — 2.81 | < 14.40} .
From Theorem 3.1 of [2], the eigenvalues of A/f are in the set

={A|A-1.87] A -2.78 | < 12.06}
U{AIA = 1.87] A —2.81 | < 11.20} (52)
U{AJIA—2.78] A — 2.81 | < 15.51}.

Evidently, I, ¢ I}, and we use Figure 1 to show this fact. And

« »

the elgenvalues of A/f3 are denoted by “+” in Figure 1.

Example 2. Let

1.6 0.1 0.5 0.2 0.2
03 1.5 02 0.2 0.1

A=| 0202 1.8 03 04 |,
0.5 0.3 0.5 1.0 0.2 (53)
05 02 02 03 1.9

B =12,4}.
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FIGURE 1: The red dotted line and black dashed line denote the
corresponding discs I, and T}, respectively.

FIGURE 2: The red dotted line and black dashed line denote the
corresponding discs I, and T}, respectively.

By Theorem 10, the eigenvalues of A/f3 are in the set
T, ={AJA— 149 A — 1.64 | < 7.12}
U{AIA - 1.49] A — 1.84 | < 7.64} (54)
U{AA - 1.64] A — 1.84 | < 8.50} .

From Theorem 3.1 of [2], the eigenvalues of A/ are in the set

[, = {AA - 1.49] A - 1.64 | < 10.68}
U{AIA - 1.49]| A — 1.84 | < 11.46} (55)
U{AIA - 1.64)| A — 1.84 | < 12.75}.

Evidently, T, c I}, and we use Figure 2 to show this fact. And
the eigenvalues of A/f3 are denoted by “+” in Figure 2.

FIGURE 3: The red dotted line and black dashed line denote the
corresponding discs Iy and I}, respectively.

Example 3. Let

1.5 02 03 0.2 0.1 0.2
02 1.2 0.1 03 0.1 04
0.6 02 1.6 0.1 0.2 0.1
0.5 02 0.1 1.8 0.3 0.2
0.2 0.1 02 0.3 1.3 0.1
0.1 02 0.1 0.3 1.2 2.5

B =11,3,5}.
By Theorem 10, the eigenvalues of A/f3 are in the set

(56)

T, = {AA - 1.16] A — 1.68 | < 4.79}
UAA = 1.16] A — 2.42 | < 6.78} (57)
U{AJA - 1.68| A —2.42 | < 9.85}.
From Theorem 3.1 of [2], the eigenvalues of A/f3 are in the set
I, = {AA - 1.16] A - 1.68 | < 5.35}
U{AJA - 1.16[|A - 2.42 | < 7.60} (58)
UM = 1.68] A — 2.42 | < 11.09} .

Evidently, Ty ¢ T}, and we use Figure 3 to show this fact. And
the eigenvalues of A/f3 are denoted by “+” in Figure 3.
Meanwhile, by Theorem 12,

AN
<— < 12.22. (59)
5) 1.
From Theorem 4.2 of [2],
AN
<— < 20.60. (60)
5) 1.

Remark 13. Numerical examples show that the new eigen-
value inclusion set is tighter than that in Theorem 3.1 of [2]
and the new upper bound of ||(A/ ﬁ)fl |, is sharper than that
in Theorem 4.2 of [2].
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