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By applying the properties of Schur complement and some inequality techniques, some new estimates of diagonally and doubly
diagonally dominant degree of the Schur complement of Ostrowski matrix are obtained, which improve the main results of Liu and
Zhang (2005) and Liu et al. (2012). As an application, we present new inclusion regions for eigenvalues of the Schur complement
of Ostrowski matrix. In addition, a new upper bound for the infinity norm on the inverse of the Schur complement of Ostrowski
matrix is given. Finally, we give numerical examples to illustrate the theory results.

1. Introduction

Let C𝑛×𝑛 denote the set of all 𝑛 × 𝑛 complex matrices, 𝑁 =

{1, 2, . . . , 𝑛}, and 𝐴 = (𝑎
𝑖𝑗
) ∈ C𝑛×𝑛(𝑛 ≥ 2). Denote

𝑅
𝑖
(𝐴) = ∑

𝑗 ̸= 𝑖






𝑎
𝑖𝑗






. (1)

We know that 𝐴 is called a strictly diagonally dominant
matrix if





𝑎
𝑖𝑖





> 𝑅
𝑖
(𝐴) , ∀𝑖 ∈ 𝑁. (2)

𝐴 is called a generalized Ostrowski matrix if




𝑎
𝑖𝑖











𝑎
𝑗𝑗






≥ 𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴) , ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗. (3)

𝐴 is called Ostrowski matrix if all strict inequalities in (3)
hold (see [1]).

SD
𝑛
and OS

𝑛
(GOS

𝑛
) will be used to denote the sets of all

𝑛 × 𝑛 strictly diagonally dominant matrices and the sets of all
𝑛 × 𝑛 (generalized) Ostrowski matrices, respectively.

As shown in [2], for all 𝑖 ∈ 𝑁, we call |𝑎
𝑖𝑖
| − 𝑅

𝑖
(𝐴)

and |𝑎
𝑖𝑖
||𝑎
𝑗𝑗
| − 𝑅

𝑖
(𝐴)𝑅
𝑗
(𝐴) the 𝑖th diagonally and doubly

diagonally dominant degree of 𝐴, respectively.
The infinity norm of 𝐴 is defined as

‖𝐴‖
∞
= max
1≤𝑖≤𝑛

{𝑅
𝑖
(𝐴) +





𝑎
𝑖𝑖





} . (4)

For 𝛽 ⊆ 𝑁, denote by |𝛽| the cardinality of 𝛽 and 𝛽 =

𝑁/𝛽. If 𝛽, 𝛾 ⊆ 𝑁, then𝐴(𝛽, 𝛾) is the submatrix of𝐴 with row
indices in 𝛽 and column indices in 𝛾. In particular, 𝐴(𝛽, 𝛽) is
abbreviated to 𝐴(𝛽). Assuming that 𝛽 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
} ⊂ 𝑁,

𝛽 = 𝑁/𝛽 = {𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑙
} and the elements of 𝛽 and 𝛽 are

both conventionally arranged in an increasing order. For 1 ≤
𝑡 ≤ 𝑙, we denote

𝐴
𝑡
= 𝐴 (𝛽 ∪ {𝑗

𝑡
}) . (5)

If 𝐴(𝛽) is nonsingular,

𝐴

𝛽

=

𝐴

𝐴 (𝛽)

= 𝐴 (𝛽) − 𝐴 (𝛽, 𝛽) [𝐴 (𝛽)]
−1

𝐴(𝛽, 𝛽) (6)

is called the Schur complement of 𝐴 with respect to 𝐴(𝛽).
The comparison matrix of 𝐴, 𝜇(𝐴) = (𝛼

𝑖𝑗
), is defined by

𝛼
𝑖𝑗
=

{

{

{






𝑎
𝑖𝑗






, if 𝑖 = 𝑗,

−






𝑎
𝑖𝑗






, if 𝑖 ̸= 𝑗.

(7)

A matrix𝐴 = (𝑎
𝑖𝑗
) ∈ C𝑛×𝑛 is called an𝑀-matrix if there exist

a nonnegative matrix 𝐵 and a number 𝑠 > 𝜌(𝐵) such that
𝐴 = 𝑠𝐼 − 𝐵, where 𝜌(𝐵) is the spectral radius of 𝐵. We know
that𝐴 is an𝐻-matrix if and only if𝜇(𝐴) is an𝑀-matrix, and if
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𝐴 is an𝑀-matrix, then the Schur complement of𝐴 is also an
𝑀-matrix and det𝐴 > 0 (see [3]).𝐻

𝑛
and𝑀

𝑛
will denote the

set of all 𝑛×𝑛 𝐻-matrices and the set of all 𝑛×𝑛 𝑀-matrices,
respectively.

The Schur complement has been proved to be a useful
tool in many fields such as control theory, statistics, and
computationalmathematics. A lot ofwork has been done on it
(see [2, 4–15]). It is well known that the Schur complements of
SD
𝑛
and OS

𝑛
are SD

𝑛
and OS

𝑛
, respectively. These properties

have been used for the derivation of matrix inequalities
in matrix analysis and for the convergence of iterations in
numerical analysis (see [16–19]). Meanwhile, estimating the
upper bound for the infinity norm of the inverse of the Schur
complement is of great significance. We know that the upper
bound of ‖𝐴−1‖

∞
plays an important role in some iterations

for large scale nonhomogeneous system of linear equation
𝐴𝑥 = 𝑏 (see [20]).

The paper is organized as follows. In Section 2, we give
several new estimates of diagonally and doubly diagonally
dominant degree on the Schur complement of matrices. In
Section 3, new inclusion regions for eigenvalues of the Schur
complement are obtained.Anewupper boundof ‖(𝐴/𝛽)−1‖

∞

is given in Section 4. In Section 5, we present numerical
examples to illustrate the theory results.

2. The Diagonally Dominant Degree for the
Schur Complement

In this section, we give several new estimates of diagonally
and doubly diagonally dominant degree on the Schur com-
plement of OS

𝑛
.

Lemma 1 (see [3]). If 𝐴 ∈ 𝐻
𝑛
, then [𝜇(𝐴)]−1 ≥ |𝐴

−1

|.

Lemma 2 (see [3]). If𝐴 ∈ 𝑆𝐷
𝑛
or𝐴 ∈ 𝑂𝑆

𝑛
, then𝐴 ∈ 𝐻

𝑛
; that

is, 𝜇(𝐴) ∈ 𝑀
𝑛
.

Lemma 3 (see [6]). If 𝐴 ∈ 𝑆𝐷
𝑛
or 𝐴 ∈ 𝑂𝑆

𝑛
and 𝛽 ⊆ 𝑁, then

the Schur complement of𝐴 is in 𝑆𝐷
|𝛽|
or 𝑂𝑆

|𝛽|
, where𝛽 = 𝑁−𝛽

is the complement of 𝛽 in𝑁 and |𝛽| is the cardinality of 𝛽.

Lemma 4 (see [12]). Let 𝐴 ∈ 𝑆𝐷
𝑛
, 𝛽 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
} ⊂ 𝑁,

𝛽 = {𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑙
}, and 𝑘 + 𝑙 = 𝑛. For any 𝑗

𝑡
∈ 𝛽, denote

𝐵
𝑗
𝑡

≡

(

(

(

(

(

𝑥 −






𝑎
𝑗
𝑡
𝑖
1







⋅ ⋅ ⋅ −






𝑎
𝑗
𝑡
𝑖
𝑘







−

𝑙

∑

V=1






𝑎
𝑖
1
𝑗V







... 𝜇 (𝐴 (𝛽))

−

𝑙

∑

V=1






𝑎
𝑖
𝑘
𝑗V







)

)

)

)

)

,

𝑥 > 0.

(8)

Then 𝐵
𝑗
𝑡

∈ GOS
𝑘+1

if and only if

𝑥 ≥ max
1≤𝑤≤𝑘

𝑅
𝑖
𝑤

(𝐴)






𝑎
𝑖
𝑤
𝑖
𝑤







𝑘

∑

V=1






𝑎
𝑗
𝑡
𝑖V






. (9)

When the strict inequality in (9) holds, 𝐵
𝑗
𝑡

∈ 𝑀
𝑘+1

, and thus
det𝐵
𝑗
𝑡

> 0. If the equality in (9) occurs, then det𝐵
𝑗
𝑡

≥ 0.

Lemma 5. Let 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑂𝑆

𝑛
and 𝛽 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
} with

an index 𝑖
𝑑
(1 ≤ 𝑑 ≤ 𝑘) satisfying |𝑎

𝑖
𝑑
𝑖
𝑑

| ≤ 𝑅
𝑖
𝑑

(𝐴), |𝑎
𝑖
𝑑
𝑖
𝑑

| >

∑
𝑖
𝑢
∈𝛽/{𝑖
𝑑
}
|𝑎
𝑖
𝑑
𝑖
𝑢

|, 𝛽 = {𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑙
}, 1 ≤ 𝑘 < 𝑛, and 𝐴/𝛽 =

(𝑎


𝑡𝑠
). Then, for all 1 ≤ 𝑡 ≤ 𝑙,






𝑎


𝑡𝑡






− 𝑅
𝑡
(

𝐴

𝛽

) ≥






𝑎
𝑗
𝑡
𝑗
𝑡






− 𝑅
𝑗
𝑡

(𝐴)

+






𝑎
𝑖
𝑑
𝑖
𝑑






− 𝑃
𝑖
𝑑

(𝐴)






𝑎
𝑖
𝑑
𝑖
𝑑







𝑘

∑

V=1






𝑎
𝑗
𝑡
𝑖V







≥






𝑎
𝑗
𝑡
𝑗
𝑡






−

𝑃
𝑖
𝑑

(𝐴)






𝑎
𝑖
𝑑
𝑖
𝑑







𝑅
𝑗
𝑡

(𝐴)

> 0,

(10)

where

ℎ = max{ max
𝑖∈𝑁/{𝑖

𝑑
}






𝑎
𝑖𝑖
𝑑











𝑎
𝑖𝑖





− ∑
𝑗∈𝑁/{𝑖,𝑖

𝑑
}






𝑎
𝑖𝑗







,






𝑎
𝑖
𝑑
𝑖
𝑑







𝑅
𝑖
𝑑

(𝐴)

} ,

𝑃
𝑖
𝑑

(𝐴) = ℎ𝑅
𝑖
𝑑

(𝐴) .

(11)

Proof. From Lemmas 2 and 3, we know that 𝐴(𝛽) ∈ 𝐻
𝑘
and

𝜇(𝐴(𝛽)) ∈ 𝑀
𝑘
. Further, by Lemma 1, we have

[𝜇 (𝐴 (𝛽))]
−1

≥






[𝐴 (𝛽)]

−1



. (12)

Thus, for any 1 ≤ 𝑡 ≤ 𝑙,






𝑎


𝑡𝑡






− 𝑅
𝑡
(

𝐴

𝛽

)

=






𝑎


𝑡𝑡






−

𝑙

∑

𝑠=1, ̸= 𝑡






𝑎


𝑡𝑠







=
















𝑎
𝑗
𝑡
𝑗
𝑡

− (𝑎
𝑗
𝑡
𝑖
1

, . . . , 𝑎
𝑗
𝑡
𝑖
𝑘

) [𝐴 (𝛽)]
−1

(

𝑎
𝑖
1
𝑗
𝑡

...
𝑎
𝑖
𝑘
𝑗
𝑡

)
















−

𝑙

∑

𝑠 ̸= 𝑡
















𝑎
𝑗
𝑡
𝑗
𝑠

− (𝑎
𝑗
𝑡
𝑖
1

, . . . , 𝑎
𝑗
𝑡
𝑖
𝑘

) [𝐴 (𝛽)]
−1

(

𝑎
𝑖
1
𝑗
𝑠

...
𝑎
𝑖
𝑘
𝑗
𝑠

)
















≥






𝑎
𝑗
𝑡
𝑗
𝑡






− 𝑅
𝑗
𝑡

(𝐴)

+






𝑎
𝑖
𝑑
𝑖
𝑑






− 𝑃
𝑖
𝑑

(𝐴)






𝑎
𝑖
𝑑
𝑖
𝑑







𝑘

∑

V=1






𝑎
𝑗
𝑡
𝑖V






+

𝑃
𝑖
𝑑

(𝐴)






𝑎
𝑖
𝑑
𝑖
𝑑







𝑘

∑

V=1






𝑎
𝑗
𝑡
𝑖V







−

𝑙

∑

𝑠=1

(






𝑎
𝑗
𝑡
𝑖
1






, . . . ,






𝑎
𝑗
𝑡
𝑖
𝑘






) [𝜇 (𝐴 (𝛽))]

−1

(






𝑎
𝑖
1
𝑗
𝑠







...





𝑎
𝑖
𝑘
𝑗
𝑠







) .

(13)
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Further,






𝑎


𝑡𝑡






− 𝑅
𝑡
(

𝐴

𝛽

)

≥






𝑎
𝑗
𝑡
𝑗
𝑡






− 𝑅
𝑗
𝑡

(𝐴) +






𝑎
𝑖
𝑑
𝑖
𝑑






− 𝑃
𝑖
𝑑

(𝐴)






𝑎
𝑖
𝑑
𝑖
𝑑







𝑘

∑

V=1






𝑎
𝑗
𝑡
𝑖V







+

1

det [𝜇 (𝐴 (𝛽))]

× det

(

(

(

(

(

(

(

(

(

(

𝑃
𝑖
𝑑

(𝐴)






𝑎
𝑖
𝑑
𝑖
𝑑







𝑘

∑

V=1






𝑎
𝑗
𝑡
𝑖V






−






𝑎
𝑗
𝑡
𝑖
1







⋅ ⋅ ⋅ −






𝑎
𝑗
𝑡
𝑖
𝑘







−

𝑙

∑

𝑠=1






𝑎
𝑖
1
𝑗
𝑠







... 𝜇 (𝐴 (𝛽))

−

𝑙

∑

𝑠=1






𝑎
𝑖
𝑘
𝑗
𝑠







)

)

)

)

)

)

)

)

)

)

def.= 




𝑎
𝑗
𝑡
𝑗
𝑡






− 𝑅
𝑗
𝑡

(𝐴) +






𝑎
𝑖
𝑑
𝑖
𝑑






− 𝑃
𝑖
𝑑

(𝐴)






𝑎
𝑖
𝑑
𝑖
𝑑







𝑘

∑

V=1






𝑎
𝑗
𝑡
𝑖V







+

1

det [𝜇 (𝐴 (𝛽))]

det𝐵.

(14)

By Lemma 4, we can prove that det𝐵 ≥ 0. Thus, inequality
(10) holds.

Remark 6. Note that

𝑃
𝑖
𝑑

(𝐴)






𝑎
𝑖
𝑑
𝑖
𝑑







≤

𝑅
𝑖
𝑑

(𝐴)






𝑎
𝑖
𝑑
𝑖
𝑑







. (15)

This shows that Lemma 5 improves Theorem 2 of [12].

Theorem 7. Let 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑂𝑆

𝑛
, 𝛽 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
} ⊂ 𝑁,

𝛽 = 𝑁/𝛽 = {𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑙
}, 1 ≤ 𝑘 < 𝑛, and 𝐴/𝛽 = (𝑎



𝑡𝑠
).

(a) If there exists an 𝑖
𝑑
∈ 𝛽 (1 ≤ 𝑑 ≤ 𝑘) such that |𝑎

𝑖
𝑑
𝑖
𝑑

| ≤

𝑅
𝑖
𝑑

(𝐴), then, for all 1 ≤ 𝑠, 𝑡 ≤ 𝑙, 𝑡 ̸= 𝑠,






𝑎


𝑡𝑡












𝑎


𝑠𝑠






− 𝑅
𝑡
(

𝐴

𝛽

)𝑅
𝑠
(

𝐴

𝛽

)

≥ [






𝑎
𝑗
𝑡
𝑗
𝑡






− max
𝑢∈𝑁/{𝑗𝑡}

𝑃
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑃
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)] ,

(16)






𝑎


𝑡𝑡












𝑎


𝑠𝑠






+ 𝑅
𝑡
(

𝐴

𝛽

)𝑅
𝑠
(

𝐴

𝛽

)

≤ [






𝑎
𝑗
𝑡
𝑗
𝑡






+ max
𝑢∈𝑁/{𝑗𝑡}

𝑃
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






+max
𝑖V∈𝛽

𝑃
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)] ,

(17)

where

𝑃
𝑖
(𝐴) = ℎ ∑

𝑗∈𝑁/{𝑖,𝑖
𝑑
}






𝑎
𝑖𝑗






+






𝑎
𝑖𝑖
𝑑







(𝑖 ̸= 𝑖
𝑑
) , (18)

and 𝑃
𝑖
𝑑

(𝐴) and ℎ are such as in Lemma 5.

(b) If |𝑎
𝑖
𝑑
𝑖
𝑑

| > 𝑅
𝑖
𝑑

(𝐴) for any 𝑖
𝑑
∈ 𝛽 (1 ≤ 𝑑 ≤ 𝑘), then, for

all 1 ≤ 𝑠, 𝑡 ≤ 𝑙, 𝑡 ̸= 𝑠,






𝑎


𝑡𝑡












𝑎


𝑠𝑠






− 𝑅
𝑡
(

𝐴

𝛽

)𝑅
𝑠
(

𝐴

𝛽

)

≥ [






𝑎
𝑗
𝑡
𝑗
𝑡






− max
𝑢∈𝑁/{𝑗𝑡}

𝑅
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)] ,

(19)






𝑎


𝑡𝑡












𝑎


𝑠𝑠






+ 𝑅
𝑡
(

𝐴

𝛽

)𝑅
𝑠
(

𝐴

𝛽

)

≤ [






𝑎
𝑗
𝑡
𝑗
𝑡






+ max
𝑢∈𝑁/{𝑗𝑡}

𝑅
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






+max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)] ,

(20)

where

𝜂 = max
{

{

{

max
1≤𝜔≤𝑘

∑
𝑙

V=1






𝑎
𝑖
𝜔
𝑗V












𝑎
𝑖
𝜔
𝑖
𝜔






− ∑
𝑘

𝑡 ̸= 𝜔






𝑎
𝑖
𝜔
𝑖
𝑡







,

max
1≤𝜔≤𝑘

1≤V≤𝑙






𝑎
𝑖
𝜔
𝑗V







∑
𝑙

V=1






𝑎
𝑖
𝜔
𝑗V







}

}

}

,

𝑄
𝑖
𝜔

(𝐴) = 𝜂

𝑘

∑

𝑡 ̸= 𝜔






𝑎
𝑖
𝜔
𝑖
𝑡






+

𝑙

∑

V=1






𝑎
𝑖
𝜔
𝑗V






,

1 ≤ 𝜔 ≤ 𝑘,

(21)

and if there exists some 1 ≤ 𝜔 ≤ 𝑘 such that
∑
𝑙

V=1 |𝑎𝑖𝜔𝑗V
| = 0, one denotes 𝜂 = 1.
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Proof. (a) If there exists an 𝑖
𝑑
∈ 𝛽 such that |𝑎

𝑖
𝑑
𝑖
𝑑

| ≤ 𝑅
𝑖
𝑑

(𝐴),
then, for all 𝑗

𝑡
∈ 𝛽,

max
𝑢∈𝑁/{𝑗𝑡}

𝑃
𝑢
(𝐴)





𝑎
𝑢𝑢






= max
𝑖V∈𝛽

𝑃
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







=

𝑃
𝑖
𝑑

(𝐴)






𝑎
𝑖
𝑑
𝑖
𝑑







. (22)

By Lemma 5, for all 1 ≤ 𝑡 ≤ 𝑙,






𝑎


𝑡𝑡






− 𝑅
𝑡
(

𝐴

𝛽

) ≥






𝑎
𝑗
𝑡
𝑗
𝑡






−

𝑃
𝑖
𝑑

(𝐴)






𝑎
𝑖
𝑑
𝑖
𝑑







𝑅
𝑗
𝑡

(𝐴) > 0. (23)

Thus, for all 1 ≤ 𝑡, 𝑠 ≤ 𝑙, 𝑡 ̸= 𝑠,

[






𝑎


𝑡𝑡






− 𝑅
𝑡
(

𝐴

𝛽

)] [






𝑎


𝑠𝑠






− 𝑅
𝑠
(

𝐴

𝛽

)] > 0. (24)

From Lemma 3, 𝐴/𝛽 is in OS
|𝛽|
; that is, for all 1 ≤ 𝑡, 𝑠 ≤

𝑙, 𝑡 ̸= 𝑠,






𝑎


𝑡𝑡












𝑎


𝑠𝑠






− 𝑅
𝑡
(

𝐴

𝛽

)𝑅
𝑠
(

𝐴

𝛽

) > 0. (25)

Further, for all 1 ≤ 𝑡, 𝑠 ≤ 𝑙, 𝑡 ̸= 𝑠,






𝑎


𝑡𝑡












𝑎


𝑠𝑠






− 𝑅
𝑡
(

𝐴

𝛽

)𝑅
𝑠
(

𝐴

𝛽

)

≥ [






𝑎


𝑡𝑡






− 𝑅
𝑡
(

𝐴

𝛽

)]

× [






𝑎


𝑠𝑠






− 𝑅
𝑠
(

𝐴

𝛽

)]

≥ [






𝑎
𝑗
𝑡
𝑗
𝑡






− max
𝑢∈𝑁/{𝑗𝑡}

𝑃
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑃
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)] .

(26)

Therefore, inequality (16) holds. Similarly, we can prove
inequality (17).

(b) If |𝑎
𝑖
𝑑
𝑖
𝑑

| > 𝑅
𝑖
𝑑

(𝐴) for any 𝑖
𝑑
∈ 𝛽 (1 ≤ 𝑑 ≤ 𝑘), then,

from Lemmas 1 and 2, for all 1 ≤ 𝑡, 𝑠 ≤ 𝑙, 𝑡 ̸= 𝑠,






𝑎


𝑡𝑡












𝑎


𝑠𝑠






− 𝑅
𝑡
(

𝐴

𝛽

)𝑅
𝑠
(

𝐴

𝛽

)

=
















𝑎
𝑗
𝑠
𝑗
𝑠

− (𝑎
𝑗
𝑠
𝑖
1

, . . . , 𝑎
𝑗
𝑠
𝑖
𝑘

) [𝐴 (𝛽)]
−1

(

𝑎
𝑖
1
𝑗
𝑠

...
𝑎
𝑖
𝑘
𝑗
𝑠

)
















×
















𝑎
𝑗
𝑡
𝑗
𝑡

− (𝑎
𝑗
𝑡
𝑖
1

, . . . , 𝑎
𝑗
𝑡
𝑖
𝑘

) [𝐴 (𝛽)]
−1

(

𝑎
𝑖
1
𝑗
𝑡

...
𝑎
𝑖
𝑘
𝑗
𝑡

)
















−
[

[

[

𝑙

∑

V ̸= 𝑠
















𝑎
𝑗
𝑠
𝑗V
− (𝑎
𝑗
𝑠
𝑖
1

, . . . , 𝑎
𝑗
𝑠
𝑖
𝑘

)

× [𝐴 (𝛽)]
−1

(

𝑎
𝑖
1
𝑗V

...
𝑎
𝑖
𝑘
𝑗V

)
















]

]

]

×
[

[

[

𝑙

∑

𝑢 ̸= 𝑡
















𝑎
𝑗
𝑡
𝑗
𝑢

− (𝑎
𝑗
𝑡
𝑖
1

, . . . , 𝑎
𝑗
𝑡
𝑖
𝑘

)

× [𝐴 (𝛽)]
−1

(

𝑎
𝑖
1
𝑗
𝑢

...
𝑎
𝑖
𝑘
𝑗
𝑢

)
















]

]

]

≥

[

[

[

[






𝑎
𝑗
𝑠
𝑗
𝑠






− (






𝑎
𝑗
𝑠
𝑖
1






, . . . ,






𝑎
𝑗
𝑠
𝑖
𝑘






)

× [𝜇 (𝐴 (𝛽))]
−1

(






𝑎
𝑖
1
𝑗
𝑠







...





𝑎
𝑖
𝑘
𝑗
𝑠







)

]

]

]

]

×

[

[

[

[






𝑎
𝑗
𝑡
𝑗
𝑡






− (






𝑎
𝑗
𝑡
𝑖
1






, . . . ,






𝑎
𝑗
𝑡
𝑖
𝑘






)

× [𝜇 (𝐴 (𝛽))]
−1

(






𝑎
𝑖
1
𝑗
𝑡







...





𝑎
𝑖
𝑘
𝑗
𝑡







)

]

]

]

]

−

{
{
{

{
{
{

{

𝑙

∑

V ̸= 𝑠

[

[

[

[






𝑎
𝑗
𝑠
𝑗V






+ (






𝑎
𝑗
𝑠
𝑖
1






, . . . ,






𝑎
𝑗
𝑠
𝑖
𝑘






)

× [𝜇 (𝐴 (𝛽))]
−1

(






𝑎
𝑖
1
𝑗V







...





𝑎
𝑖
𝑘
𝑗V







)

]

]

]

]

}
}
}

}
}
}

}

×

{
{
{

{
{
{

{

𝑙

∑

𝑢 ̸= 𝑡

[

[

[

[






𝑎
𝑗
𝑡
𝑗
𝑢






+ (






𝑎
𝑗
𝑡
𝑖
1






, . . . ,






𝑎
𝑗
𝑡
𝑖
𝑘






)

× [𝜇 (𝐴 (𝛽))]
−1

(






𝑎
𝑖
1
𝑗
𝑢







...





𝑎
𝑖
𝑘
𝑗
𝑢







)

]

]

]

]

}
}
}

}
}
}

}

def.
= 𝜉 =

[

[

[

[






𝑎
𝑗
𝑠
𝑗
𝑠






− (






𝑎
𝑗
𝑠
𝑖
1






, . . . ,






𝑎
𝑗
𝑠
𝑖
𝑘






)
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× [𝜇 (𝐴 (𝛽))]
−1

(






𝑎
𝑖
1
𝑗
𝑠







...





𝑎
𝑖
𝑘
𝑗
𝑠







)

]

]

]

]

×

[

[

[

[






𝑎
𝑗
𝑡
𝑗
𝑡






− max
𝑢∈𝑁/{𝑗𝑡}

𝑅
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)

+ max
𝑢∈𝑁/{𝑗𝑡}

𝑅
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)

− (






𝑎
𝑗
𝑡
𝑖
1






, . . . ,






𝑎
𝑗
𝑡
𝑖
𝑘






) [𝜇 (𝐴 (𝛽))]

−1

(






𝑎
𝑖
1
𝑗
𝑡







...





𝑎
𝑖
𝑘
𝑗
𝑡







)

]

]

]

]

−

{
{
{

{
{
{

{

𝑙

∑

V ̸= 𝑠

[

[

[

[






𝑎
𝑗
𝑠
𝑗V






− (






𝑎
𝑗
𝑠
𝑖
1






, . . . ,






𝑎
𝑗
𝑠
𝑖
𝑘






)

× [𝜇 (𝐴 (𝛽))]
−1

(






𝑎
𝑖
1
𝑗V







...





𝑎
𝑖
𝑘
𝑗V







)

]

]

]

]

}
}
}

}
}
}

}

×

{
{
{

{
{
{

{

𝑙

∑

𝑢 ̸= 𝑡

[

[

[

[






𝑎
𝑗
𝑡
𝑗
𝑢






− (






𝑎
𝑗
𝑡
𝑖
1






, . . . ,






𝑎
𝑗
𝑡
𝑖
𝑘






)

× [𝜇 (𝐴 (𝛽))]
−1

(






𝑎
𝑖
1
𝑗
𝑢







...





𝑎
𝑖
𝑘
𝑗
𝑢







)

]

]

]

]

}
}
}

}
}
}

}

.

(27)

Therefore,

𝜉 =

[

[

[

[






𝑎
𝑗
𝑠
𝑗
𝑠






− (






𝑎
𝑗
𝑠
𝑖
1






, . . . ,






𝑎
𝑗
𝑠
𝑖
𝑘






)

× [𝜇 (𝐴 (𝛽))]
−1

(






𝑎
𝑖
1
𝑗
𝑠







...





𝑎
𝑖
𝑘
𝑗
𝑠







)

]

]

]

]

× [






𝑎
𝑗
𝑡
𝑗
𝑡






− max
𝑢∈𝑁/{𝑗𝑡}

𝑅
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

+

[

[

[

[






𝑎
𝑗
𝑠
𝑗
𝑠






− (






𝑎
𝑗
𝑠
𝑖
1






, . . . ,






𝑎
𝑗
𝑠
𝑖
𝑘






)

× [𝜇 (𝐴 (𝛽))]
−1

(






𝑎
𝑖
1
𝑗
𝑠







...





𝑎
𝑖
𝑘
𝑗
𝑠







)

]

]

]

]

×

[

[

[

[

max
𝑢∈𝑁/{𝑗𝑡}

𝑅
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)

− (






𝑎
𝑗
𝑡
𝑖
1






, . . . ,






𝑎
𝑗
𝑡
𝑖
𝑘






) [𝜇 (𝐴 (𝛽))]

−1

(






𝑎
𝑖
1
𝑗
𝑡







...





𝑎
𝑖
𝑘
𝑗
𝑡







)

]

]

]

]

−

{
{
{

{
{
{

{

𝑙

∑

V ̸= 𝑠

[

[

[

[






𝑎
𝑗
𝑠
𝑗V






− (






𝑎
𝑗
𝑠
𝑖
1






, . . . ,






𝑎
𝑗
𝑠
𝑖
𝑘






)

× [𝜇 (𝐴 (𝛽))]
−1

(






𝑎
𝑖
1
𝑗V







...





𝑎
𝑖
𝑘
𝑗V







)

]

]

]

]

}
}
}

}
}
}

}

×

{
{
{

{
{
{

{

𝑙

∑

𝑢 ̸= 𝑡

[

[

[

[






𝑎
𝑗
𝑡
𝑗
𝑢






− (






𝑎
𝑗
𝑡
𝑖
1






, . . . ,






𝑎
𝑗
𝑡
𝑖
𝑘






)

× [𝜇 (𝐴 (𝛽))]
−1

(






𝑎
𝑖
1
𝑗
𝑢







...





𝑎
𝑖
𝑘
𝑗
𝑢







)

]

]

]

]

}
}
}

}
}
}

}

.

(28)

Further,






𝑎
𝑗
𝑠
𝑗
𝑠






− (






𝑎
𝑗
𝑠
𝑖
1






, . . . ,






𝑎
𝑗
𝑡
𝑖
𝑘






) [𝜇 (𝐴 (𝛽))]

−1

(






𝑎
𝑖
1
𝑗
𝑠







...





𝑎
𝑖
𝑘
𝑗
𝑠







)

=






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑘

∑

V=1






𝑎
𝑗
𝑠
𝑖V






+max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑘

∑

V=1






𝑎
𝑗
𝑠
𝑖V







− (𝜂






𝑎
𝑗
𝑠
𝑖
1






, . . . , 𝜂






𝑎
𝑗
𝑠
𝑖
𝑘






) [𝜂𝜇 (𝐴 (𝛽))]

−1

(






𝑎
𝑖
1
𝑗
𝑠







...





𝑎
𝑖
𝑘
𝑗
𝑠







)

=






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑘

∑

V=1






𝑎
𝑗
𝑠
𝑖V






+

1

det [𝜂𝜇 (𝐴 (𝛽))]

× det
(

(

(

(

(

max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V 𝑖V







𝑘

∑

V=1






𝑎
𝑗𝑠 𝑖V






−𝜂






𝑎
𝑗𝑠𝑖1






⋅ ⋅ ⋅ −𝜂






𝑎
𝑗𝑠 𝑖𝑘







−






𝑎
𝑖1𝑗𝑠







... 𝜂𝜇 (𝐴(𝛽))

−






𝑎
𝑖𝑘𝑗𝑠







)

)

)

)

)

def.
=






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑘

∑

V=1






𝑎
𝑗
𝑠
𝑖V






+

1

det [𝜂𝜇 (𝐴 (𝛽))]

det𝐵
1
.

(29)



6 Journal of Applied Mathematics

In 𝐵
1
, for all 𝑝 = 1, 2, 3, . . . , 𝑘,

𝜂








𝑎
𝑖
𝑝
𝑖
𝑝








max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑘

∑

V=1






𝑎
𝑗
𝑠
𝑖V







≥ 𝜂








𝑎
𝑖
𝑝
𝑖
𝑝








𝑄
𝑖
𝑝

(𝐴)








𝑎
𝑖
𝑝
𝑖
𝑝








𝑘

∑

V=1






𝑎
𝑗
𝑠
𝑖V







= 𝜂𝑄
𝑖
𝑝

(𝐴)

𝑘

∑

V=1






𝑎
𝑗
𝑠
𝑖V







= 𝜂(𝜂

𝑘

∑

V ̸= 𝑝








𝑎
𝑖
𝑝
𝑖V








+

𝑙

∑

V=1








𝑎
𝑖
𝑝
𝑗V








)

𝑘

∑

V=1






𝑎
𝑗
𝑠
𝑖V







≥ (𝜂

𝑘

∑

V ̸= 𝑝








𝑎
𝑖
𝑝
𝑖V








+








𝑎
𝑖
𝑝
𝑗
𝑠








)

𝑘

∑

V=1






𝜂𝑎
𝑗
𝑠
𝑖V






.

(30)

And for all 𝑝, 𝑞 = 1, 2, 3, . . . , 𝑘, 𝑝 ̸= 𝑞,

𝜂








𝑎
𝑖
𝑝
𝑖
𝑝








𝜂








𝑎
𝑖
𝑞
𝑖
𝑞








> 𝜂𝑅
𝑖
𝑝

(𝐴) 𝜂𝑅
𝑖
𝑞

(𝐴)

= (𝜂

𝑘

∑

V ̸= 𝑝








𝑎
𝑖
𝑝
𝑖V








+ 𝜂

𝑙

∑

V=1








𝑎
𝑖
𝑝
𝑗V








)(𝜂

𝑘

∑

V ̸= 𝑞








𝑎
𝑖
𝑞
𝑖V








+ 𝜂

𝑙

∑

V=1








𝑎
𝑖
𝑞
𝑗V








)

≥ (𝜂

𝑘

∑

V ̸= 𝑝








𝑎
𝑖
𝑝
𝑖V








+








𝑎
𝑖
𝑝
𝑗
𝑠








)(𝜂

𝑘

∑

V ̸= 𝑞








𝑎
𝑖
𝑞
𝑖V








+








𝑎
𝑖
𝑞
𝑗
𝑠








) .

(31)

Hence, by (30) and (31), we have𝐵
1
∈ GOS

𝑘+1
and so det𝐵

1
≥

0. Further, by (29), we obtain






𝑎
𝑗
𝑠
𝑗
𝑠






− (






𝑎
𝑗
𝑠
𝑖
1






, . . . ,






𝑎
𝑗
𝑡
𝑖
𝑘






) [𝜇 (𝐴 (𝛽))]

−1

(






𝑎
𝑖
1
𝑗
𝑠







...





𝑎
𝑖
𝑘
𝑗
𝑠







)

≥






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑘

∑

V=1






𝑎
𝑗
𝑠
𝑖V







≥






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴) .

(32)

By (28) and a similar method as the proof ofTheorem 2.1

in [2], we can prove 𝜉 > 0. Therefore, by (29) and (32), we
obtain inequality (19). Similarly, we can prove inequality (20).

Remark 8. Note that
0 ≤ ℎ, 𝜂 ≤ 1. (33)

This shows that Theorem 7 improves Theorem 2.1 of [2].

3. Eigenvalue Inclusion Regions of
the Schur Complement

In this section, we present new inclusion regions for eigenval-
ues of the Schur complement of OS

𝑛
.

Lemma9 (Brauer Ovals theorem). Let𝐴 = (𝑎
𝑖𝑗
) ∈ C𝑛×𝑛.Then

the eigenvalues of 𝐴 are in the union of the following sets:

𝑈
𝑖𝑗
= {𝑧 ∈ 𝐶





𝑧 − 𝑎
𝑖𝑖





𝑧 − 𝑎
𝑗𝑗
|≤ 𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)} ,

∀𝑖, 𝑗 = 𝑁, 𝑖 ̸= 𝑗.

(34)

Theorem 10. Let 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑂𝑆

𝑛
, 𝛽 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
} ⊂ 𝑁,

𝛽 = 𝑁/𝛽 = {𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑙
}, 1 ≤ 𝑘 < 𝑛, and 𝐴/𝛽 = (𝑎



𝑡𝑠
), and let

𝜆 be eigenvalue of 𝐴/𝛽.

(a) If there exists an 𝑖
𝑑
∈ 𝛽 (1 ≤ 𝑑 ≤ 𝑘) such that |𝑎

𝑖
𝑑
𝑖
𝑑

| ≤

𝑅
𝑖
𝑑

(𝐴), then there exist 1 ≤ 𝑡, 𝑠 ≤ 𝑙, 𝑡 ̸= 𝑠, such that











𝜆 −

det (𝐴
𝑡
)

det𝐴 (𝛽)





















𝜆 −

det (𝐴
𝑠
)

det𝐴 (𝛽)











≤ 2 [






𝑎
𝑗
𝑠
𝑗
𝑠






max
𝑢∈𝑁/{𝑗

𝑡
}

𝑃
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)

+






𝑎
𝑗
𝑡
𝑗
𝑡






max
𝑖V∈𝛽

𝑃
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)] ,

(35)











𝜆 −

det (𝐴
𝑡
)

det𝐴 (𝛽)





















𝜆 −

det (𝐴
𝑠
)

det𝐴 (𝛽)











≤ [






𝑎
𝑗
𝑡
𝑗
𝑡






+ max
𝑢∈𝑁/{𝑗𝑡}

𝑃
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






+max
𝑖V∈𝛽

𝑃
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)] ,

(36)

where 𝑃
𝑖
𝑑

(𝐴) is such as in Lemma 5 and 𝑃
𝑖V
(𝐴) (V ̸= 𝑑)

is such as in Theorem 7.
(b) If |𝑎

𝑖
𝑑
𝑖
𝑑

| > 𝑅
𝑖
𝑑

(𝐴) for any 𝑖
𝑑
∈ 𝛽 (1 ≤ 𝑑 ≤ 𝑘), then

there exist 1 ≤ 𝑡, 𝑠 ≤ 𝑙, 𝑡 ̸= 𝑠, such that










𝜆 −

det (𝐴
𝑡
)

det𝐴 (𝛽)





















𝜆 −

det (𝐴
𝑠
)

det𝐴 (𝛽)











≤ 2 [






𝑎
𝑗
𝑠
𝑗
𝑠







max
𝑢∈𝑁/{𝑗𝑡}

𝑅
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)

+






𝑎
𝑗
𝑡
𝑗
𝑡






max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)] ,

(37)











𝜆 −

det (𝐴
𝑡
)

det𝐴 (𝛽)





















𝜆 −

det (𝐴
𝑠
)

det𝐴 (𝛽)











≤ [






𝑎
𝑗
𝑡
𝑗
𝑡






+ max
𝑢∈𝑁/{𝑗𝑡}

𝑅
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






+max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)] ,

(38)

where 𝑄
𝑖V
(𝐴) is such as in Theorem 7.
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Proof. By Lemma 9, we know that there exist 1 ≤ 𝑡, 𝑠 ≤ 𝑙,
𝑡 ̸= 𝑠, such that






𝜆 − 𝑎


𝑡𝑡












𝜆 − 𝑎


𝑠𝑠






≤ 𝑅
𝑡
(

𝐴

𝛽

)𝑅
𝑠
(

𝐴

𝛽

) . (39)

(a) If there exists 𝑖
𝑑
∈ 𝛽 satisfying |𝑎

𝑖
𝑑
𝑖
𝑑

| ≤ 𝑅
𝑖
𝑑

(𝐴), by (16),
we have

𝑅
𝑡
(

𝐴

𝛽

)𝑅
𝑠
(

𝐴

𝛽

)

≤






𝑎


𝑡𝑡












𝑎


𝑠𝑠






− [






𝑎
𝑗
𝑡
𝑗
𝑡






− max
𝑢∈𝑁/{𝑗𝑡}

𝑃
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑃
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)]

=
















𝑎
𝑗
𝑠
𝑗
𝑠

− (𝑎
𝑗
𝑠
𝑖
1

, . . . , 𝑎
𝑗
𝑠
𝑖
𝑘

) [𝐴 (𝛽)]
−1

(

𝑎
𝑖
1
𝑗
𝑠

...
𝑎
𝑖
𝑘
𝑗
𝑠

)
















×
















𝑎
𝑗
𝑡
𝑗
𝑡

− (𝑎
𝑗
𝑡
𝑖
1

, . . . , 𝑎
𝑗
𝑡
𝑖
𝑘

) [𝐴 (𝛽)]
−1

(

𝑎
𝑖
1
𝑗
𝑡

...
𝑎
𝑖
𝑘
𝑗
𝑡

)
















− [






𝑎
𝑗
𝑡
𝑗
𝑡






− max
𝑢∈𝑁/{𝑗𝑡}

𝑃
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑃
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)]

≤ [






𝑎
𝑗
𝑡
𝑗
𝑡






+ max
𝑢∈𝑁/{𝑗𝑡}

𝑃
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






+max
𝑖V∈𝛽

𝑃
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)]

− [






𝑎
𝑗
𝑡
𝑗
𝑡






− max
𝑢∈𝑁/{𝑗𝑡}

𝑃
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑃
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)]

= 2[






𝑎
𝑗
𝑠
𝑗
𝑠







max
𝑢∈𝑁/{𝑗𝑡}

𝑃
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)

+






𝑎
𝑗
𝑡
𝑗
𝑡






max
𝑖V∈𝛽

𝑃
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)] .

(40)

On the other hand, for all 1 ≤ 𝑡 ≤ 𝑙,






𝜆 − 𝑎


𝑡𝑡







=
















𝜆 − 𝑎
𝑗
𝑡
𝑗
𝑡

+ (𝑎
𝑗
𝑡
𝑖
1

, . . . , 𝑎
𝑗
𝑡
𝑖
𝑘

) [𝐴(𝛽)]
−1

(

𝑎
𝑖
1
𝑗
𝑡

...
𝑎
𝑖
𝑘
𝑗
𝑡

)
















=











𝜆 − det(
𝐴
𝑡

𝐴 (𝛽)

)











=











𝜆 −

det (𝐴
𝑡
)

det𝐴 (𝛽)











.

(41)

Therefore, by (39), (40), and (41), we obtain inequality
(35). With a Similar method, we can prove inequality
(36).

(b) If |𝑎
𝑖
𝑑
𝑖
𝑑

| > 𝑅
𝑖
𝑑

(𝐴) for any 𝑖
𝑑
∈ 𝛽 (1 ≤ 𝑑 ≤ 𝑘), then

by (19), (32), and a similar method as the part (a),
we obtain inequality (37). Similarly, we can prove
inequality (38).

4. Upper Bound for the Infinity Norm on the
Inverse of the Schur Complement

In this section, we present a new upper bound of ‖(𝐴/𝛽)−1‖
∞
.

Lemma 11 (see [2]). Let 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑂𝑆

𝑛
and 𝑀 = (𝑚

𝑖𝑗
) ∈

C𝑛×𝑛. Then,






𝐴
−1

𝑀





∞

≤ max
1≤𝑖,𝑗≤𝑛

𝑖 ̸= 𝑗






𝑎
𝑗𝑗






∑
𝑛

V=1




𝑚
𝑖V




+ 𝑅
𝑖
(𝐴)∑

𝑛

V=1






𝑚
𝑗V










𝑎
𝑖𝑖











𝑎
𝑗𝑗






− 𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)

.

(42)

Theorem 12. Let 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝑆𝐷

𝑛
, 𝑀 = (𝑚

𝑖𝑗
) ∈ C𝑙×𝑙, 𝛽 =

{𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑘
} ⊂ 𝑁, 𝛽 = 𝑁/𝛽 = {𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑙
}, 1 ≤ 𝑘 < 𝑛, and

𝐴/𝛽 = (𝑎


𝑡𝑠
). Then,











(

𝐴

𝛽

)

−1

𝑀









∞

≤ max
1≤𝑡,𝑠≤𝑙

𝑡 ̸= 𝑠

(Δ
𝑗
𝑡
𝑗
𝑠

× ((






𝑎
𝑗
𝑡
𝑗
𝑡






− max
𝑢∈𝑁/{𝑗𝑡}

𝑅
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴))

× (






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)))

−1

) ,

(43)
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(

𝐴

𝛽

)

−1






∞

≤ max
1≤𝑡,𝑠≤𝑙

𝑡 ̸= 𝑠

((






𝑎
𝑗
𝑡
𝑗
𝑡






+ 𝑅
𝑗
𝑠

(𝐴)

+ max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







(𝑅
𝑗
𝑡

(𝐴) + 𝑅
𝑗
𝑠

(𝐴)))

× ((






𝑎
𝑗
𝑡
𝑗
𝑡






− max
𝑢∈𝑁/{𝑗𝑡}

𝑅
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴))

× (






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)))

−1

) ,

(44)

where

Δ
𝑗
𝑡
𝑗
𝑠

= (






𝑎
𝑗
𝑡
𝑗
𝑡






+max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑡

(𝐴))

𝑙

∑

V=1





𝑚
𝑠V





+ (𝑅
𝑗
𝑠

(𝐴) +max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴))

𝑙

∑

V=1





𝑚
𝑡V




,

(45)

and 𝑄
𝑖
𝑣

(𝐴) is such as in Theorem 7.

Proof. By Lemma 11, we have










(

𝐴

𝛽

)

−1

𝑀









∞

≤ max
1≤𝑡,𝑠≤𝑙

𝑡 ̸= 𝑠






𝑎


𝑡𝑡






∑
𝑙

V=1




𝑚
𝑠V




+ 𝑅
𝑠
(𝐴/𝛽)∑

𝑙

V=1




𝑚
𝑡V









𝑎


𝑡𝑡










𝑎


𝑠𝑠





− 𝑅
𝑡
(𝐴/𝛽) 𝑅

𝑠
(𝐴/𝛽)

.

(46)

Similar to (29), we obtain






𝑎


𝑡𝑡






=
















𝑎
𝑗
𝑡
𝑗
𝑡

− (𝑎
𝑗
𝑡
𝑖
1

, . . . , 𝑎
𝑗
𝑡
𝑖
𝑘

) [𝐴 (𝛽)]
−1

(

𝑎
𝑖
1
𝑗
𝑡

...
𝑎
𝑖
𝑘
𝑗
𝑡

)
















≤






𝑎
𝑗
𝑡
𝑗
𝑡






+ (






𝑎
𝑗
𝑡
𝑖
1






, . . . ,






𝑎
𝑗
𝑡
𝑖
𝑘






) [𝜇 (𝐴 (𝛽))]

−1

(






𝑎
𝑖
1
𝑗
𝑡







...





𝑎
𝑖
𝑘
𝑗
𝑡







)

≤






𝑎
𝑗
𝑡
𝑗
𝑡






+max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑡

(𝐴) .

(47)

Thus, byTheorem 1 of [12], we have

𝑅
𝑠
(

𝐴

𝛽

) ≤






𝑎


𝑠𝑠






−






𝑎
𝑗
𝑠
𝑗
𝑠






+ 𝑅
𝑗
𝑠

(𝐴)

≤ max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴) + 𝑅
𝑗
𝑠

(𝐴) .

(48)

Since 𝐴 ∈ SD
𝑛
, then 𝐴 ∈ OS

𝑛
. Thus, by Theorem 7, we have






𝑎


𝑡𝑡












𝑎


𝑠𝑠






− 𝑅
𝑡
(

𝐴

𝛽

)𝑅
𝑠
(

𝐴

𝛽

)

≥ [






𝑎
𝑗
𝑡
𝑗
𝑡






− max
𝑢∈𝑁/{𝑗𝑡}

𝑅
𝑢
(𝐴)





𝑎
𝑢𝑢






𝑅
𝑗
𝑡

(𝐴)]

× [






𝑎
𝑗
𝑠
𝑗
𝑠






−max
𝑖V∈𝛽

𝑄
𝑖V
(𝐴)






𝑎
𝑖V𝑖V







𝑅
𝑗
𝑠

(𝐴)] .

(49)

Further, by (46), (47), (48), and (49), we obtain inequality
(43).

Let 𝑀 = 𝐼 = diag(1, 1, . . . , 1); we can prove inequality
(44).

5. Numerical Examples

In this section, we present several numerical examples to
illustrate the theory results.

Example 1 (see Example 2 in [2]). Let

𝐴 = (

1.3 0.2 0.3 0.4 0.5

0.2 2 0.4 0.5 0.1

0.3 0.4 2 0.1 0.2

0.4 0.5 0.1 3 0.3

0.5 0.1 0.2 0.3 3

) ,

𝛽 = {1, 2} .

(50)

ByTheorem 10, the eigenvalues of 𝐴/𝛽 are in the set

Γ
1
= {𝜆 ‖𝜆 − 1.87‖ 𝜆 − 2.78 | ≤ 11.20}

∪ {𝜆 ‖𝜆 − 1.87‖ 𝜆 − 2.81 | ≤ 10.40}

∪ {𝜆 ‖𝜆 − 2.78‖ 𝜆 − 2.81 | ≤ 14.40} .

(51)

FromTheorem 3.1 of [2], the eigenvalues of𝐴/𝛽 are in the set

Γ


1
= {𝜆 ‖𝜆 − 1.87‖ 𝜆 − 2.78 | ≤ 12.06}

∪ {𝜆 ‖𝜆 − 1.87‖ 𝜆 − 2.81 | ≤ 11.20}

∪ {𝜆 ‖𝜆 − 2.78‖ 𝜆 − 2.81 | ≤ 15.51} .

(52)

Evidently, Γ
1
⊂ Γ


1
, and we use Figure 1 to show this fact. And

the eigenvalues of 𝐴/𝛽 are denoted by “+” in Figure 1.

Example 2. Let

𝐴 = (

1.6 0.1 0.5 0.2 0.2

0.3 1.5 0.2 0.2 0.1

0.2 0.2 1.8 0.3 0.4

0.5 0.3 0.5 1.0 0.2

0.5 0.2 0.2 0.3 1.9

) ,

𝛽 = {2, 4} .

(53)
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Figure 1: The red dotted line and black dashed line denote the
corresponding discs Γ

1
and Γ

1
, respectively.
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Figure 2: The red dotted line and black dashed line denote the
corresponding discs Γ

2
and Γ

2
, respectively.

ByTheorem 10, the eigenvalues of 𝐴/𝛽 are in the set

Γ
2
= {𝜆 ‖𝜆 − 1.49‖ 𝜆 − 1.64 | ≤ 7.12}

∪ {𝜆 ‖𝜆 − 1.49‖ 𝜆 − 1.84 | ≤ 7.64}

∪ {𝜆 ‖𝜆 − 1.64‖ 𝜆 − 1.84 | ≤ 8.50} .

(54)

FromTheorem 3.1 of [2], the eigenvalues of𝐴/𝛽 are in the set

Γ


2
= {𝜆 ‖𝜆 − 1.49‖ 𝜆 − 1.64 | ≤ 10.68}

∪ {𝜆 ‖𝜆 − 1.49‖ 𝜆 − 1.84 | ≤ 11.46}

∪ {𝜆 ‖𝜆 − 1.64‖ 𝜆 − 1.84 | ≤ 12.75} .

(55)

Evidently, Γ
2
⊂ Γ


2
, and we use Figure 2 to show this fact. And

the eigenvalues of 𝐴/𝛽 are denoted by “+” in Figure 2.

−2 −1 0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

Figure 3: The red dotted line and black dashed line denote the
corresponding discs Γ

3
and Γ

3
, respectively.

Example 3. Let

𝐴 =
(

(

1.5 0.2 0.3 0.2 0.1 0.2

0.2 1.2 0.1 0.3 0.1 0.4

0.6 0.2 1.6 0.1 0.2 0.1

0.5 0.2 0.1 1.8 0.3 0.2

0.2 0.1 0.2 0.3 1.3 0.1

0.1 0.2 0.1 0.3 1.2 2.5

)

)

,

𝛽 = {1, 3, 5} .

(56)

ByTheorem 10, the eigenvalues of 𝐴/𝛽 are in the set

Γ
3
= {𝜆 ‖𝜆 − 1.16‖ 𝜆 − 1.68 | ≤ 4.79}

∪ {𝜆 ‖𝜆 − 1.16‖ 𝜆 − 2.42 | ≤ 6.78}

∪ {𝜆 ‖𝜆 − 1.68‖ 𝜆 − 2.42 | ≤ 9.85} .

(57)

FromTheorem 3.1 of [2], the eigenvalues of𝐴/𝛽 are in the set

Γ


3
= {𝜆 ‖𝜆 − 1.16‖ 𝜆 − 1.68 | ≤ 5.35}

∪ {𝜆 ‖𝜆 − 1.16‖ 𝜆 − 2.42 | ≤ 7.60}

∪ {𝜆 ‖𝜆 − 1.68‖ 𝜆 − 2.42 | ≤ 11.09} .

(58)

Evidently, Γ
3
⊂ Γ


3
, and we use Figure 3 to show this fact. And

the eigenvalues of 𝐴/𝛽 are denoted by “+” in Figure 3.
Meanwhile, by Theorem 12,











(

𝐴

𝛽

)

−1






∞

≤ 12.22. (59)

FromTheorem 4.2 of [2],










(

𝐴

𝛽

)

−1






∞

≤ 20.60. (60)

Remark 13. Numerical examples show that the new eigen-
value inclusion set is tighter than that in Theorem 3.1 of [2]
and the new upper bound of ‖(𝐴/𝛽)−1‖

∞
is sharper than that

in Theorem 4.2 of [2].
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